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Abstract

Software model checking is a successful technique for automated program verification. The
configurable Software-Verification Platform CPAchecker supports several approaches based on
solving first-order-logic formulas over predicates using SMT solvers. The core of CPAchecker
including all algorithms is not specific to a programming language. CPAchecker supports the
static languages C and Java, but no SMT-based approach is supported for Java yet.

In this paper, we extend CPAchecker to a restricted subset of ECMAScript 5.1 by adding
a respective parser frontend and an operator that is responsible for encoding the semantics of
program operations into SMT formulas. JavaScript is one of the most widespread dynamic
languages and conforms to the ECMAScript specification. Its dynamic nature and complex
semantics make it a difficult target for logic-based verification. In defining the formula encod-
ing (operator), we deal with dynamic types, implicit type conversion, internal method calls,
function objects (higher order functions), closures (scope chain), extensible objects, dynamic
property access, and prototype inheritance. The functional correctness of the implementation
of the formula encoding is evaluated based on the test programs of the official ECMAScript
Conformance Test Suite using bounded model checking and k-induction. Finally, we outline
what needs to be done to be fully ECMAScript 5.1 compliant.
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1 Introduction

JavaScript is one of the most widespread dynamic languages. It is the main language for Web
applications, used on the server-side via Node.js, in desktop applications using Electron, and in
mobile applications using PhoneGap or Ionic. It is even run on small embedded devices with
limited memory using low.js1. According to W3Techs it is used by 95.1% of websites2. Further,
it is the most active language in GitHub3. The Stack Overflow Developer Survey 20194 showed
that JavaScript is the most commonly used programming language (for the seventh year in a
row).

The understanding and development of correct JavaScript code is notoriously difficult. This
is due to the dynamic nature and complex semantics of the language. There are less specialized
static analysis tools for JavaScript than for statically typed languages such as C and Java. The
transfer of analysis techniques to the domain of JavaScript (and dynamic languages in general)
is known to be a challenging task. Automated verification of safety properties can help to find
bugs and security vulnerabilities in JavaScript programs.

JavaScript is an interpreted language that is executed by a JavaScript engine. JavaScript en-
gines are commonly found in web browsers, including Chakra in Edge, SpiderMonkey in Firefox,
and V8 in Chrome. Each engine implements a different dialect of the JavaScript language. The
JavaScript language itself is not standardized, but Ecma International5 specifies the language
ECMAScript in ECMA-2626 that acts as standard for JavaScript. There exist different versions
of ECMAScript. Most engines implement JavaScript conforming to ECMAScript 5.17 as de-
scribed in section conformance [ES5, Sec. 2]. Newer versions are largely backwards compatible
to ECMAScript 5.1.

CPAchecker is an award winning configurable software-verification platform for C (and Java).
We extend it to a restricted subset of ECMAScript 5.1 to benefit from the various SMT-based
analysis approaches provided by this platform. The dynamic nature and complex semantics
of ECMAScript make it a difficult target for logic-based verification. We first look at the
challenges and related work in Chapter 2. Then we explain the SMT-based verification approach
of CPAchecker and outline what is needed to extend it to another language in Chapter 3. This
leads to Chapter 4 that describes how a ECMAScript program is represented and to Chapter 5
that describes how the SMT-formula encoding is done. Chapter 6 addresses the implementation
of the CPAchecker extension. The evaluation of the functional correctness of the implementation
is subject of Chapter 7. Finally, we summarize the work in Chapter 8 and outline future work
in Chapter 9, especially what has to be done to be fully ECMAScript 5.1 compliant.

1 https://www.lowjs.org/
2 https://w3techs.com/technologies/details/cp-javascript/all/all
3 http://githut.info
4 https://insights.stackoverflow.com/survey/2019/#technology-_-programming-scripting-and-markup-languages
5 https://www.ecma-international.org/
6 http://www.ecma-international.org/publications/standards/Ecma-262.htm
7 http://kangax.github.io/compat-table/es5/
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2 Related Work

Santos et al.[27] identified several challenges that need to be addressed for tractable ECMAScript
verification to be possible. We have to reason robustly and abstractly about the ECMAScript
internal functions that are used in the ECMAScript standard to (operationally) describe the
semantics of statements and expressions. This includes object property management (e.g. cre-
ation ( DefineOwnProperty ), lookup ( GetValue ), modification ( PutValue ) and deletion ( Delete ))
and type conversions (e.g. ToString and ToNumber ). Further, we have to reason about extensi-
ble objects (properties can be added and removed from an object after its creation), dynamic
property access (we cannot guarantee statically which property of the object will be accessed),
property descriptors (describe the ways in which a property can be accessed or modified), and
property traversal (for example using for - in or Object.keys ). Thereby, we have to reason
about prototype chains of arbitrary complexity. Besides, ECMAScript stores functions as ob-
jects in the heap. They can be passed to other functions as arguments and may be called
dynamically. Hence, we have to reason about higher-order functions of arbitrary complexity.
Scope is also tied to function objects. Variables and (nested) functions declared in the function
body are created upon the invocation of a function. Thus, we have to reason about scope chains
and function closures of arbitrary complexity. We will tackle most of these challenges later in
Chapter 5 and discuss in Chapter 8 to what extent we were able to solve these challenges. We
then give an outlook in Chapter 9 on how our approach can be expanded in future work.

But first we take a look at related work. A number of papers deal with type analysis of
JavaScript [1, 19, 31], whereby some papers [6, 13, 24] are built on the (unsound) type system
of TypeScript1, which is a typed superset of JavaScript (with optional types). Other literature
is focused on control flow analysis [14], pointer analysis [18, 30], and abstract interpretation
[2, 19, 20, 22]. On the contrary, only a handful of works address logic-based verification of
JavaScript or ECMAScript.
K [25] is a rewrite-based executable semantic framework in which programming languages,

type systems and formal analysis tools can be defined using configurations, computations and
rules. KJS [23] provides a K-interpretation of the core language and part of the built-in libraries
of ECMAScript 5.1. It has been tested against an old version of the ECMAScript language con-
formance test suite Test2622 that back then (April 28th 2015) consisted of 11578 test programs.
They passed all 2782 tests for the core language. As of May 2019, Test262 consisted of nearly
31000 individual test files. Tests for later specified ECMAScript versions have been added, but
also tests for older ECMAScript versions (inluding 5.1) have been added and revised in the
meantime.

JaVerT [15] is a semi-automatic JavaScript verification toolchain. It uses separation logic to
verify functional correctness properties of JavaScript programs annotated with pre- and post-
conditions, loop invariants, and instructions for folding and unfolding user-defined predicates.
Santos et al.[28] recently published a new version JaVerT 2.0 that supports automatic compo-
sitional testing based on bi-abduction. It is also tested against Test262 (May 30th 2016). They
passed 8797 tests that target ECMAScript 5.1 strict code (excluding other files with non-strict
code, unimplemented features, etc.).

1 https://www.typescriptlang.org/
2 https://github.com/tc39/test262
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As we have seen, Test262 is a common source for test programs to test the coverage of an
approach. We will also test our approach against the latest version3 of Test262 (May 3rd 2019)
in the end (see Chapter 7).

3 https://github.com/tc39/test262/tree/d47749e84daeea28b6fa7cefd69e7f2836dbbf37
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3 SMT-Based Verification In CPAchecker

CPAchecker1 is a configurable software-verification platform. Its goal is the automated verifi-
cation of safety properties of sequential programs. Therefore, it provides different configurable
program analyses [32]. Several approaches are based on solving first-order-logic formulas over
predicates using SMT solvers. CPAchecker supports the static languages C and Java2. How-
ever, its core (including all algorithms) is not specific to a programming language. CPAchecker
can be extended to other imperative and related programming languages by adding a respective
parser frontend and replacing the operator that is responsible for encoding the semantics of
program operations into SMT formulas.

The parser frontend creates a control-flow automaton (CFA) from the source code that repre-
sents the program3. The CFA consists of a set of program locations, whereas an initial program
location represents the program entry point. Edges connect program locations. Program lo-
cations without outgoing edges represent the end of the program. Edges are labeled with an
operation that is executed when the control flows along the edge. The semantics of an operation
op are defined by the strongest post operator SPop(·). A program path is a legal sequence of
consecutive edges that starts at the initial program location. The semantics of a program path
is defined by the iterative application of the strongest post operator for each operation of the
path with > passed as initial formula. The program path is feasible if the resulting formula is
satisfiable. Otherwise, it is infeasible. A location is reachable if a feasible program path to it
exists. CPAchecker uses reachability analysis to show that no defined error location is reachable
or to find a feasible error path to the respective error location.

In this paper, we extend CPAchecker to a restricted subset of ECMAScript 5.1. Therefore,
we add a respective parser frontend that creates a program representation (CFA) as described
in Chapter 4. Chapter 5 describes the formula encoding of the ECMAScript operations and the
language itself.

1 https://cpachecker.sosy-lab.org/
2 No SMT-based approach is supported for Java yet.
3 The program analyses of CPAchecker configure the reachability analysis based on the CFA.
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4 Program Representation

We assume that an ECMAScript program meets the assumptions of Section 4.1. It is repre-
sented by a set of control-flow automata (CFAs) as described in Section 4.2. The program is
simplified syntactically according to the rules described in Section 4.3 by preprocessing during
CFA creation.

4.1 Assumptions
We assume that a ECMAScript program is a single file. If a program consists of multiple
files, then we treat them as if they were concatenated (in the given order) to a single file that
we further call program. We further assume that the program is syntactically correct strict
mode code [ES5, Sec. 10.1.1] that only contains ECMAScript 5.1 features1 except the following
features that are not covered yet:

• The program must not contain recursive function calls.

• The program must not contain for-in statements [ES5, Sec. 12.6.4].

• The program must not contain the deprecated3 with statement [ES5, Sec. 12.10].

• Exceptions are not supported in general, including implicitly thrown runtime errors (for
example TypeError ) and explicitly thrown exceptions using the throw statement [ES5,
Sec. 12.13]. That also means that exception handling using try statement [ES5, Sec. 12.14]
is not supported.

• The program must not contain debugger statements [ES5, Sec. 12.15]. They are supposed
to be used in development only.

• The standard built-in ECMAScript objects [ES5, Sec. 15] are not supported yet. This
also includes the global object [ES5, Sec. 15.1]. Global variables are supported, but not
set on the global object.

• The program must not contain regular expression literals [ES5, Sec. 7.8.5] since the built-
in regular expression objects [ES5, Sec. 15.10] ( RegExp ) are not supported. The string
encoding (see Section 5.2.5) we use is not precise enough to support operations of regular
expressions in a meaningful way. It would require further elaboration.

• Property attributes [ES5, Sec. 8.6.1] are not fully supported. It is assumed that all prop-
erties are named data properties that are writable and configurable. Named accessor
properties are not supported. That also means that the production of PropertyAssign-
ment [ES5, Sec. 11.1.5] using get and set to define named accessor properties is not
supported.

1 Newer versions are largely backwards compatible and many new features are transpilable using Babel2 or
another tool to get ECMAScript 5.1 code that can be analyzed.

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
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• The ECMAScript specification uses various internal properties, which are not part of the
ECMAScript language, to define the semantics of object values. Not all of these semantics
are covered in this work, because certain features like exceptions are not supported yet.
Implicit function calls from internal methods4 are not supported either, since they are not
represented in the CFA yet.

• The arguments object [ES5, Sec. 10.6] is not covered due to lack of time.

• Relational operators < , > , <= , and >= do not compare string values. The presented
formula encoding of strings (see Section 5.2.5) is not precise enough to handle this case
adequately.

The time of this research was not enough to cover all ECMAScript 5.1 features, but we outline
in Chapter 9 how some of these unsupported features might be addressed in future work.

4.2 Control-Flow Automata
A program is represented by a set of control-flow automata (CFAs), one for each function
(declaration body) of the program and one for (the statements of) the global code. A control-
flow automaton (CFA) is a directed graph with control-flow locations (program-counter value)
as nodes and program operations attached to the edges. Each CFA has an entry node. In
addition, every CFA of a function declaration has one function exit node. The entry node
of the CFA of the global code represents the entry point of the program execution. A node
without outgoing edges models the end of a program run. CFAs might be connected via edges
for function calls (see Section 4.3.1.12).

4.2.1 Operations
The CFAs contain only a subset of ECMAScript statements and expressions plus a special binary
operator declaredBy (see Section 4.2.2.1). Other statements and expressions are transformed to
this subset as described in Section 4.3. Therefrom, operations attached to the edges can have
exactly one of the following forms:

• an assumption [ p ],

• a variable declaration var x or var x = e ,

• a function declaration function func(args*) { ... } ,

• an assignment lhs = e ,

• a delete operation delete o.propName or delete o[e] ,

• a function call func(e*) ,

• a constructor call new func(e*)

Here, p is a predicate, x is a program variable identifier, e and o are expressions, e*

is an arbitrary amount (list) of expressions (e.g. e0, e1, e2 ), propName is a property name
(identifier), args* is an arbitrary amount (list) of program parameter declarations (identifiers),
func is a program function (declaration) identifier, func(e*) is a call to the function func with
an arbitrary amount of expressions e* passed as parameters and the left hand side lhs is either
a property-access operator expression or an identifier of a variable or parameter (declaration).

4 For example, valueOf might be called by the internal method [[DefaultValue]] [ES5, Sec. 8.12.8].
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Note
Function call operations also have an expression that is passed along as this argument
even though it is not shown in the code func(e*) . Instead it is explicitly mentioned in the
transformation of function calls (see Section 4.3.1.12).

Note
Function and constructor call operations also may have an expression that is passed along
as optional function object argument even though it is not shown in the code func(e*)

or new func(e*) . The special function object argument is only passed in the delegation
of unknown function calls (see Section 4.3.1.12) and unknown constructor calls (see Sec-
tion 4.3.1.13). Since it is not shown in the code, it is explicitly mentioned in the transfor-
mation description.

4.2.2 Expressions
Expressions and predicates (in operations) refer only to program variable, parameter, or function
(declaration) identifiers, the this-keyword and literals (boolean, number, null, string, object,
array). Furthermore, they contain only the following operators:

• binary operators & , / , == , === , > , >= , in , instanceof , << , < , <= , - , !== , != , | ,
+ , % , >> , >>> , * , ˆ

• unary operators + , - , ∼ , ! , typeof , void

• the property-access operators o.f and o[p] for objects with o and p being expressions
and f being an identifier name (string)

Besides, a predicate also might be a declaredBy expression (see Section 4.2.2.1).

