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Abstract

As the amount and complexity of safety-involved systems is continu-
ously rising, automatic software verification gains more and more in impor-
tance. In this concern, Separation Logic has proved to be a promising way
to cope with problems related to automation and scalability.

Some SMT solvers provide support for Separation Logic, and there even
is a competition on Separation Logic (SL-COMP) which aims at standard-
izing the way to formulate Separation Logic problems in a common format
(SMT-LIB). In this spirit, this thesis explores the viability of using a Sep-
aration Logic solver in the context of software verification. We do so by
investigating the requirements of a suitable solver interface in the scope of
a pointer analysis based on symbolic execution.
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1 Introduction

Automatic software verification is and has always been a trade-off between pre-
cision and expense [5]. For very complex systems with a huge amount of code,
the efficiency of a method is crucial for its practical relevance. Especially in the
field of shape analysis, many procedures are limited in their application due to
a lack of computational resources.

This is where Separation Logic (SL) comes into play. Pym et al. state two
reasons: ”First, [SL] merges with the scientific-engineering model the program-
mer uses to understand and build the software. [...] Secondly, the proof theory
developed to check software using SL is based on rules for scaling the reasoning
task [...]” [18]. In doing so, SL provides an intuitive representation of (allocated)
memory by fragmenting the program’s heap into smaller, independent heaplets.
In this fashion, the theory comes with a versatile expressiveness that allows the
modeling of all kinds of data structures.

The ensuing potential is already attested as it became part of software ver-
ification tools targeting practice-oriented problems [10, 22]. Further, the SL-
COMP builds a baseline of applied SL. Initiated in the year 2014 and lastly
organized in 2019, SL-COMP established a standard for the formalization of
SL-problems based on SMT-LIB [21]. Thereby, the extension of SMT-LIB by
the spatial predicates of SL opens up new dimensions in respect to automated
reasoning.

In the scope of this thesis, we want to assess the above mentioned capabilities
with a pointer analysis considering C programs. For each line of code, we derive
the associated heap manipulation and represent it as SL-formula. We construct
and analyze these formulae according to memory safety properties with the use of
JavaSMT, an interface to various SMT solvers. By embedding the analysis into
the CPAchecker framework, we benefit from concepts of both model checking
and program analysis.
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Motivating Example

Figure 1.1 shows a small C program (a) and its corresponding Control Flow
Automaton (CFA) (b). The CFA - formally discussed in chapter 3 - models the
program as a transition graph with edges labeled with the statements of the
program. The code of the example contains an invalid pointer assignment inside

1 int main() {
2 char ∗p;
3 for (char i =0; i <2; i++) {
4 char x ;
5 i f ( i==0) {
6 p = &x;
7 } e l se {
8 ∗p = 1;
9 }

10 }
11 return 0;
12 }
13

(a) Unsafe program

n0start

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

char *p;

char i=0;

[i<2][!(i<2)]

char x;

[i==0][!(i==0)]

p=&x;*p=1;

i++;

return 0

(b) Control-flow automaton

Figure 1.1: An example C program (1.1a) with its corresponding control-flow
automaton (1.1b)

the for-loop. Since the memory location associated to the local variable x is
automatically (re)allocated for each loop iteration, the variable p points to an
already disposed address at the time of dereferencing in line 8. However, the
null pointer cannot be easily detected by a compiler, as the memory segment is
indirectly accessed.

Our approach targets this issue among others by providing a SL-formula for
each state along the execution path. For the assignment edge in line 8, this
brings us to the simplified formula

p 7→ x0 ∗ i 7→ 1 ∗ x1 7→ 0

2



whereby the indices of xi indicate different locations for x. One reads the formula
as ”p points to x0 and separately i points to 1 and separately x1 points to 0”.
This wording implies, that p ̸= i ̸= x1 must hold. We use this characteristic to
handle allocation checks as follows:

As the value x0 of the memory cell at address p is not allocated on the
heap, the invalid dereference of the assignment ∗p = 1 should be determined. In
order to do so, the previous formula is supplemented by another heaplet x0 7→ v

with v being a free variable. This procedure constitutes a crucial part of our
approach, since the determination of the heaplet requires the resolution of the
pointer expression ∗p to its value x0. The resulting formula is eventually passed
to a solver supporting SL:

p 7→ x0 ∗ i 7→ 1 ∗ x1 7→ 0 ∗ x0 7→ v

The formula is satisfied for any variable assignment that holds p ̸= i ̸= x1 ̸= x0.
And in fact there are infinite trivial solutions. By implication, if x0 was indeed
allocated on the heap the following formula is constructed:

p 7→ x0 ∗ i 7→ 1 ∗ x1 7→ 0 ∗ x0 7→ v ∗ x0 7→ v′

This results in the constraint x0 ̸= x0 which is unsatisfiable by definition. As a
consequence, we acquire an allocation check by the negation of the satisfiability
check of the constructed heap formula.

The discussed example outlines the base frame of our approach. In order
to clarify the negotiated challenges, the thesis is structured as follows: At first,
related work to applied SL and pointer analysis in general is discussed to substan-
tiate the potential of SL theory while simultaneously emphasizing the benefits
of this work. Afterwards, a deeper understanding of the underlying theory and
related technologies is given. Chapter 4 constitutes the main part of the the-
sis. Here, the heap formula construction and the associated pointer analysis is
concretized. Subsequently, important implementation details are outlined and
eventually, the results of the approach are presented with a prospect to future
extensions.
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2 Related Work

Automated reasoning has become a very important topic in the field of computer
science. Thereby, it is mandatory to analyze code bases at a certain scale to
achieve a practical relevance. As a consequence, there arise huge challenges
considering computational resources. SL targets the problem of scalability by
composition. Further, its practical application has already been approved by
existing approaches [9, 10].

One of the first shape analysis build on SL was initiated by the tool called
Space Invader [8]. As an adaptive analysis, Space Invader provides lists of SL
formulae to describe a program’s heap. Providing a join-operator as well, the
tool is capable of handling programs with more than one thousand lines of code.
Nevertheless, the manual adaption of higher-order predicates is time-consuming
[8]. In this respect, the tool was further extended by a compositional approach
described in [7]. The compositionality is achieved by ”[...] inferring a precondi-
tion and postcondition for a procedure, without knowing its calling context [...]”
[8]. The resulting version was finally published called Abductor in the scope of
[9]. To the best of our knowledge, Facebook Infer might be one of the latest tools
of applied SL. It is a static software analyzer for multiple program languages
and uses bi-abduction techniques to spot errors caused by null pointer access or
memory leaks [10, 18].

Another approach of a shape analysis depicts the so called Symbolic Memory
Graph (SMG) [12, 13]. Initially inspired by SL, in particular Space Invader, the
abstract domain of a SMG characterizes a state by providing a graph representa-
tion of the heap. The concept was implemented for the first time by the Predator
tool [12] and there is also a related implementation as a part of CPAchecker
[4] called CPAlien [15]. As the graphs are strongly optimized for the analy-
sis of lists, such as those used in the Linux kernel, the application of SMGs in
terms of other data structures than lists may be quite involved. However, in
case of CPAlien the integration into CPAchecker made the concept of SMGs
convenient to use.
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The CPAchecker framework realizes the reachability algorithm of the Configurable
Program Analysis (CPA) [5]. It accumulates a wide range of concepts in the area
of both, model checking and program analysis. Thereby, CPAchecker addi-
tionally provides parser capabilities (including C) and further grants access to
JavaSMT [4, 15], an interface for SMT solvers written in Java. Besides, JavaSMT
already supports SL solvers that address problems defined in the scope of SL-
COMP. As this thesis targets the practicability of such SL solvers, the described
infrastructure constitutes an important tool of our approach.

5



3 Background

SL is able to give insights about physical resources a program (or one of its sub-
routines) draws from. Together with its ability to cope with scalability, SL has
high potential to close the gap between formal theory and practice-oriented, au-
tomated software verification. Concerning the latter, CPA provides a promising
concept in order to assess the practicability of Separation Logic in a systematic
and flexible way. In this chapter, the underlying theories as well as their formal