4.2.2.1 declaredBy Operator

declaredBy is a special operator (not part of regular ECMAScript) that is only used in the CFA
of the functions that resolve dynamic function calls (see Section 4.3.1.12). It takes two operands
id and functionDeclaration and is displayed in infix notation id declaredBy functionDeclaration

in the CFA edges. id is a variable or parameter identifier. functionDeclaration is a function
(declaration) identifier. The operator checks if the function object stored in id has been
declared by the function declaration of functionDeclaration .

4.2.3 Identifiers
There exist identifiers for variables, parameters and functions. Each has a globally unique name
in the CFA (achieved by renaming identifiers during preprocessing) and refers to a declaration
of its kind (declaration of variable, parameter, or function). An exception are global identifiers
that have not been declared by the program (no variable- or function-declaration operation).
These represent global variables (including members of the global object [ES5, Sec. 15.1]). Global
identifiers are not renamed, since they are already globally unique.

4.2.4 Declarations
Identifiers refer to a declaration of a variable, parameter, or function. Variable declarations may
be declared globally or in a function (local variable). Function declarations might be nested
in another function (declaration). Local variable, parameter, and nested function declarations
have a reference to the function declaration they are declared in.
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4.3 Preprocessing
The main goal of the preprocessing is that expressions are free of side effects and only the
minimal set of necessary operations stated in Section 4.2 is used. Therefore, each operation
that is not part of the minimal set is transformed into an equivalent sequence of operations that
are all part of the minimal set. The transformation of expressions is described in Section 4.3.1.
The transformation of statements is described in Section 4.3.2. Function definitions [ES5,
Sec. 13] are covered in Section 4.3.2.12. Moreover, hoisting is resolved (see Section 4.3.2.2 and
Section 4.3.2.12), identifiers are resolved and renamed to be globally unique, this-bindings are
associated with the declaration of the surrounding function and function calls are resolved and
inlined (see Section 4.3.2.12).

Note
Titles of the underlying sections are based on the titles in section 11 and section 12 of
the ES5 specification [ES5]. This is done to make it easier to find related sections in the
specification.

4.3.1 Expressions
All expressions are transformed so that they are free of side effects. Expressions without side
effects are kept as they are (if not stated otherwise). The value of a transformed expression is
typically (if not stated otherwise) assigned to a (fresh) variable, whose identifier is then used
instead of the original expression. Each description of a transformation states this variable and
a sequence (with arbitrary length) of operations expressing the side effects of the expression
that have to be added to the CFA. If an expression contains sub-expressions, the operations
obtained by the transformation of these sub-expressions are added in the evaluation order of
the sub-expressions.

For example, in the expression a + b its sub-expression a is evaluated first and b second.
Let
c = a + b;

be an assignment (expression statement) to a variable called c where a represents an expression
that is transformed to the sequence of operations
sideEffectA1 ;
sideEffectA2 ;
var resultA = /* ... */

with sideEffectA1 and sideEffectA2 representing the side-effect operations of a , /* ... */ be-
ing an expression introduced by the side-effect transformation, with the result of the transformed
expression a stored in the (fresh) variable resultA , and where b represents an expression that
is transformed to the sequence of operations
sideEffectB1 ;
var resultB = /* ... */

with sideEffectB1 representing the side-effect operation of b , /* ... */ being an expression
introduced by the side-effect transformation, and with the result of the transformed expression
b stored in the (fresh) variable resultB . Then the transformation of a + b (which is the right
sub-expression of the assignment expression c = a + b ) results in
sideEffectA1 ;
sideEffectA2 ;
var resultA = /* ... */
sideEffectB1 ;
var resultB = /* ... */
var resultExpr = resultA + resultB ;
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where resultExpr is the result variable of the expression a + b . Consequently, c = a + b would
be transformed to the sequence of operations
sideEffectA1 ;
sideEffectA2 ;
var resultA = /* ... */
sideEffectB1 ;
var resultB = /* ... */
var resultExpr = resultA + resultB ;
c = resultExpr ;

As the auxiliary variable resultExpr is referenced only here, it can be eliminated. Thus, the
final result of the transformation is the following sequence of operations
sideEffectA1 ;
sideEffectA2 ;
var resultA = /* ... */
sideEffectB1 ;
var resultB = /* ... */
c = resultA + resultB ;

For better readability, we will further omit stating the possible presence of (an arbitrary amount
of) side-effect operations preceding to each assignment of a result variable. Instead, we will write
in general only, that a + b is transformed to
var resultA = a;
var resultB = b;
var result = resultA + resultB ;

where resultA is the result variable of transformed expression a and resultB is the result
variable of transformed expression b . The statement var resultA = a indicates that side-effect
operations of the transformation of expression a are added at this location, too (that is im-
mediately before the assignment to the result variable resultA ). Likewise, var resultB = b;

indicates that side-effect operations of the transformation of expression b are added at that
location, too (that is immediately before the assignment to the result variable resultB ). Fur-
thermore, the result of the expression a + b will be assigned to a fresh result variable result

in general.
Note

Sometimes the sequence of operations obtained by transformation may be further simpli-
fied. For example, result variables can be eliminated if an expression without side effect
is assigned.

The reading of assignable references (identifiers and property accessors) has to be taken
into account as a side effect when side effects of sub-expressions are added. For example, in
x + (++x) the left operand sub-expression x is read before the right operand sub-expression
++x is evaluated. This is important, since ++x changes the value (increases number value by
one) referred by x .

Note
Let x refer to the value 0 . x + (++x) would evaluate the left operand x first to 0

resulting in 0 + (++x) . Then ++x increases the value of x from 0 to 1 and returns the
new value 1 as result. So the + operator would evaluate 0 + 1 to the result 1 .

The expression x + (++x) is not equivalent to
var resultIncrement = ++x;
var result = x + resultIncrement ;

since then var resultIncrement = ++x; would change the value referred by x before x is read
in x + resultIncrement .
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Note
In the example above, let x refer to the value 0 . var resultIncrement = ++x; evaluates
++x by increasing the value of x from 0 to 1 and returning the new value 1 as result.
var result = x + resultIncrement; evaluates the left operand x as 1 and resultIncrement

as 1 . This results in evaluation of 1 + 1 , which is 2 . Hence, the result is different to
that of x + (++x) , which is 1 and not 2 .

Therefore, such a reading of an assignable reference has to be done before the side effects of the
following sub-expressions are evaluated. This is achieved by adding an (auxiliary) assignment
statement that reads the value of the reference and stores it in a fresh variable. That means,
the example x + (++x) is transformed to the equivalent statements
var oldX = x;
var resultIncrement = ++x;
var result = oldX + resultIncrement ;

4.3.1.1 Simple Assignment

A simple assignment lhs = e regularly adds the side effects of its sub-expressions lhs and e

in evaluation order ( lhs then e ). If lhs is an identifier, the result is lhs . Else, the left
hand side lhs is a property accessor expression of the form o.p or o[p] . The result of the
transformed (object and property name) sub-expressions is then used in the result property
accessor expression instead. For example, getObject().p = expr is transformed to

var o = getObject ();
var e = expr;
o.p = e;

and getObject()[getPropertyName()] = expr is transformed to

var o = getObject ();
var p = getPropertyName ();
var e = expr;
o[p] = e;

where o , p , and e are fresh variables. The result is o.p in the first example and o[p] in the
second example.

Note
{}.p = expr is transformed to

var o = {};
var e = expr;
o.p = e;

Given previous statements
var a = { name: ’a’ };
var b = { name: ’b’ };
var obj = a;

the expression obj.p = (obj = b) is transformed to

var o = obj;
obj = b;
var e = obj;
o.p = e;
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4.3.1.2 The delete Operator

The delete Operator delete propertyAccessor is replaced by a delete operation with side-effect
free sub-expression:
var pa = propertyAccessor ;
delete pa;

Due to the assumptions described in Section 4.1, the result value of the expression is always
true (in strict code).

4.3.1.3 Binary Logical Operators

The expression left && right is transformed in the same way as the equivalent if statement

var c = left;
if (c) {

var r = right;
} else {

var r = c;
}

The expression left || right is transformed in the same way as the equivalent if statement

var c = left;
if (c) {

var r = c;
} else {

var r = right;
}

In both cases, the result of the expression is stored in the fresh variable r . Side effects of the
expression left are only added once by assigning the evaluated result to a fresh variable c .

Note
If left has no side effects then the assignment to the variable c can be avoided. Just
leave the assignment and use left instead of c .

4.3.1.4 Conditional Operator ( ? : )

The conditional operator condition ? thenExpr : elseExpr is transformed in the same way as
the equivalent if statement
if ( condition ) {

var r = thenExpr ;
} else {

var r = elseExpr ;
}

in the CFA. Its value is stored in a fresh variable r .

4.3.1.5 Prefix Increment Operator

++x is transformed in the same way as the equivalent statement x = (+x) + 1; . Its value is
stored in x .

Note
+x is used to enforce a conversion of x to number.

25



4.3.1.6 Prefix Decrement Operator

--x is transformed in the same way as the equivalent statement x = x - 1; . Its value is stored
in x .

4.3.1.7 Postfix Increment Operator

x++ is transformed in the same way as the equivalent statements var r = +x; x = r + 1; . Its
value is stored in a fresh variable r .

Note
+x is used to enforce a conversion of x to number.

4.3.1.8 Postfix Decrement Operator

x-- is transformed in the same way as the equivalent statements var r = +x; x = r - 1; . Its
value is stored in a fresh variable r .

Note
+x is used to enforce a conversion of x to number.

4.3.1.9 Compound Assignment

A compound assignment x @= e is transformed in the same way as the equivalent statement
x = x @ e; . @= represents one of the assignment operators *= , /= , %= , += , -= , <<= , >>= ,
>>>= , &= , ˆ= or |= . @ represents the respective binary operator of the assignment operator,
i.e. * , / , % , + , - , << , >> , >>> , & , ˆ or | . For example, x += 1; is transformed in the
same way as the equivalent statement x = x + 1; .

4.3.1.10 Comma Operator

A comma operator left, right is transformed in the same way as the equivalent statements
left; var r = right; where r is the fresh result variable of the comma operator expression.

4.3.1.11 Function Expressions

A function expression is transformed by adding a function declaration operation (see Sec-
tion 4.3.2.12) with a fresh identifier name, which is used as result. For example,
func = function () { /* ... */ }

is transformed to
function f() { /* ... */ }
func = f;

where f is a fresh identifier name.

4.3.1.12 Function Calls

A CFA is created for each function declaration body. A function CFA has a function entry and
exit node. A function call expression results in an edge (with an attached function call operation)
from the current node (before the function call) to the function entry node. All operations of
the function declaration body statements are appended to the function entry node. A special
return variable is introduced (as fresh local variable) for every function declaration. All return
statements (see Section 4.3.2.11) lead to the function exit node and assign the return value
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function func() { return 42; }

func()

a = result1 + 1

func()

funcReturn = 42;

result1 = funcReturn

result2 = funcReturn

global code func

Figure 4.1: CFA of Listing 4.1 that has two function calls to the same function

to this return variable. It is ensured that all paths from the function entry node lead to the
function exit node. Therefore, paths without return statement are connected to the function
exit node with an edge that assigns undefined to the return variable. For every function call
edge there is an associated edge (the corresponding function exit edge) that leads from the
function exit node to a node representing the location after the function call has been done. To
each function exit edge an (assignment) operation is attached that assigns the return variable
to the result variable of the function call expression.

If a program contains multiple calls to the same function, of course multiple pairs of function
call and exit edges are to be added (one pair for each function call). Figure 4.1 shows the
CFA(s) of the program

1 function func () { return 42; }
2 a = func () + 1;
3 func ();

Listing 4.1: Example program with two function calls to the same function

that calls the function func twice. The left box contains the CFA (nodes) of the global code
(nodes 1 to 5). The right box contains the CFA (nodes) of the function func (nodes 6 to 7).
The operation of edge 1→ 2 (from node 1 to node 2) declares the function func , which is called
by the operation func() (line 2) of edge 2 → 6. Node 6 is the entry node of function func .
The edge 6→ 7 shows the operation funcReturn = 42; of the transformed return 42; statement
that assigns the return value to the return variable funcReturn of function func . Node 7 is
the function exit node of function func . The edge 7 → 3 (associated with the function call
edge 2→ 6) leads back to node 3 after the first function call in the CFA of the global code. Its
operation result1 = funcReturn; assigns the return value (using the return variable funcReturn )
of the function func to the result variable result1 of the first function call. This result variable
result1 is then used in the operation a = result1 + 1 of edge 3 → 4. The function call edge
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4→ 6 represents the second function call (line 3). Its associated function exit edge 7→ 5 leads
back to node 5 (after the second function call in the CFA of the global code). Its operation
result2 = funcReturn; assigns the return value (using the return variable funcReturn ) of the
function func to the result variable result2 of the second function call.

Note
The function exit edge 7 → 3 is associated with the function call edge 2 → 6, whereas
the other function exit edge 7 → 5 is associated with the function call edge 4 → 6 of
the second function call (line 3). The association is visualized by dashed edges. The
dashed edge 2→ 3 indicates that the function call (2→ 6) finally returns back to node 3.
Similarly, the dashed edge 4 → 5 indicates that the function call (4 → 6) finally returns
back to node 5.

A function call expression expr(e*) consists of a function (expression) expr to be called and
an arbitrary amount (list) of expressions e* (e.g. e0, e1, e2 ) that are passed as arguments.
If expr is a function (declaration) identifier, the function is known and the function call edge
leads directly to the function entry node of the called function (with undefined passed along
as this argument). Otherwise, the function has to be resolved using the declaredBy operator
(see Section 4.2.2.1).

We describe the resolution of the function declaration as a special5 function callUnknownFunction

that takes expr as an extra parameter functionObject in addition to the regular parameters. If
expr is a property accessor expression of the form o.p or o[p] (where o already represents the
side-effect free result of the object-expression transformation), o is passed as this argument.
Otherwise, undefined is passed as this argument. For example, o.p(1, ’second’) leads to a
function call callUnknownFunction(o.p, 1, ’second’) (with o passed as this argument).

The function callUnknownFunction uses the declaredBy operator (see Section 4.2.2.1) to check
by which function declaration the passed function object has been declared and delegates the
call to the respective function (with the this argument of callUnknownFunction passed along
and functionObject as the optional function object argument6). For example, if the program
contains two function declarations f and g (that are globally identified), the declaration of
callUnknownFunction might look similar to
function callUnknownFunction ( functionObject , p0 , p1) {

if ( functionObject declaredBy f) {
return f(p0 , p1);

} else if ( functionObject declaredBy g) {
return g(p0 , p1);

} else {
return undefined ;

}
}

Listing 4.2: Example of unknown function call resolution function

for a function call expr(e0, e1) that is encoded as callUnknownFunction(expr, e0, e1) . The last
case is reached if an expression is called that is not a function. In this case, an exception would
regularly be thrown, but since exceptions are not supported yet (see Section 4.1) undefined is
returned. Finally, the call callUnknownFunction(expr, e0, e1) is inlined by replacing all return
statements with assignments to the result variable.

5 Calls to callUnknownFunction are inlined at the end.
6 The (special) function object argument of function call operations is not shown in the code f(p0, p1) and

g(p0, p1) of Listing 4.2. It is required to pass the function instance functionObject that provides access
to the internal property [[Scope]] [ES5, Sec. 15.3.5], which is used to access captured variables (variables in the
Lexical Environment [ES5, Sec. 10.2] of the Execution Context [ES5, Sec. 10.3] that has created the function
object).
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Lets look at a complete example. Listing 4.3 shows a program that contains a function call
o.p(1, ’second’) to an unknown function o.p . When it is called, it is not known which function
( f or g ) is called. The call is resolved using callUnknownFunction(o.p, 1, ’second’) , which is
inlined as shown in Listing 4.4.
function f(p0) { ... }
function g(p0 , p1) { ... }
var o = {};
// ...
o.p = f;
// ...
r = o.p(1, ’second ’); // callUnknownFunction (o.p, 1, ’second ’)

Listing 4.3: Example of unknown function call

function f(p0) { ... }
function g(p0 , p1) { ... }
var o = {};
// ...
o.p = f;
// ...
// r = o.p(1, ’second ’); // callUnknownFunction (o.p, 1, ’second ’)
if ( functionObject declaredBy f) {

r = f(1, ’second ’); // o passed as this argument and
// o.p passed as function object argument

} else if ( functionObject declaredBy g) {
r = g(1, ’second ’); // o passed as this argument and

// o.p passed as function object argument
} else {

r = undefined ;
}

Listing 4.4: Here the unknown function call of Listing 4.3 has been resolved

4.3.1.13 The new Operator

A new operator expression new expr(e*) consists of a function (expression) expr to be called
and an arbitrary amount (list) of expressions e* (e.g. e0, e1, e2 ) that are passed as arguments.
It is resolved similar to a function call (see Section 4.3.1.12), but using a constructor- instead
of a function-call operation. If expr is a function (declaration) identifier, the function is known
and the constructor call edge leads directly to the function entry node of the called function.
Otherwise, the function has to be resolved using the declaredBy operator (see Section 4.2.2.1).

We describe the resolution of the function declaration as a special7 function callUnknownConstructor

that takes expr as an extra parameter functionObject in addition to the regular parame-
ters. For example, new C(1, ’second’) where C is a variable identifier leads to a function call
callUnknownConstructor(C, 1, ’second’) . callUnknownConstructor uses the declaredBy operator
to check by which function the passed function object has been declared and delegates the
constructor call to the respective function (with functionObject as the optional function object
argument8).

For example, if the program contains two function declarations f and g (that are globally
identified), the declaration of callUnknownConstructor might look similar to

7 Calls to callUnknownConstructor are inlined like callUnknownFunction at the end.
8 The (special) function object argument of constructor call operations is not shown in the code new f(p0, p1)

and new g(p0, p1) of Listing 4.5. It is required to pass the function instance functionObject that provides
access to the internal property [[Scope]] [ES5, Sec. 15.3.5], which is used to access captured variables (variables
in the Lexical Environment [ES5, Sec. 10.2] of the Execution Context [ES5, Sec. 10.3] that has created the
function object).
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function callUnknownConstructor ( functionObject , p0 , p1) {
if ( functionObject declaredBy f) {

return new f(p0 , p1);
} else if ( functionObject declaredBy g) {

return new g(p0 , p1);
} else {

return undefined ;
}

}

Listing 4.5: Example of dynamic constructor call resolution function

for a call new expr(e0, e1) that is encoded as callUnknownConstructor(expr, e0, e1) . The last
case is reached if an expression is called that is not a function. In this case, an exception would
regularly be thrown, but since exceptions are not supported yet (see Section 4.1) undefined

is returned. Finally, the call callUnknownConstructor(expr, e0, e1) is inlined by replacing all
return statements with assignments to the result variable.

4.3.2 Statements
We use the same way of expressing transformations as we used in Section 4.3.1. We will write
that a statement
var result = a + b

is transformed to
var resultA = a
var resultB = b
var result = resultA + resultB

where resultA is the result variable of transformed expression a and resultB is the result
variable of transformed expression b . The statement var resultA = a indicates that side-
effect operations of the transformation of expression a are added at this location. Likewise,
var resultB = b indicates that side-effect operations of the transformation of expression b are
added at that location.

In case the transformation of a statement can not be expressed using just code, the transfor-
mation of the CFA is shown instead. The example above would be displayed as

1 2 3 4
var resultA = a var resultB = b var result = resultA + resultB

Here as well, the edge with statement var resultA = a indicates that side-effect operations (CFA
edges and nodes) of the transformation of expression a are added at this location (between
node 1 and 2). The same applies to the edge with statement var resultB = b .

In very simple cases, we describe the transformation only as text.

4.3.2.1 Block

All statements of the block are added in order to the CFA according to the transformation rule
of the respective statement.

4.3.2.2 Variable Statement

The declaration list is split into multiple statements. For example
var x = 0, y = 1;

is treated like
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var x = 0;
var y = 1;

Declaration and initialization are added to the CFA as separate statements. Hoisting is resolved
by moving declarations right behind the entry node of the CFA (before other statements are
added). For example
var x = 0, y = z;
var z = x;

is treated like
var x;
var y;
var z;
x = 0;
y = z;
z = x;

Each variable is declared only once. For example
var x = 0;
var x = 1;

is treated like
var x;
x = 0;
x = 1;

4.3.2.3 Empty Statement

No changes to the CFA are made.

4.3.2.4 Expression Statement

Add all side effects of the expression to the CFA by adding the corresponding operations ac-
cording to the CFA transformation rules described in Section 4.3.1. If no side effects exist, no
changes to the CFA are required.

4.3.2.5 The if Statement

An if statement
if ( predicate )

thenStmt ;
else

elseStmt ;

executes the statement thenStmt if the specified expression predicate is truthy. If the predicate

is falsy, another statement elseStmt is executed. This results in a CFA with two assume edges

1 2

3 4

5 6

7
var p = predicate;

[ p ]

[ !p ]

thenStmt

elseStmt

where p is a fresh variable. If the else case is missing like in
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if ( predicate ) thenStmt ;

it results in

1 2

3 4

5
var p = predicate;

[ p ]

[ !p ]

thenStmt

where p is a fresh variable. thenStmt and elseStmt are shown as simple edges in the CFA, but
those statements are added to the CFA branch according to the respective transformation rules
of the statement. Thereby, more nodes and edges might be added to the branch. For example
if ( predicate ) {

a = 0;
b = 1;

} else
d = ++c;

results in

1 2

3 4 5

6 7 8

9
var p = predicate;

[ p ]

[ !p ]

a = 0; b = 1;

c = c + 1; d = c;

where p is a fresh variable. Side effects of the expression predicate are added before the node
that is followed by the conditional branching. For example
if (x++) y = x;

is treated like
var tmp = x;
x = x + 1;
if (tmp) y = x;

4.3.2.6 The switch Statement

The switch and case instructions are replaced by semantically equivalent code using if in-
structions in the CFA. The strict equality operator === is used to compare value of the
switch(value){...} instruction with the expressions of the case instructions. If the case block
contains

• no clauses, then transform the switch statement as the equivalent expression statement
value; .

• only a clause default: statement , then transform the switch statement as the equivalent
statements value; statement;
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• only a clause case expr: statement , then transform the switch statement as the equivalent
statements
if (value === expr) {

statement ;
}

• multiple clauses
case e0:

s0;
default :
case e1:
case e2:

s1;
case e3:

s2;

then transform the switch statement as the equivalent statements
v = value
if (v === e0) {

s0;
s1;
s2;

} else if (v === e1 || v === e2) {
s1;
s2;

} else if (v === e3) {
s2;

} else {
s1;
s2;

}

where v is a fresh variable. v is used so that value is only evaluated once.

Note
The || has to be transformed according to Section 4.3.1.3. The statements s0 ,
s1 , and s2 might be break statements that are transformed as described in Sec-
tion 4.3.2.10.

Break statements (see Section 4.3.2.10) add edges to specific target nodes. The break target
node of a switch statement is the (last) node after all transformed statements (converged).

4.3.2.7 Iteration Statements

The (block) statement to be repeated by an iteration statement may contain continue state-
ments (see Section 4.3.2.9) or break statements (see Section 4.3.2.10) that designate (by their
label parameter or by default the closest) one of the surrounding iteration statements (note:
nesting may occur). Continue statements and break statements add edges to specific target
nodes. Therefore, the description of each iteration statement states also the target node used
by continue and by break statements designating it.

4.3.2.7.1 The do-while Statement A do-while statement do statement while (condition); is
transformed to the CFA
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1 2 3 4
statement c = condition; [ !c ]

[ c ]

where c is a fresh (declared) variable. Node 2 is the target node of continue statements. Node
4 is the target node of break statements.

4.3.2.7.2 The while Statement A while statement while (condition) statement; is trans-
formed to the CFA

1 2 3

4

c = condition; [ c ]

[ !c ]

statement

where c is a fresh (declared) variable. Node 1 is the target node of continue statements. Node
4 is the target node of break statements.

4.3.2.7.3 The for Statement A for statement for (initializers; condition; updaters) statement;

is transformed to the CFA

1 2 3
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6
initializers; c = condition;

[ c ]

statement;

updaters;

[ !c ]

where c is a fresh (declared) variable. Node 5 is the target node of continue statements. Node
6 is the target node of break statements.

4.3.2.8 Labelled Statements

label: statement; is encoded in the same way as the equivalent statement statement; .
Continue statements (see Section 4.3.2.9) and break statements (see Section 4.3.2.10) add

edges to specific target nodes. Continue statements may only refer to labelled iteration state-
ments (see Section 4.3.2.7). If a continue statement refers to label , the continue target node
of the iteration statement statement is used as described in detail in the subsections of Sec-
tion 4.3.2.7. If a break statement refers to label , the break target node of the iteration
statement statement is used or the node immediately after the operation(s) of statement if
statement is not an iteration statement.
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4.3.2.9 The continue Statement

A blank edge (no operation) from the current node (before the continue statement) to the target
node of the (labelled) iteration statement (see Section 4.3.2.7) the continue statement refers to
is added. Unreachable statements after the continue statement are ignored. Only hoisting of
function and variable declarations is resolved (see Section 4.3.2.2 and Section 4.3.2.12).

4.3.2.10 The break Statement

A blank edge (no operation) from the current node (before the break statement) to the target
node of the statement the break statement refers to is added. The break statement either refers
to an iteration statement (see Section 4.3.2.7), a switch statement (see Section 4.3.2.6), or a
labelled statement (see Section 4.3.2.8). Unreachable statements after the break statement are
ignored. Only hoisting of function and variable declarations is resolved (see Section 4.3.2.2 and
Section 4.3.2.12).

4.3.2.11 The return Statement

A special return variable is introduced (as fresh local variable) for every function declaration
as described in Section 4.3.1.12. The return value is assigned to this return variable of the
function. If the return statement has no expression to be returned, undefined is used instead.
The respective assignment operation is attached to an edge that leads from the current node
(before the return statement) to the function exit node. Unreachable statements after the
return statement are ignored. Only hoisting of function and variable declarations is resolved
(see Section 4.3.2.2 and Section 4.3.2.12).

4.3.2.12 Function Declaration

A function declaration is added as operation to the CFA. This operation creates a function
object and assigns it to the function identifier of the declaration.

Hoisting is resolved by moving declarations right behind the entry node of the CFA (before
other statements are added). However, if the value referred to by the identifier might be changed
(for example, a variable declaration with the same identifier name exists or an assignment to
the identifier), then the function declaration is renamed (fresh identifier name), a variable
declaration with the old name is added (at the declaration section behind the entry node) and
the new identifier is assigned to the variable with the old name. For example,
function func () { /* ... */ }
func ();
func = e;

is transformed to
function f() { /* ... */ }
var func = f;
func ();
func = e;
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5 SMT Formula Encoding

The formula encoding uses SMT theory of linear integers, arrays [17, 21], floating-point [8, 16,
26], bit-vectors [3, 10], and uninterpreted functions. Most formula encodings are described as
a function that is inlined in the overall formula. These functions have names that start with a
capital letter to distinguish them from uninterpreted functions and theory operations:

• select(a, i) returns element at index i of array a

• store(a, i, v) stores value v at index i of array a and returns resulting array

• isNaN(n) checks if floating point formula n is NaN

• isZero(n) checks if floating point formula n is +0 or −0

Note
We use = in general for equality comparison. Since all comparisons of floating points
evaluate to false if either argument is NaN , we write =assign in case of an assignment of
floating points.

5.1 Types
In contrast to statically typed languages, expressions in dynamically typed languages may
evaluate to values of different types. Some operations behave differently depending on the type
or may implicit convert the value based on its type. For example, the binary addition operator
+ [ES5, Sec. 11.6.1] either performs string concatenation or numeric addition. Therefore, not
only the value has to be encoded, but also its type.

5.1.1 Type Tags
Types are encoded similar to the result returned by the typeof operator [ES5, Sec. 11.4.3].
That means that a distinction is made between six types:

• The Undefined Type

• The Boolean Type

• The Number Type

• The String Type

• The Object Type

• The Function Type

Note
In contrast to the ES5 specification, the Null Type [ES5, Sec. 8.2] is not seen as a type of
its own. Instead the value null (see Section 5.2.2) is covered by the object type.
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Note
There is no Function Type in the ES5 specification, but we use it for function objects to
distinguish them from regular objects as described in Section 5.2.7.

Each type is encoded as a distinct integer that we further refer to as type tag. We will name
them for better readability as τundefined, τboolean, τnumber, τstring, τobject, and τfunction. Thereby,
we do not have to remember which integer value is associated with which type.

5.2 Values
There are primitive, object, and function values. This section describes how these values are
encoded and what type is associated with them.

5.2.1 Undefined
Since there is only one value of the type Undefined, the formula of the undefined value [ES5,
Sec. 4.3.9] does not matter. It is the only value with type tag τundefined.

5.2.2 Null
The null value [ES5, Sec. 4.3.11] is encoded as a special object ID (see Section 5.2.6). We use
null in formulas to refer to this value. The type of the null value is encoded as type tag τobject.

5.2.3 Boolean
There are only two Boolean values, true and false [ES5, Sec. 4.3.13]. true is encoded as boolean
formula >. false is encoded as boolean formula ⊥. The type is encoded as type tag τboolean.

5.2.4 Number
Number values [ES5, Sec. 4.3.19] are encoded as their corresponding floating point formula with
an exponent size of 11 and a mantissa size of 52. The type is encoded as type tag τnumber.

5.2.5 String
String values [ES5, Sec. 4.3.16] are primitive values in ECMAScript. They are immutable finite
sequences of characters. Each string value is encoded as a unique (floating point) number that
we further refer to as string-ID. We write StringID( "example" ) in a formula to refer to the
string-ID of the string "example" . Two string values are encoded as the same string-ID if and
only if they are (strict) equal.

Note
Two strings are equal if they are exactly the same sequence of characters (same length and
same characters in corresponding positions).

Only string values that appear as string literals or property names in the analyzed program
are associated with a (known) string-ID. This also includes values that occur implicitly. For
example, each function object has a property with name prototype . If a function is declared
then the string value ’prototype’ implicitly occurs in the program. The same applies to the
typeof operator whose return value is either the string value ’undefined’ , ’object’ , ’boolean’ ,
’number’ , ’string’ , or ’function’ .
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Some operators use (implicit) type conversion. The type conversion of string to number (see
Section 5.5.2) and number to string (see Section 5.5.3) requires a mapping of string-IDs that
allows these conversions. Therefore, a floating point formula with an exponent size of 12 and
a mantissa size of 52 is used for string-IDs. The exponent size 12 is greater than the exponent
size 11 of the floating point formula used for numbers (see Section 5.2.4). Thereby, the same
(casted) value of a number1 can be used as string-ID of its string representation [ES5, Sec. 9.8.1].
On the other hand, values outside of the range of number values can be used as string-IDs of
non-number strings2.

String operations are only encoded as uninterpreted function. We do only cover concatenation
in form of the binary + operator (see Section 5.6.5.1), which is encoded as uninterpreted func-
tion concat(l, r) where l and r are string-IDs. String operations based on String Objects [ES5,
Sec. 15.5] are not supported yet since built-in objects are not supported yet as stated in Sec-
tion 5.7.1. However, they could be encoded in a similar way using respective uninterpreted
functions.

5.2.6 Object
An object value is encoded as a unique integer that we further refer to as object-ID. Each
object-ID is associated with properties (see Section 5.2.6.1). The null value (see Section 5.2.2)
is also represented by a particular object-ID, but is not associated with properties. The type of
an object value is τobject.

5.2.6.1 Properties

Properties are managed as an array formula that maps each property name (string-ID formula)
to a variable formula (see Section 5.3) that represents the value of the property. If a prop-
erty is not set on an object, then the property name is mapped to a special variable formula
objectFieldNotSet, which represents an unset field. emptyObjectFields represents the (initial)
property mapping, where all property names are mapped to objectFieldNotSet.

Properties of an object may change in the course of the program. That means that there is
an array formula (property mapping) for each point in time. If a property is changed, a new
array formula (updated property mapping) is created based on the old array formula. These
array formulas are managed by a statically indexed variable called objectFields where the index
is used to represent the point in time. Since there may exist multiple objects in a program, the
objectFields variable itself is an array that maps object-IDs to their current property mapping.

5.2.6.2 Prototype Property

The internal property [[Prototype]] [ES5, Sec. 8.6.2] is encoded as (regular) property with re-
served3 string-ID as name that we refer to by prototypeField.

5.2.6.3 Prototype Chain

ECMAScript uses prototype based inheritance for objects. Each object has an internal property
[[Prototype]] [ES5, Sec. 8.6.2] which refers to another object called its prototype. That prototype
object has a prototype of its own, and so on until an object is reached with null as its prototype.
By definition, null has no prototype, and acts as the final link in this prototype chain.

1 By adding a zero bit as 12th (HiOrder) bit to the 11bit-exponent of the number’s floating point formula.
2 These are recognizable from the 12th (HiOrder) bit of the exponent of the string-IDs floating point formula

being one.
3 The string-ID is not associated with any string value of the program.

39

https://www.ecma-international.org/ecma-262/5.1/#sec-9.8.1
https://www.ecma-international.org/ecma-262/5.1/#sec-15.5
https://www.ecma-international.org/ecma-262/5.1/#sec-8.6.2
https://www.ecma-international.org/ecma-262/5.1/#sec-8.6.2


The prototype chain comes into play when a property is accessed on an object (see Sec-
tion 5.6.2.1). If a property is not set on the object, the property is looked up in the prototype
of the object. If the property is not set on that prototype, the property is looked up in the
prototype of the prototype and so on till a prototype is null . As soon as the property is found,
it is returned, otherwise undefined .

The prototype chain might be arbitrary long but it is always finite. We assume that no
prototype chain is longer as a maximum maxPrototypeChainLength. Thereby, we can unroll
the look-up in the prototype chain (see LookUpOnPrototypeChain in Section 5.6.2.1). The
drawback is, that a look-up of a property might return undefined if maxPrototypeChainLength
is too small. This issue is addressed in Section 9.11.

5.2.7 Function
A function object value is encoded like a regular object (see Section 5.2.6), but its type is τfunction.
Its object-ID is associated with its function declaration (see Section 5.7.3) using an uninterpreted
function declarationOf and with its scope (see Section 5.3.2) using an uninterpreted function
scopeOf.

5.3 Variables
A variable is encoded as unique integer formula that we further refer to as variable-ID. The type
of the value stored in a variable is associated with the variable-ID using an uninterpreted function
typeof. The value of the variable is also associated using an uninterpreted function. There is
one uninterpreted function for each type of value: booleanValue, numberValue, functionValue,
objectValue, and stringValue. An assignment x = 42 is basically encoded as

typeof(x) = τnumber ∧ numberValue(x) = 42

where x is the variable-ID of x and 42 is the floating point formula that represents 42.

5.3.1 Statically Indexed Variables
Similarly to a static single-assignment (SSA) form [11] like it is used by compilers, for each
program variable an SSA index counter is added that is incremented on every assignment to
the variable, and all variable accesses use the variable qualified with the current index value.

For example, the program
1 var x = 0;
2 if ( predicate ) {
3 x = x + 1;
4 x = x * 2;
5 } else {
6 x = x * 3;
7 }
8 x = x - 1;

could be interpreted with indexed variables like this
1 x0 = 0;
2 if (predicate0) {
3 x1 = x0 + 1;
4 x2 = x1 * 2;
5 } else {
6 x1 = x0 * 3;
7 x2 = x1;
8 }
9 x3 = x2 - 1;
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whereas the indices of converging branches are merged. After the then branch, the index of
variable x is 2 due to two assignments. The else branch only contains one assignment. Thereby,
the index of variable x would be 1 (different to then branch). The indices are merged by adding
an assignment x2 = x1; (line 7) at the end of the else branch. Thus, the index of variable x is
2 in both cases.

5.3.2 Scoped Variables
To resolve an identifier of an ECMAScript variable [ES5, Sec. 10.3.1] the Lexical Environ-
ment [ES5, Sec. 10.2] of the running Execution Context [ES5, Sec. 10.3] is needed. If the
Lexical Environment has no binding of the identifier, the identifier is looked up in the outer
environment reference of the Lexical Environment. This chain of nested environments and
the lookup has to be formula encoded. Therefore, each variable is associated with a scope-ID
(integer formula) that represents the environment that we call scope. This is done using an
uninterpreted function var(s, x) where s is a scope-ID and x is a variable-ID. A unique scope-ID
is created for the global code (called globalScope) and each function call.

Since environments might be nested, a scope is associated with a scope stack, which is an
array formula that contains all scopes of the (nested environments) chain. The scope of the
environment of the current execution context is encoded as a statically indexed variable that
we further refer to as current scope or currentScope of an execution context. On every function
call the current scope has to be updated to encode the change of the running execution context
(and of course at the exit of the function call, too). To look up the scope of a declaration, the
nesting level of the declaration is used as index on the scope stack of the current scope.

A local variable x is encoded as

var(select(scopeStack(currentScope), n), x)

where n is the nesting level of the declaration of x. A global variable is encoded similar, but
since the scope is known to be the global scope, it is simplified to

var(globalScope, x)

5.3.2.1 Updating SSA Index Of Scoped Variables

Other scoped variables4 have to be updated on every assignment to a scoped variable (see
Section 5.7.4.1). If a function f(p) is called the first time a scope s0 is created and variables/-
parameters are associated with this scope like var(s0, p0). On the second call of f(p) another
scope s1 is created and the SSA index of p is incremented from 0 to 1. Hence, p is associated
to s1 by var(s1, p1). However, if p of the first scope is captured in a closure, then it would be
addressed by var(s0, p1) instead of var(s0, p0), since the index of variable p has changed due to
the other call of f . To work around, indices of the same variable in other scopes are updated
too, when a value is assigned to the variable. Since, p is assigned a value on the second call of
f(p) using var(s1, p1), the index of p in s0 has to be updated by var(s0, p1) = var(s0, p0).

5.4 Type, Value, Kind, and Constraint
The formula encoding of an expression is described by its type (tag), value, and kind. The value
is either a (simple) value as described in Section 5.2 or a variable-ID as described in Section 5.3.
Variables are represented by a variable-ID that may be associated with any value described in
Section 5.2. Variables must be treated differently in expressions than simple values, since a

4 The same variable declaration, but a different scope-ID.
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different uninterpreted function must be used for each type to get the simple value associated
with the variable. Therefore, the formula encoding of an expressions is not only described by
its type and value, but also by its kind, which indicates if the (encoded) value is a simple value
or a variable-ID.

Additionally, the formula encoding of some expressions requires further conditions (boolean
formulas) that have to apply in the formula of the operation the expression appears in5. We
call these conditions constraints. For example, an Array Initialiser (see Section 5.6.1.4) has an
object-ID o as value that needs to be marked as Array using a constraint isArray(o).

5.5 Type Conversion
Operators of expressions (see Section 5.7) perform automatic type conversion as needed. This
section describes the conversion functions that are similar to the abstract operations of the ES5
specification. [ES5, Sec. 9] Each type conversion is defined as a function

ToType(e) := ToTypeKind(e)(Type(e),Value(e))

where

• e is an expression,

• Type(e) represents the type of e,

• Value(e) represents the value of e,

• Kind(e) represents the kind of e (i.e. value or variable),

Hence, there are two definitions ToTypevariable(t, v) and ToTypevalue(t, v). ToTypevariable(t, v)
is used if v is a variable-ID and ToTypevalue(t, v) is used if v is a value.

Note
Some functions are described using (sub-) function definitions that are named
FromTypeToTargetType(x). FromType is the name of the type that should be con-
verted to the type named TargetType. x is a value of type FromType. For example,
NumberToString(n) describes the type conversion of a number value n to a string value.

5.5.1 ToBoolean
This function is similar to the abstract operation ToBoolean of the ES5 specification [ES5,
Sec. 9.2].

ToBooleanvalue(t, v) :=



v t = τboolean

> t = τfunction

NumberToBoolean(v) t = τnumber

v , null t = τobject

StringToBoolean(v) t = τstring

⊥ t = τundefined

5 Therefore, these conditions are added to the constraints of the operation (see Section 5.7).
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ToBooleanvariable(t, v) :=



booleanValue(v) t = τboolean

> t = τfunction

NumberToBoolean(numberValue(v)) t = τnumber

objectValue(v) , null t = τobject

StringToBoolean(stringValue(v)) t = τstring

⊥ t = τundefined

NumberToBoolean(n) := ¬ isZero(n) ∧ ¬ isNaN(n)

StringToBoolean(s) := s , StringID( "" )

5.5.2 ToNumber
This function is similar to the abstract operation ToNumber of the ES5 specification [ES5,
Sec. 9.3].

ToNumbervalue(t, v) :=



BooleanToNumber(v) t = τboolean

v t = τnumber

StringToNumber(v) t = τstring

ObjectToNumber(v) t = τobject

NaN else

ToNumbervariable(t, v) :=



BooleanToNumber(booleanValue(v)) t = τboolean

numberValue(v) t = τnumber

StringToNumber(stringValue(v)) t = τstring

ObjectToNumber(objectValue(v)) t = τobject

NaN else

BooleanToNumber(b) :=
{

1 b

0 ¬b

ObjectToNumber(o) :=
{

0 o = null
NaN else

StringToNumber(s) :=


0 s = StringID( "" )
CastStringToNumber(s) IsNumberString(s)
NaN else

Note
StringToNumber covers not all cases described in the ES5 specification [ES5, Sec. 9.3.1],
but at least all string representations of numbers.

IsNumberString(s) is > if string-ID (floating point) formula s is in range of floating point type of
number formula, otherwise ⊥. CastStringToNumber(s) casts string-ID (floating point) formula
s to floating point type of number formula.
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5.5.3 ToString
This function is similar to the abstract operation ToString of the ES5 specification [ES5,
Sec. 9.8].

ToStringvalue(t, v) :=



BooleanToString(v) t = τboolean

FunctionToString(v) t = τfunction

NumberToString(v) t = τnumber

ObjectToString(v) t = τobject

v t = τstring

StringID( "undefined" ) t = τundefined

ToStringvariable(t, v) :=



BooleanToString(booleanValue(v)) t = τboolean

FunctionToString(functionValue(v)) t = τfunction

NumberToString(numberValue(v)) t = τnumber

ObjectToString(objectValue(v)) t = τobject

stringValue(v) t = τstring

StringID( "undefined" ) t = τundefined

BooleanToString(b) :=
{

StringID( "true" ) b

StringID( "false" ) ¬b

FunctionToString(f) := unknownStringID(f)

NumberToString(n) :=


StringID( "NaN" ) isNaN(n)
StringID( "-Infinity" ) n = −∞
StringID( "Infinity" ) n =∞
cast n to floating point type of string formula else

ObjectToString(o) := unknownStringID(o)

unknownStringID is an uninterpreted function that maps an object-ID to the string-ID of the
(not statically known) string value of the object.

Note
A function-ID is also an object-ID.

5.5.4 ToObject
This function is similar to the abstract operation ToObject of the ES5 specification [ES5,
Sec. 9.9], whereas Undefined and Null can not be handled regularly, since errors are not sup-
ported yet. Instead the value is represented by a variable unknownObjectId. The same applies
to Boolean, Number, and String objects, since these built-in objects are not supported yet.

ToObjectvalue(t, v) :=
{
v t = τfunction ∨ t = τobject

unknownObjectId else

ToObjectvariable(t, v) :=
{

objectValue(v) t = τfunction ∨ t = τobject

unknownObjectId else
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5.5.5 ToFunction
There is no similar abstract operation described in the ES5 specification. Everything except
functions is converted to an unknown function ID represented by a variable notAFunctionId.

ToFunctionvalue(t, v) :=
{
v t = τfunction

notAFunctionId else

ToFunctionvariable(t, v) :=
{

functionValue(v) t = τfunction

notAFunctionId else

5.5.6 ToInt32
ToInt32 converts its argument to one of 232 integer values (encoded as (signed) bit-vector
with fixed length of 32) in the range −231 through 231−1 (inclusive) as desribed in the ES5
specifictation [ES5, Sec. 9.5]. It only accepts a number formula (see Section 5.2.4). Hence,
ToNumber is used to convert the argument to a number formula. NaN and ±∞ result in the
bit-vector (with fixed-length of 32) formula of zero. Otherwise, the number formula is rounded
toward zero (step 3 in the specification) to a bit-vector with fixed-length 1026 that is used in
the operations described in step 4 and 5 in the specification. The result is then converted to a
bit-vector formula with fixed-length of 32 by extracting the respective bits.

5.5.7 ToUint32
ToUint32 converts its argument to one of 232 integer values (encoded as (unsigned) bit-vector
with fixed length of 32) in the range 0 through 232−1 (inclusive) as desribed in the ES5 specific-
tation [ES5, Sec. 9.6]. It only accepts a number formula (see Section 5.2.4). Hence, ToNumber
is used to convert the argument to a number formula. NaN , ±0, and ±∞ result in the bit-
vector (with fixed-length of 32) formula of zero. Otherwise, the number formula is rounded
toward zero (step 3 in the specification) to a bit-vector with fixed-length 1026 that is used in
the operations described in step 4 and 5 in the specification. The result is then converted to a
bit-vector formula with fixed-length of 32 by extracting the respective bits.

5.6 Expressions
This section describes the formula encoding of Expressions [ES5, Sec. 11] that are part of
the CFA (see Section 4.3.1) as well as the declaredBy expression (see Section 4.2.2.1). Each
expression encoding is described by a value, a type, and a kind (variable or value).

We don’t mention type or/and kind if it’s evident from the value. If the value of an expression
is described as a specific simple value, then its type is the respective type of that simple value
(see Section 5.2) and its kind is value. On the other hand, if the value of an expression is
described as a variable-ID x, then its type is typeof(x) and its kind is variable. If it is described
as a statically indexed variable x, we (usually) only mention the variable (name). In this case,
the value is the variable-ID xi where i is the current index counter of x.

Note
We use Type(e) in formulas (that describe values) to refer to the type of the expression e.

Note
Titles of the underlying sections are based on the titles in section 11 of the ES5 specification
[ES5]. This is done to make it easier to find related sections in the specification.
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5.6.1 Primary Expressions
This section describes the formula encoding of Primary Expressions [ES5, Sec. 11.1] that are
part of the CFA.

5.6.1.1 The this Keyword

this is encoded as the this-variable of the current function (declaration). A (statically indexed)
this-variable exists for each function declaration. They are indexed independently of each other
and are initialized by a function call (see Section 5.7.6) or constructor call (see Section 5.7.7).

5.6.1.2 Identifier Reference

Let xi be the statically indexed identifier (see Section 5.3.1) where x is the identifier name and
i is the current index counter of x . If x is a (global) identifier (see Section 4.2.3), it is either
a (predefined) property of the global object [ES5, Sec. 15.1] or an undeclared global variable
(introduced by the program). Otherwise, it is a declared (global or local) variable.

5.6.1.2.1 Declared Variable A local variable is encoded as a scoped variable (see Section 5.3.2)

var(select(scopeStack(currentScope), n), xi)

where n is the nesting level of the declaration of xi. A global variable is encoded similar, but
since the scope is known to be the global scope, it is simplified to

var(globalScope, xi)

5.6.1.2.2 Undeclared Global Variable If i of an undeclared global variable is the initial static
index (see Section 5.3.1), then no value has been assigned and the result is encoded as the
undefined value (see Section 5.2.1). Otherwise, it is treated like a declared global variable.
That means var(globalScope, xi).

5.6.1.2.3 Properties Of The Global Object The value properties [ES5, Sec. 15.1.1] NaN ,
Infinity and undefined are encoded as their respective values (see Section 5.2). We do not
cover other predefined identifiers (properties), but they can be encoded in a similar way by their
value.

Note
Function values (for example isNaN [ES5, Sec. 15.1.2.4] or Constructor Properties of the
Global Object [ES5, Sec. 15.1.4] like Boolean ) require a special treatment in function-
/constructor-call operations (see Section 5.7).

All uncovered (predefined) identifiers are treated like undeclared global variables that usually
(if no value has been assigned) result in the undefined value (see Section 5.2.1).

5.6.1.3 Literal Reference

Null-, Boolean-, Numeric- and String-Literals are encoded as their respective values as described
in Section 5.2.

5.6.1.4 Array Initialiser

An Array Initialiser [e0, e1, e2] is encoded equivalent to an Object Initialiser (see Section 5.6.1.5)
{’0’: e0, ’1’: e1, ’2’: e2, length: 3 } . However, the object-ID o is marked as an array using
a constraint isArray(o).
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5.6.1.5 Object Initialiser

Type is τobject. Value is a fresh object-ID o. A constraint ¬ isArray(o) marks the object to be
not an array (in contrast to an Array Initialiser (see Section 5.6.1.4)). The index counter of the
object fields variable objectFields is increased from its old index to its new index

objectFieldsnew = store(objectFieldsold , o,fields)

where fields is object-fields array of o. fields is based on emptyObjectFields to which all properties
of the object initialiser have been assigned to as described in Section 5.7.4.2.1, whereas it is
only required to update (the index of) objectFields once. For example,

• fields of {} (object initialiser without any properties) is emptyObjectFields

• fields of { p0: e0, "p1": e1 } is

store(store(emptyObjectFields, p0, e0), p1, e1)

where p0 is the property name (string-ID) of p0 , e0 is the (set) property variable (of
p0) with e0 assigned to it, p1 is the property name (string-ID) of "p1" (that means
StringID( "p1" )) and e1 is the (set) property variable (of p1) with e1 assigned to it.

Note
emptyObjectFields is described in Section 5.2.6.1.

5.6.1.6 The Grouping Operator

The Grouping Operator (e) is encoded like e .

5.6.2 Left-Hand-Side Expressions
This section describes the formula encoding of Left-Hand-Side Expressions [ES5, Sec. 11.2] that
are part of the CFA, whereas only Property Accessors [ES5, Sec. 11.2.1] remain as expressions
in the CFA.

Note
The new Operator [ES5, Sec. 11.2.2] appears as constructor call operation (in the CFA),
whose formula encoding is described in Section 5.7.7. Function Calls [ES5, Sec. 11.2.3]
appear as function call operations (in the CFA), whose formula encoding is described
in Section 5.7.6. Argument Lists [ES5, Sec. 11.2.4] are part of function/constructor call
operations in the CFA. Function Expressions [ES5, Sec. 11.2.5] have been transformed
to function declaration operations (in the CFA), whose formula encoding is described in
Section 5.7.3.

Note
The title of this section is adopted from the ES5 specification. It may give the impression
that only Property Accessors appears as left hand sides in assignment operations, but
identifier references (see Section 5.6.1.2) are also allowed.
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5.6.2.1 Property Accessors

Property Accessors [ES5, Sec. 11.2.1] exist in two different notations that have to be handled
slightly different, since bracket notation has to consider array indices.

Note
Dot notation has an identifier as property name, which can not be an array index (string),
since identifiers must not begin with a digit [ES5, Sec. 7.6].

Note
This section only describes the read access. The write access is covered in Section 5.7.4.2.

5.6.2.1.1 Dot Notation A Property Accessor in dot notation obj.propName consists of an
expression obj and an identifier name propName . The identifier name is used as string value
(here StringID( "propName" )). The Property Accessor is encoded as the variable returned by
AccessField(ToObject(obj), StringID( "propName" )).

AccessField(o, p) :=
{

fieldOnPrototype field = objectFieldNotSet
field else

where

fields := GetObjectFields(o)
field := select(fields, p)

fieldOnPrototype := LookUpOnPrototypeChain(1, select(fields, prototypeField), p)

Note
prototypeField is defined in Section 5.2.6.2.

GetObjectFields(o) := select(objectFieldsi, o)

where o is an object-ID and i is the current index of the statically indexed variable objectFields.
LookUpOnPrototypeChain(d, protoVar , p) recursively looks up the property on the prototype

chain of an object. d is the depth (integer) of the current prototype in the prototype chain. The
current prototype is passed as variable protoVar . p is the string-ID of the property to look up.

LookUpOnPrototypeChain(d, protoVar , p) :=


undefined d > maxPrototypeChainLength

∨ protoVar = objectFieldNotSet
parentPrototype isFieldOnPrototypeNotSet
fieldOnPrototype else

where undefined is a variable with typeof(undefined) = τundefined and where
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prototypeFields := GetObjectFields(objectValue(protoVar))
fieldOnPrototype := select(prototypeFields, p)

isFieldOnPrototypeNotSet := (fieldOnPrototype = objectFieldNotSet)
parentPrototype := LookUpOnPrototypeChain(d+ 1, select(prototypeFields, prototypeField), p)

Note
maxPrototypeChainLength is described in Section 5.2.6.3 and resolves the recursion.
LookUpOnPrototypeChain could not be inlined without it.

5.6.2.1.2 Bracket Notation A Property Accessor in bracket notation obj[propExpr] consists
of expressions obj and propExpr . The Property Accessor is encoded as the variable returned
by BracketPropertyAccess(ToObject(obj),ToString(propExpr)).

BracketPropertyAccess(o, p) :=
{

undefined isUndefinedArrayElementIndex
select(o, p) else

where

isUndefinedArrayElementIndex := isArray(o) ∧ IsArrayIndexString(p)
∧ ToNumbervalue(p) ≥ ToNumber(lengthProperty)

lengthProperty := AccessField(o, StringID( "length" ))

IsArrayIndexString(s) checks if s is an array index [ES5, Sec. 15.4]. That means a nonnegative
integer less than 232.

5.6.3 Unary Operators
All unary operators have an expression as operand. The result is always a value and not a
variable.

5.6.3.1 The void Operator

void op is encoded as the undefined value (see Section 5.2.1).

5.6.3.2 The typeof Operator

Type is τstring. Value of typeof op is TypeOf(Type(op)).

TypeOf(t) :=



StringID( "boolean" ) t = τboolean

StringID( "function" ) t = τfunction

StringID( "number" ) t = τnumber

StringID( "string" ) t = τstring

StringID( "undefined" ) t = τundefined

StringID( "object" ) else
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5.6.3.3 Unary + Operator

Type is τnumber. Value of +op is ToNumber(op).

5.6.3.4 Unary - Operator

Type is τnumber. Value of -op is −ToNumber(op).

5.6.3.5 Bitwise NOT Operator ( ∼ )

Type is τnumber. The operand is casted to bit-vector formula using ToInt32 to be able to use the
complement operator of bit-vector theory. The result is casted back to a floating-point number
(see Section 5.2.4) and represents the value.

5.6.3.6 Logical NOT Operator ( ! )

Type is τboolean. Value of !op is ¬ToBoolean(op).

5.6.4 Multiplicative Operators
Type is τnumber. Both operands are converted using ToNumber. The respective floating point
theory operators are used for multiplication, division, and remainder.

5.6.5 Additive Operators
This section describes the formula encoding of Additive Operators [ES5, Sec. 11.6].

5.6.5.1 The Addition operator ( + )

The Addition operator l + r either performs string concatenation or numeric addition. The
result depends on the types of the operands:

resultIsString := Type(l) = τstring ∨ Type(r) = τstring

The result of the string concatenation is encoded using an uninterpreted function concat

concatResult := concat(ToString(l),ToString(r))

The result of the numeric addition is encoded as

numericAdditionResult := ToNumber(l) + ToNumber(r)

Since the value might either be a string or number, the result is encoded as a fresh variable
result. The variable is associated with its type using a constraint

typeof(result) =
{
τstring resultIsString
τnumber else

and its value using a constraint valueConstraint defined as

valueConstraint :=
{

stringValue(result) = concatResult resultIsString
numberValue(result) =assign numericAdditionResult else

5.6.5.2 The Subtraction operator ( - )

Type is τnumber. Value of l - r is ToNumber(l)− ToNumber(r).
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5.6.6 Bitwise Shift Operators
This section describes the formula encoding of Bitwise Shift Operators [ES5, Sec. 11.7].

5.6.6.1 The Left Shift Operator ( << )

Type is τnumber. The formula encoding is similar to the description of The Left Shift Op-
erator [ES5, Sec. 11.7.1]. Operands are casted to bit-vector formula using ToInt32 (see Sec-
tion 5.5.6) or ToUint32 (see Section 5.5.7) to be able to use the left-shift operator of bit-vector
theory. The result is casted back to a floating-point number (see Section 5.2.4) and represents
the value.

5.6.6.2 The Signed Right Shift Operator ( >> )

Type is τnumber. The formula encoding is similar to the description of The Signed Right Shift
Operator [ES5, Sec. 11.7.2]. Operands are casted to bit-vector formula using ToInt32 (see
Section 5.5.6) or ToUint32 (see Section 5.5.7) to be able to use the signed-right-shift operator
of bit-vector theory. The result is casted back to a floating-point number (see Section 5.2.4)
and represents the value.

5.6.6.3 The Unsigned Right Shift Operator ( >>> )

Type is τnumber. The formula encoding is similar to the description of The Unsigned Right
Shift Operator [ES5, Sec. 11.7.3]. Operands are casted to bit-vector formula using ToInt32 (see
Section 5.5.6) or ToUint32 (see Section 5.5.7) to be able to use the unsigned-right-shift operator
of bit-vector theory. The result is casted back to a floating-point number (see Section 5.2.4)
and represents the value.

5.6.7 Relational Operators
This section describes the formula encoding of Relational Operators [ES5, Sec. 11.8]. As men-
tioned in Section 4.1, we assume that relational operators < , > , <= , and >= do not compare
string values. Hence, we always6 convert operands to numbers according to step 3 of the Ab-
stract Relational Comparison Algorithm [ES5, Sec. 11.8.5].

5.6.7.1 The Less-than Operator ( < )

Type is τboolean. Value of l < r is ToNumber(l) < ToNumber(r).

5.6.7.2 The Greater-than Operator ( > )

Type is τboolean. Value of l > r is ToNumber(l) > ToNumber(r).

5.6.7.3 The Less-than-or-equal Operator ( <= )

Type is τboolean. Value of l <= r is ToNumber(l) ≤ ToNumber(r).

5.6.7.4 The Greater-than-or-equal Operator ( >= )

Type is τboolean. Value of l >= r is ToNumber(l) ≥ ToNumber(r).

6 Normally, step 4 of the Abstract Relational Comparison Algorithm [ES5, Sec. 11.8.5] would apply if both
operands are strings. However, our formula encoding of strings is not precise enough to handle this case
adequately.
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5.6.7.5 The instanceof operator

Type is τboolean. Value of l instanceof r is HasInstance(ToObject(l),ToObject(r)). HasInstance
checks if r.prototype exists as prototypeField on the prototype chain of l .

HasInstance(i, o) := FindPrototype(1, proto, instanceProto)

where instance i and object o are object-IDs and

proto := AccessField(o,StringID( "prototype" ))
instanceProto := select(GetObjectFields(i), prototypeField)

Note
prototypeField is defined in Section 5.2.6.2. AccessField and GetObjectFields are defined
in Section 5.6.2.1.1.

FindPrototype(d, p, i) recursively looks up if the object p (property variable-ID) exists as prototypeField
on the prototype chain of the instance. d is the depth (integer) of the current prototype i in
the prototype chain. The current prototype property of the instance is passed as (property)
variable-ID i.

FindPrototype(d, p, i) :=


⊥ d > maxPrototypeChainLength

∨ i = objectFieldNotSet
> objectValue(p) = objectValue(i)
foundOnParent else

where

instanceProto := select(GetObjectFields(objectValue(i)), prototypeField)
foundOnParent := FindPrototype(d+ 1, p, instanceProto)

Note
maxPrototypeChainLength is described in Section 5.2.6.3 and resolves the recursion.
FindPrototype could not be inlined without it.

5.6.7.6 The in operator

Type is τboolean. Value of l in r is HasProperty(ToString(l),ToObject(r)).

HasProperty(p, o) :=
{

isSetOnPrototype field = objectFieldNotSet
> else

where
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fields := GetObjectFields(o)
field := select(fields, p)

isSetOnPrototype := PrototypeHasProperty(1, select(fields, prototypeField), p)

Note
prototypeField is defined in Section 5.2.6.2. GetObjectFields is defined in Section 5.6.2.1.1.

PrototypeHasProperty(d, protoVar , p) recursively looks up if the property exists on the proto-
type chain of an object. d is the depth (integer) of the current prototype in the prototype chain.
The current prototype is passed as variable protoVar . p is the string-ID of the property to be
looked up.

PrototypeHasProperty(d, protoVar , p) :=


⊥ d > maxPrototypeChainLength

∨ protoVar = objectFieldNotSet
isSetOnParentPrototype isNotSetOnPrototype
> else

where

prototypeFields := GetObjectFields(objectValue(protoVar))
fieldOnPrototype := select(prototypeFields, p)

isNotSetOnPrototype := (fieldOnPrototype = objectFieldNotSet)
isSetOnParentPrototype := PrototypeHasProperty(d+ 1, select(prototypeFields, prototypeField), p)

Note
maxPrototypeChainLength is described in Section 5.2.6.3 and resolves the recursion.
PrototypeHasProperty could not be inlined without it.

5.6.8 Equality Operators
This section describes the formula encoding of Equality Operators [ES5, Sec. 11.9].

5.6.8.1 The Equals Operator ( == )

Type is τboolean. Value of l == r is Equals(l, r). The encoding is similar to The Abstract Equality
Comparison Algorithm [ES5, Sec. 11.9.3] without the cases (8 and 9) that use ToPrimitive, which
is not supported yet due to an implicit function call of an internal method (see Section 4.1). In
these cases, the else case (10) applies.
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Equals(l, r) :=



SameTypeEquals(l, r) Type(l) = Type(r)
> IsNull(l) ∧ Type(r) = τundefined

> Type(l) = τundefined ∧ IsNull(r)
Equals(l,ToNumber(r)) Type(l) = τnumber ∧ Type(r) = τstring

Equals(ToNumber(l), r) Type(l) = τstring ∧ Type(r) = τnumber

Equals(ToNumber(l), r) Type(l) = τboolean ∧ Type(r) = τnumber

Equals(l,ToNumber(r)) Type(l) = τnumber ∧ Type(r) = τboolean

⊥ else

IsNull(e) := Type(e) = τobject ∧ ToObject(e) = null

SameTypeEquals handles case 1 (a-f):

SameTypeEquals(l, r) :=



> Type(l) = τundefined

> IsNull(l)
NumberEquals(ToNumber(l),ToNumber(r)) Type(l) = τnumber

ToString(l) = ToString(r) Type(l) = τstring

ToBoolean(l) = ToBoolean(r) Type(l) = τboolean

ToObject(l) = ToObject(r) else

NumberEquals handles case 1c (i-vi):

NumberEquals(l, r) :=



⊥ isNaN(l)
⊥ isNaN(r)
> l = r

> l = +0 ∧ r = −0
> l = −0 ∧ r = +0
⊥ else

5.6.8.2 The Does-not-equals Operator ( != )

Type is τboolean. Value of l != r is ¬Equals(l, r) (see Section 5.6.8.1).

5.6.8.3 The Strict Equals Operator ( === )

Type is τboolean. Value of l === r is StrictEquals(l, r). The encoding is similar to The Strict
Equality Comparison Algorithm [ES5, Sec. 11.9.6].

StrictEquals(l, r) := (Type(l) = Type(r)) ∧ e
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e :=



ToBoolean(l) = ToBoolean(r) Type(l) = τboolean

ToFunction(l) = ToFunction(r) Type(l) = τfunction

n ∧ ToNumber(l) = ToNumber(r) Type(l) = τnumber

ToObject(l) = ToObject(r) Type(l) = τobject

ToString(l) = ToString(r) Type(l) = τstring

Type(l) = τundefined else

n := ¬ isNaN(ToNumber(l)) ∧ ¬ isNaN(ToNumber(r))

5.6.8.4 The Strict Does-not-equal Operator ( !== )

Type is τboolean. Value of l !== r is ¬StrictEquals(l, r) (see Section 5.6.8.3).

5.6.9 Binary Bitwise Operators
Type is τnumber. Operands are casted to bit-vector formulas using ToInt32 to be able to use the
respective operator of bit-vector theory. The result is casted back to a floating-point number
(see Section 5.2.4) and represents the value.

5.6.10 declaredBy
A declaredBy expression id declaredBy functionDeclaration (see Section 4.2.2.1) has an identifier
id and a function declaration functionDeclaration as operands. The type is τboolean. The value
is

declarationOf(functionValue(v)) = d

where v is the value of the encoded variable id as described in Section 5.6.1.2 and d is the
declaration-ID of functionDeclaration (see Section 5.7.3).

5.7 Operations
This section describes the formula encoding of operations that are part of the CFA (see Sec-
tion 4.2.1). Each encoding of an operation is described as a boolean formula. This formula
might be described by the logical conjunction of a set of conditions that we call constraints. All
constraints that are mentioned in the description of the operation and its expressions are part
of that set. After all, we define the strongest post operator of a program path as the logical
conjunction of the boolean formulas of all path operations.

5.7.1 Assumption
An assumption [ p ], is encoded as ToBoolean(p).

5.7.2 Variable Declaration
A variable declaration var x is handled like an assignment operation (see Section 5.7.4) x = undefined .
A variable declaration var x = e is handled like an assignment operation x = e .

Note
Strictly speaking, variable declaration operations could be replaced by their respective
assignment operations in the CFA. However, in my opinion it is easier to understand CFA
examples and transformation rules if they are kept.
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5.7.3 Function Declaration
A function declaration operation function func(args*) { ... } indicates that the function ob-
ject of func is created. The object is created similar to an Object Initialiser expression (see
Section 5.6.1.5)
{

prototype : {},
length : len

}

where len represents the count of function parameters. The object-ID o of the created object
is then used in the final constraints

typeof(fv) = τfunction

functionValue(fv) = o

objectValue(fv) = o

scopeOf(o) = currentScope
declarationOf(o) = d

where fv is the scoped variable of the function declaration identifier func and d is the declaration-
ID of the declared function.

Note
objectValue(fv) = o is done to allow the direct access (without type check) to
objectValue(o) if o is expected to be a (function) object (for example in a property accessor
expression o.p ).

A unique declaration-ID is used for every function declaration. It is used in declaredBy expres-
sions (see Section 5.6.10), which are used to resolve unknown function calls (see Section 4.3.1.12)
and unknown constructor calls (see Section 4.3.1.13).

Note
All function instances of a function declaration have the same declaration-ID, but different
object-IDs.

5.7.4 Assignment
An assignment lhs = e assigns an expression e to a left hand side lhs that is either a property-
access operator expression or an identifier reference. These cases have to be handled differently.
If e is a function return variable (assignment operation of function exit edge), Section 5.7.4.3
has to be considered.

5.7.4.1 Assignment To Identifier

This section describes the case that the left hand side of an assignment x = e is an identifier
reference x . First, make the formula e of e , since it may contain a reference to x . Then,
the index counter of variable x is increased from its old index to its new index. As explained
in Section 5.3.2.1, other scoped variables (same declaration, but different scope-ID) have to be
updated. Therefore, all scope-IDs that are created for a function declaration (on a call) are
added to its set of scope-IDs (see Section 5.7.6). For each scope-ID s in this set a constraint
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sx = s ∨ var(s, xold) = var(s, xnew)

is added where sx is the scope of the declaration of x (see Section 5.3.2). Finally, the actual
assignment is encoded using Assignment(var(sx, xnew), e).

Assignment(l, r) := Type(l) = Type(r) ∧ a

where l is a variable-ID, r is an expression and

a :=



booleanValue(l) = ToBoolean(r) Type(r) = τboolean

functionValue(l) = ToFunction(r) ∧ objectValue(l) = ToObject(r) Type(r) = τfunction

numberValue(l) =assign ToNumber(r) Type(r) = τnumber

stringValue(l) = ToString(r) Type(r) = τstring

objectValue(l) = ToObject(r) Type(r) = τobject

Type(l) = τundefined else

Note
objectValue(l) = ToObject(r) is also done in case of Type(r) = τfunction to allow the direct
access (without type check) to objectValue(o) if o is expected to be a (function) object
(for example in a property accessor expression o.p ).

5.7.4.2 Assignment To Object Property

This section describes the case that the left hand side of the assignment lhs = e is a property-
access operator expression. First, make the formula e of e , since it may contain a reference to
the object or the property of the left hand side.

5.7.4.2.1 Dot Notation In case lhs is a property accessor in dot notation obj.propName , it
consists of an expression obj and an identifier name propName . The identifier name is used as
string value (here StringID( "propName" )) of the property.

Create a fresh variable-ID p and mark it as set property (variable) using the constraint

p , objectFieldNotSet

and assign the value using Assignment(p, e) from Section 5.7.4.1. Finally, update the fields of
the object using a constraint:

SetObjectFields(o, store(GetObjectFields(o),StringID( "propName" ), p))

where o := ToObject(obj) and

SetObjectFields(o, ps) := objectFieldsnew = store(objectFieldsold , o, ps)

where o is an object-ID, ps is an array of properties, and the index counter of variable objectFields
is increased from its old index to its new index.

Note
GetObjectFields is defined in Section 5.6.2.1.1.
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5.7.4.2.2 Bracket Notation In case lhs is a property accessor in bracket notation obj[propExpr] ,
it consists of expressions obj and propExpr . It is handled similar to an assignment to the prop-
erty accessor in dot notation (see Section 5.7.4.2.1) with ToString(propExpr) as property name.
However, in contrast to a property accessor in dot notation, the accessed property of a property
accessor in bracket notation may be an array index.

Note
Dot notation has an identifier as property name, which can not be an array index (string),
since identifiers must not begin with a digit [ES5, Sec. 7.6].

Hence, the length property (if object is an array) might be changed, too. This is encoded as a
constraint

UpdateArrayLengthProperty(o,GetObjectFields(o),ToString(propExpr))

where o := ToObject(obj) and UpdateArrayLengthProperty is defined as

UpdateArrayLengthProperty(o, ps, p) := store(ps,StringID( "length" ), l)

where o is an object-ID, ps is the array of properties of o, p is the property name (string-ID),
and

l :=
{

lengthnew isArray(o) ∧ IsArrayIndexString(p) ∧ oldLength < newLength
lengthold else

oldLength := numberValue(lengthold)
newLength := StringToNumber(p) + 1

lengthold := AccessField(o,StringID( "length" ))

where lengthold represents the old property variable of the length property and lengthnew is a
fresh variable-ID (new property variable of the length property if updated) that is marked as a
set property variable using the constraint

lengthnew , objectFieldNotSet

and associated with its value using the constraint

typeof(lengthnew) = τnumber ∧ numberValue(lengthnew) =assign newLength

Note
The length property is only updated if the object o is an array, the property p is an array
index (string), and an element after the current last element is assigned. In that case, the
new length value is the index (number value of p) increased by one (index counting starts
from 0)

5.7.4.3 Assignment Of Return Variable

An assignment operation lhs = r of a function exit edge has to be handled specially. It assigns
a return variable r to a left hand side lhs . On the one hand side, the execution context [ES5,
Sec. 10.4] is switched back from the called function to the caller (function or global code). That
means, the currentScope of the called function has to be used when creating the formula of the

58

https://www.ecma-international.org/ecma-262/5.1/#sec-7.6
https://www.ecma-international.org/ecma-262/5.1/#sec-10.4


(variable) identifier reference r (see Section 5.6.1.2) and the currentScope of the caller has to
be used when creating the formula of lhs . On the other hand, the function exit edge might be
associated with a constructor call operation. In that case, the type of the return variable has
to be checked7. If the type equals the function or object type and the objectValue is not null,
do the regular assignment of lhs = r . Otherwise, handle it like lhs = this where this is the
this variable of the called constructor.

5.7.5 Delete Operation
A delete operation is equivalent to assigning objectFieldNotSet to the property of the object
(not to the prototype) that is deleted (see Section 5.7.4.2).

5.7.6 Function Call
Thanks to the preprocessing, the function declaration of each function call is known. Thus,
the parameter variables, the this-variable, and function object argument variable of the (called)
function declaration are known. On a function call the execution context [ES5, Sec. 10.4]
switches from the caller (function or global code) to the called function. The following has to
be done:

• create a new scope for the called function

• update current scope stack

• bind (optional) this argument

• assign arguments of call to parameter variables of called function

Create a new (unique and unused) scope-ID s and add it to the set of scope-IDs of the called
function. Let calledScopeVariable be the current scope variable of the called function. In-
crease the static index of calledScopeVariable to new and assign s to it using the constraint
calledScopeVariablenew = s. Associate the scope s with its scope stack using the constraint

scopeStack(s) = store(ss, n+ 1, s)

where n is the nesting level of the called function declaration
Note

The scope s is itself part of its scope stack. It is on top of the stack at index n+ 1, which
is equal to the nesting level of local declarations in the called function. If an identifier of
these declarations is referenced from a deeper nested function declaration, then the scope
s will be selected.

and ss is a part of the scope stack of the caller that is defined as

ss :=


globalScopeStack declaration of called function is global
scopeStack(scopeOf(functionValue(d))) function object argument exists
scopeStack(select(scopeStack(callerScopeVariable), n)) else

where d is the scoped variable of the called function and callerScopeVariable is the current scope
variable of the caller.

7 The return value of a constructor is usually the created object (this variable). However, the return value can
be overwritten by a return statement that returns an object. [ES5, Sec. 13.2.2]
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Note
The scope stack of a global function is globally known as globalScopeStack. Hence, it is
not required to select it from the scope stack of the caller. In case of a function instance,
the scope stack of the function instance has been associated with the scope of the function
instance by a function declaration operation (see Section 5.7.3). Else, the scope stack is
selected from the scope stack of the caller, whereas the index is the nesting level of the
declaration. The selected scope stack has been put on top by a call of the surrounding
function at nesting level n. However, the (statically indexed) currentScope variable of this
function can not be used, since it might have been changed due to another call to the same
function declaration.

Lastly, the function arguments are passed by assigning (see Section 5.7.4) them to the param-
eters that are handled like scoped variables of the called function. Likewise, the this argument
is assigned to the this variable (see Section 5.6.1.1) of the called function declaration as well as
the function object argument.

5.7.7 Constructor Call
A constructor call new func(e*) is handled like a function call operation func(e*) (see Sec-
tion 5.7.6), but instead of the this argument a new object is created and assigned to the this
variable. This object is created similar to the Object Initialiser (see Section 5.6.1.5)
{

[[ Prototype ]]: func. prototype
}

where [[Prototype]] represents the prototype property of Section 5.2.6.2.
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6 Implementation

The implementation can be found in the CPAchecker repository1. It includes the ECMAScript
parser-frontend that creates a program representation (CFA) as described in Chapter 4 and
the formula encoding of the ECMAScript operations and the language itself as described in
Chapter 5.

CPAchecker is written in Java. The ECMAScript parser-frontend2 uses the parser of the
Eclipse JavaScript Development Tools3. The parser creates an abstract syntax tree (AST) from
the ECMAScript source code. It is then transformed considering the preprocessing of Section 4.3
to an internal representation4 (another AST) that is independent from the used parser5 and
that is used to model the CFA operations desribed in Chapter 4.

CPAchecker contains abstract classes and interfaces for AST nodes that (supported) languages
have in common. Thereby, most of the core logic (algorithms) can be shared and only needs
(language specific) adjustments where necessary. Hence, only the formula encoding of Chapter 5
has to be implemented to be able to use the SMT based approaches of CPAchecker. It is added
in the package org.sosy_lab.cpachecker.util.predicates.pathformula.jstoformula .

The implementation only contains a specification that defines a call of a function __VERIFIER_error

as error location. However, CPAchecker allows more complex specifications using monitor au-
tomata [4].

6.1 Configuration Options
CPAchecker offers several configuration options. We add further options that influence the
ECMAScript specific SMT formula encoding and outline there impact.

6.1.1 Maximum Field Count
As described in Section 5.2.6.1, object properties are managed as an array formula that maps
each property name (string-ID formula) to a variable formula that represents the value of the
property. If a property is not set on an object, then the property name is mapped to a special
variable formula objectFieldNotSet, which represents an unset field. emptyObjectFields repre-
sents the (initial) property mapping, where all property names are mapped to objectFieldNotSet.
Therefore, we could use an all-quantifier, but the combination of uninterpreted functions (used in
the formula encoding) and quantifiers is undecidable [7]. Hence, we explicitly store objectFieldNotSet
for all string-IDs of non-number strings6 used in the program instead. It would be too much val-
ues to do this for all possible floating point formulas (string-IDs). We already left non-number
strings. Thereby, we have a lower bound for the range of string-IDs of non-number strings.
It would be still too much (unnecessary) values above this bound to cover. Hence, the upper
bound of string-IDs is defined by a configuration option.

1 https://svn.sosy-lab.org/software/cpachecker/branches/javascript/
2 See package org.sosy_lab.cpachecker.cfa.parser.eclipse.js .
3 https://www.eclipse.org/webtools/jsdt/core/
4 See package org.sosy_lab.cpachecker.cfa.ast.js .
5 This makes the parser exchangeable.
6 All strings that are the result of applying ToString to the Number type [ES5, Sec. 9.8.1] are called number

strings.
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It can be detected if there exist more known string-IDs7 in the analyzed program, but unknown
string-IDs8 remain. It would be possible to set the upper bound to the count of known string-
IDs, but this has not been implemented yet. Instead the user is informed if the upper bound
defined is lower than the count of known string-IDs.

The drawback of this approach is that it is unknown if a property with a name that has an
unknown string-ID is unset before it is set the first time. However, this is a very unusual case
that occurs only in very few programs.

6.1.2 Maximum Prototype Chain Length
As described in Section 5.2.6.3, we assume that no prototype chain in the analyzed program is
longer as a maximum maxPrototypeChainLength. This value is defined as a special option. If
this value is too small, properties higher up in the prototype chain are not taken into account.
This might lead to false results. However, in most cases it should be possible to estimate an
adequate value. In case of doubt, the value can be increased, but larger values might impact
the performance.

6.1.3 Usage Of NaN and infinity
CPAchecker provides options to encode floating point formulas as rational formulas. This can
be useful if a solver does not support floating point theory. Moreover, rational formulas are less
expensive to solve.

However, rational formulas do not support the values NaN and ±∞, but only as a variable
and not as a value. Checking for NaN or ±∞ can lead to satisfiable and non-tautological
formulas. Hence, an option is added that alters the formula encoding by assuming that those
checks always result in ⊥. For example, NumberToString of Section 5.5.3 is defined as:

NumberToString(n) :=


StringID( "NaN" ) isNaN(n)
StringID( "-Infinity" ) n = −∞
StringID( "Infinity" ) n =∞
cast n to floating point type of string formula else

It is reduced to the else case since all other cases are assumed to be ⊥.

6.2 Unimplemented Features
Due to lack of time, the == , != , in and instanceof operators have not been implemented yet.
=== is used instead of == . !== is used instead of != . Further, the remainder operator of the
floating point theory is not part of the unified Java API for SMT solvers9 used by CPAchecker.
It is currently only supported by the solver Z310. In the meantime, we use a formula encoding
similar to the ECMAScript specification of the remainder [ES5, Sec. 11.5.3] that at least covers
all cases, where either infinity, zero, or NaN is involved.

Besides, callUnknownFunction and callUnknownConstructor have not been inlined yet and are
called like regular functions. Thereby, recursive calls of callUnknownFunction or callUnknownConstructor

occur in case of a nested dynamic function call. For example, if an unknown function f is

7 String-IDs of string constants and property names.
8 String-IDs of number strings and the result of string operations (concatenation) that do not exist as string

constant in the program.
9 https://github.com/sosy-lab/java-smt

10 https://github.com/Z3Prover/z3
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called, it results in a call callUnknownFunction(f) that results in a call of a known function. If
this known function contains another call to an unknown function g , it results in another call
callUnknownFunction(g) , which is an indirect recursive function call of callUnknownFunction .

Note
The function declarations of callUnknownFunction and callUnknownConstructor in our im-
plementation use the maximum parameter count of all function declarations plus one
(because of the additional parameter functionObject ). If there exist two function decla-
rations f(p0) and g(p0, p1) , then the maximum parameter count is 2, which results in
the declarations callUnknownFunction(functionObject, p0, p1) as shown in Listing 4.2 and
callUnknownConstructor(functionObject, p0, p1) as shown in Listing 4.5.

As we see in Chapter 7, some files can not be analyzed due to these issues.
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7 Evaluation

In this chapter we will look at the evaluation of the functional correctness of the implementation
of the formula encoding based on the test programs of the official ECMAScript Conformance
Test Suite Test262 1 using bounded model checking [5] with k-induction [12, 29].

The goal of Test262 is to provide test material that covers every observable behavior specified
in the ECMA-414 Standards Suite2. The development of test262 is an on-going process. Tests
have been contributed by ECMA members, browser vendors (Microsoft and Google), TC39
member organizations and members of the world-wide ECMAScript community. As of May
2019, Test262 consisted of nearly 31000 individual test files. Each of these files contains one or
more distinct test cases. This marks the most comprehensive ECMAScript test suite to date.
TC39 does not consider the coverage to be complete, but the test coverage of ECMAScript 5.1
is broad and test files do not contain more features than necessary. Overall, it is well suited for
our evaluation. We use the latest version3 of Test262 (May 3rd 2019) in this evaluation.

However, we have to exclude some files, since Test262 also contains files with features that
are not supported (see Section 4.1) or not implemented yet (see Section 6.2). Therefore, we
initially benefit from the structure of the test suite. Files with newer and unsupported features
can easily identified by directory and file names. However, this is not sufficient to exclude all
files. Fortunately, files contain metadata in a comment. We exclude all files that are labelled to
only check syntax errors. Besides, the metadata contains a list of flags and used features that
we use to exclude respective files. Not all files contain a complete feature list in the metadata,
but some files contain a key es6id in the metadata. We exclude them, but the key es6id is
deprecated4 in favor of the key esid and not used in all files with ES6 features. esid provides no
direct information about the assumed ECMAScript version. Hence, we additionally parse5 the
remaining files6 and check if certain AST nodes are present that indicate unsupported features.
Besides, we exclude files with elided array elements, since they are not parsed correctly by the
Eclipse parser (used in the implementation) due to a known bug7. We end up with 780 files
that we try to verify.

Normally, these tests would be executed (independently from each other), whereas two files
that provide several assertion functions would be evaluated before the tested code. These
assertion functions throw a special exception that indicates a failure. Since we do not cover
exceptions yet and the implementation only contains a specification that defines a call of a
function __VERIFIER_error as error location, we use a simple workaround. We define similar
assertion functions that call __VERIFIER_error instead of throwing an error.

In addition to that, we evaluate the following file that acts as a polyfill8 for a small amount
of built-ins in order to cover more tests:
function isNaN(value) {

return value === undefined || value !== value;
}

1 https://github.com/tc39/test262
2 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-414.pdf
3 https://github.com/tc39/test262/tree/d47749e84daeea28b6fa7cefd69e7f2836dbbf37
4 https://github.com/tc39/test262/wiki/Test262-Technical-Rationale-Report,-October-2017
5 Using the parser https://github.com/Kronuz/esprima-python
6 We need the previous filter criteria, since the parser would not be able to parse all files due to certain issues

or unsupported features. All remaining files are parsable.
7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=544733
8 A file that reimplements built-in functions using existing ECMAScript code.
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// constructor call not supported yet
function Number ( value) {

return +value;
}

// constructor call not supported yet
function Boolean (value) {

return !! value;
}

Number .NaN = NaN;
Number . POSITIVE_INFINITY = Infinity ;
Number . NEGATIVE_INFINITY = -Infinity ;
Number . MAX_VALUE = 1.7976931348623157 E308;
Number . MIN_VALUE = 4.9E -324;

// constructor call not supported yet
function Date () {

// dummy value
return "Mon Feb 25 2019 12:06:04 GMT +0100 ( Central European Standard Time)";

}

As mentioned in the beginning of this chapter, we choose bounded model checking (BMC)
with k-induction to analyze the test files. Thereby, we can unroll loops and avoid interpolation
of iteration variables. ECMAScript only has a number type and we encoded number values as
floating point formulas. Solvers only have bad interpolation support of floating point formulas.
Hence, we could not analyze many files that contain loops.

Before we can run CPAchecker, we need to configure it. For example, we need to specify
the maximum of loop iterations k. We choose k to be 11. As it turns out, this value is large
enough to cover all tested loops9. We initially choose a maximum field count (see Section 6.1.1)
of 80 and a maximum prototype chain length (see Section 6.1.2) of 5. As we will see later, the
maximum field count is not big enough for all tested files. Hence, we will increase it for those.
Apart from that, we use the default solver of CPAchecker known as MathSAT510.

We run all tests as a benchmark in the VerifierCloud11 using BenchExec [32] and the CPAchecker
version of our implementation12 on machines with Intel Xeon E3-1230 v5 (3.40 GHz) CPU using
4 cores, with a time limit of 15 minutes, a memory limit of 15 GB, and a heap limit of 13000MiB
for Java. We do multiple runs as described in the following. Table 7.1 gives an overview of the
results of each run.

Run Description Files Correct Incorrect Unknown
1 Positive tests after automatic filtering 780 641 42 97
2 Positive tests after manual filtering and re-

configuring failed tests of 1st run
664 662 0 2

3 Negative tests of correct tests of 2nd run 8625 8593 13 19

Table 7.1: Results of different evaluation runs

In the first run13, we test all 780 files that are left after the filtering based on the criteria
described above. 641 files pass, but 139 files fail. 42 files are incorrect, whereof 9 files access

9 CPAchecker provides options to adjust (increase) this value automatically if a proper value is unknown.
10http://mathsat.fbk.eu/
11 https://vcloud.sosy-lab.org
12 https://svn.sosy-lab.org/software/cpachecker/branches/javascript/?p=31149
13 Benchmark configuration file of first run https://svn.sosy-lab.org/software/cpachecker/branches/

javascript/test/test-sets/bmc-JavaScript-test262-benchmark-1.xml?p=31149
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the global object, 25 files use unsupported string operations, 7 files rely on non strict equal
semantic14, and 1 file fails because of improperly handled unicode in the function name. 97
files are unknown15, whereof 1 file accesses the global object, 6 files use unsupported string
operations, 35 files contain special characters (whitespace, unicode, etc.) that are not handled
properly, 9 files have nested dynamic function calls16, 7 files contain recursive function calls,
8 files are parsed wrong by the Eclipse parser, 1 file contains a with-statement, 7 files contain
unimplemented remainder operations, 11 files that led to a timeout, and 12 files that require a
greater maximum field count.

In the second run17, we exclude the files that contain unsupported or unimplemented features.
We change the run configuration for the remaining 23 unknown files of the previous run. Of the
11 files that led to a timeout, we try to run all with float encoded as rational while considering
the adjustments of the formula encoding described in Section 6.1.3. Further, we decrease the
maximum of loop iterations k to 2, where it is sufficient (3 of the 11 files). Apart from this,
12 unknown files require a greater maximum field count. They are all more than 2500 lines
long and assert multiple shift operations (more than 500 assertions). We set the maximum
field count to a generous value of 1000. Thanks to these configuration changes, 21 of the 23
unknown files pass. 2 files still timeout. Both contain multiple loops. One uses floating point
operations (including division) to change the iteration variables of loops. The other contains
multiple tested loops. Nevertheless, we added 21 files to the count of passed files 641 of the first
run adding up to 662 passing files up to this point.

So far, we only tested the positive cases. That means that we checked that a test passes
as expected. However, it has already been shown during development that errors can remain
hidden. Once, a bug was introduced in the formula encoding, whereby no location after a
specific kind of statement was reachable. The consequence of this was that conditions were
not checked (reached) that would have lead to a failure. Hence, all tests magically passed. To
compensate this issue, we generated negated tests for each test file that was correct in the second
run and check that these tests fail.

Note
Thanks to this approach we found a buga in two test files of Test262. This bug has been
fixed in the version of Test262 that we use in our evaluation.

a https://github.com/tc39/test262/issues/2049

There are basically two forms of assertions that are used. On the one hand, there are assertion
functions like assert(condition, message) , where the condition is checked inside. Such calls can
be negated by negating the condition inside of the function definition. Therefore, we only need
to evaluate another file for the assertion functions. On the other hand, there is an assertion
function $ERROR(message) that always fails when called. In almost all cases, those calls look like
this:
if ( condition ) { $ERROR (...) }

We generate a negated test file for each of these occurrences and negate the condition of the
if-statement like this:
if (!( condition )) { $ERROR (...) }

Thereby, we get 8625 negated tested files in total.

14 Non strict equal operators are handled like strict operators in the implementation.
15 Solver could not solve formula due to a timeout, out of memory, etc.
16 Causes recursive function call of callUnknownFunction or callUnknownConstructor that have not been

inlined yet in the implementation.
17 Benchmark configuration file of second run https://svn.sosy-lab.org/software/cpachecker/branches/

javascript/test/test-sets/bmc-JavaScript-test262-benchmark-2.xml?p=31149
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We run all negated tested files with same configuration of the second run. In this third run18,
8593 files pass, but 32 files fail. 13 files are incorrect, whereof 1 file accesses the global object
and the others belong to files, where the negated condition check is not reachable. These files
contained an assert call of the form
if( false )

if (true)
$ERROR (’message ’);

where we negate the condition of the surrounding if-statement like this
if( false )

if (!( true))
$ERROR (’message ’);

We expected that this negated test fails, but negated condition check is not reachable. Thus,
the negated test passes, which is what we actually should have expected. The other 19 of 32
failed files are unknown, whereof they were generated from 4 files. One of those files contains
an unsupported remainder operation. The others timeout due to unknown reasons.

After running the negated tests, we know that 2 files contain unsupported features, even
though their positive tests passed. We should not count them as covered tests to be fair. That
means we subtract them from the correct file count 662 of the second run and end up with a
total 660 of covered tests, whereas we do not know if the counter-checks (negated tests) of 4
files would have all passed.

The evaluation also revealed a few bugs in our implementation caused by improper handled
special characters. 21 files required to encode float as rational. Otherwise, they let to a timeout.
In addition, 2 files let to a timeout even though we adjusted the configuration. In that regard,
it should be noted that the implementation is not really optimized yet. For example, the
performance may be improved in future work as described in Section 9.8.

18 Benchmark configuration file of third run https://svn.sosy-lab.org/software/cpachecker/branches/
javascript/test/test-sets/bmc-JavaScript-test262-benchmark-3.xml?p=31149
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8 Conclusion

In this paper, we extended CPAchecker to a restricted subset of ECMAScript 5.1 by adding
a respective parser frontend and an operator that is responsible for encoding the semantics of
program operations into SMT formulas.

We dealt in Chapter 5 with the challenges mentioned in Chapter 2. The ECMAScript stan-
dard uses internal functions to describe the semantics of statements and expressions. Section 5.5
showed with type conversion functions the closest encoding (with regard to the description in
the standard) of internal functions, but also the object property management is described using
internal functions. Section 5.2.6 outlined how objects and properties are formula encoded and
how the lookup on the prototype chain is done in general. Later, we saw in Section 5.6.2.1,
Section 5.6.7.5, and Section 5.6.7.6 how the lookup works in practice. Therewith, we also rea-
soned about extensible objects and dynamic property access. We did not reason about property
descriptors and property traversal (see Section 4.1). We will discuss in Chapter 9 how we may
reason about this in future work. Apart from that, we reasoned about higher-order functions
that required calls to unknown functions (see Section 4.3.1.12 and Section 4.3.1.13) that we
resolved using a special operator declaredBy (see Section 4.2.2.1). Further, we described in
Section 5.3.2 how we reason about scope chains and function closures of arbitrary complexity.

We evaluated the functional correctness of the implementation described in Chapter 6 based
on the official ECMAScript Conformance Test Suite Test262 in Chapter 7 considering the
assumptions in Section 4.1 and the unimplemented features as mentioned in Section 6.2. The
current implementation covers 660 test files. This is significantly less than the test coverage of
KJS (2782 files) and JaVerT (8797 files). The main reason are missing features (exceptions,
built-ins, etc.). However, we provided a basis for future work to cover more tests.
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9 Future Work

Last but not least, we would like to give an outlook on how our work can be expanded and
improved.

9.1 The for-in Statement
This is one of the most challenging features. The for-in Statement iterates only over enumerable
properties on the entire prototype chain. Further, the mechanics and order of enumerating the
properties are not specified. It might be a start to look at the work of Cox, Chang, and Rival[9],
who have shown how to reason about property iteration in a simple extensible object calculus.
Another idea would be to unroll the loop by checking all properties considering the maximum
field count (see Section 6.1.1) and using the in-operator described in Section 5.6.7.6.

9.2 The with Statement
It should be possible to encode the with statement [ES5, Sec. 12.10] in the CFA using the existing
operations in Section 4.2.1. This has not been done in this work, since the with statement is
deprecated. However, it has to be considered to get fully ECMAScript 5.1 compliant.

9.3 Exceptions
The difficulty in handling exceptions is modeling the catching of exceptions over multiple func-
tions. One way to model this is to save the catch block nodes across the CFA. If an exception
can be thrown in a statement, this would be expressed by an assume-edge to the exception
node. If an exception is thrown beyond the CFA of the global code, it would point to a node
with an outgoing edge. This edge would be labelled as uncaught Exception; and points to a
node with no outgoing edges (program exit node).

9.4 Standard Built-in ECMAScript Objects
Several built-ins are listed in the ECMAScript standard [ES5, Sec. 15]. Object , Function ,
Array , String , Boolean , Number , Math , and Error could be encoded similar to a regular object
in the most general sense (see Section 5.2.6). Some properties and methods as well as functions
of the global object might require a specialized formula encoding to describe the behaviour, but
most of them should be straight forward. On the other hand, Date , RegExp , and JSON require
further research including a more powerful string encoding to cover their main purpose.

Apart from that, we did not consider (see Section 4.1) that global variables are actually
stored in the global object. We could encode the global object as a regular object to store
global variables in it, but another approach might be imaginable.

9.5 Property Descriptors
As described in Section 5.2.6.1, properties are managed as an array formula that maps each
property name (string-ID formula) to a variable formula that represents the value of the prop-
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erty. Instead of mapping the property name directly to the value representation, it could be
mapped to an encoding of its property descriptor that includes a reference to the variable for-
mula that represents the value of the property. The encoding of the property descriptor should
be straight forward as the possible attributes are known. As a consequence, the formula en-
coding of operations such as the property access have to be adjusted depending on the formula
encoding of the property descriptor taking respective attributes into account.

9.6 Implicit Function Calls From Internal Methods
Implicit function calls from internal methods1 may require to add assumption edges to the CFA
that represent the checks used in internal methods that might lead to a call of a regular (not
internal) function. The exact realization of each internal method requires further research.

9.7 arguments
The Arguments Object [ES5, Sec. 10.6] arguments can be created on a function call similar to
a regular object as described in Section 5.2.6 and passed in a similar way as the this object as
described in Section 5.7.6.

9.8 Performance Improvements
The performance of the implementation may be improved in several ways. One idea is to reduce
the amount of strings that are used as property names in the approach described in Section 6.1.1
using heuristics. For example, it is unlikely that very long strings or strings with many special
characters will be used as property names. Apart from that, only captured local variables
have to be encoded as scoped variables as described in Section 5.3.2. All other variables can be
simply encoded as statically indexed variables as described in Section 5.3.1. Finally, CPAchecker
allows to combine different CPAs. A CPA that tracks the type of variables and expressions may
allow to simplify SMT formulas. This may allow to encode numbers as integers instead of
floating point formulas in some cases (for example, iteration variables of loops are usually used
as integers).

9.9 Specification
Our implementation only contains a specification that defines a call of a function __VERIFIER_error

as error location. CPAchecker supports the matching of expression and statement in its spec-
ification definition for the language C. A similar implementation can be implemented for EC-
MAScript to overcome the current restriction.

9.10 Maximum Field Count
The option for the maximum field count as described in Section 6.1.1 can be automatically
determined based on the known strings in the code. At the moment, the implementation only
notifies the user that the used value is to small if more strings appear.

1 For example, valueOf might be called by the internal method [[DefaultValue]] [ES5, Sec. 8.12.8].
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9.11 Maximum Prototype Chain Length
Heuristics might be added to determine an appropriate maximum prototype chain length (see
Section 6.1.2). The details require further research.
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[32] Philipp Wendler. “Beiträge zu praktikabler Prädikatenanalyse”. In: Ausgezeichnete In-
formatikdissertationen 2017. Ed. by S. Hölldobler. Vol. D-18. LNI. Gesellschaft für In-
formatik (GI), 2018, pp. 261–270. isbn: 978-3885799771. doi: 20.500.12116/19476.
url: https://www.sosy-lab.org/research/phd/wendler/.

79

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.735
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.735
http://drops.dagstuhl.de/opus/volltexte/2015/5245
http://drops.dagstuhl.de/opus/volltexte/2015/5245
http://dx.doi.org/10.1145/2737924.2737991
http://doi.acm.org/10.1145/2737924.2737991
http://dx.doi.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://dx.doi.org/10.1145/3290379
http://dx.doi.org/10.1145/3290379
http://doi.acm.org/10.1145/3290379
http://dx.doi.org/20.500.12116/19476
https://www.sosy-lab.org/research/phd/wendler/

	Introduction
	Related Work
	SMT-Based Verification In CPAchecker
	Program Representation
	Assumptions
	Control-Flow Automata
	Operations
	Expressions
	declaredBy Operator

	Identifiers
	Declarations

	Preprocessing
	Expressions
	Simple Assignment
	The delete Operator
	Binary Logical Operators
	Conditional Operator ( ? : )
	Prefix Increment Operator
	Prefix Decrement Operator
	Postfix Increment Operator
	Postfix Decrement Operator
	Compound Assignment
	Comma Operator
	Function Expressions
	Function Calls
	The new Operator

	Statements
	Block
	Variable Statement
	Empty Statement
	Expression Statement
	The if Statement
	The switch Statement
	Iteration Statements
	The do-while Statement
	The while Statement
	The for Statement

	Labelled Statements
	The continue Statement
	The break Statement
	The return Statement
	Function Declaration



	SMT Formula Encoding
	Types
	Type Tags

	Values
	Undefined
	Null
	Boolean
	Number
	String
	Object
	Properties
	Prototype Property
	Prototype Chain

	Function

	Variables
	Statically Indexed Variables
	Scoped Variables
	Updating SSA Index Of Scoped Variables


	Type, Value, Kind, and Constraint
	Type Conversion
	ToBoolean
	ToNumber
	ToString
	ToObject
	ToFunction
	ToInt32
	ToUint32

	Expressions
	Primary Expressions
	The this Keyword
	Identifier Reference
	Declared Variable
	Undeclared Global Variable
	Properties Of The Global Object

	Literal Reference
	Array Initialiser
	Object Initialiser
	The Grouping Operator

	Left-Hand-Side Expressions
	Property Accessors
	Dot Notation
	Bracket Notation


	Unary Operators
	The void Operator
	The typeof Operator
	Unary + Operator
	Unary - Operator
	Bitwise NOT Operator ( ˜ )
	Logical NOT Operator ( ! )

	Multiplicative Operators
	Additive Operators
	The Addition operator ( + )
	The Subtraction operator ( - )

	Bitwise Shift Operators
	The Left Shift Operator ( << )
	The Signed Right Shift Operator ( >> )
	The Unsigned Right Shift Operator ( >>> )

	Relational Operators
	The Less-than Operator ( < )
	The Greater-than Operator ( > )
	The Less-than-or-equal Operator ( <= )
	The Greater-than-or-equal Operator ( >= )
	The instanceof operator
	The in operator

	Equality Operators
	The Equals Operator ( == )
	The Does-not-equals Operator ( != )
	The Strict Equals Operator ( === )
	The Strict Does-not-equal Operator ( !== )

	Binary Bitwise Operators
	declaredBy

	Operations
	Assumption
	Variable Declaration
	Function Declaration
	Assignment
	Assignment To Identifier
	Assignment To Object Property
	Dot Notation
	Bracket Notation

	Assignment Of Return Variable

	Delete Operation
	Function Call
	Constructor Call


	Implementation
	Configuration Options
	Maximum Field Count
	Maximum Prototype Chain Length
	Usage Of NaN and infinity

	Unimplemented Features

	Evaluation
	Conclusion
	Future Work
	The for-in Statement
	The with Statement
	Exceptions
	Standard Built-in ECMAScript Objects
	Property Descriptors
	Implicit Function Calls From Internal Methods
	arguments
	Performance Improvements
	Specification
	Maximum Field Count
	Maximum Prototype Chain Length

	List of Figures
	Listings
	Bibliography

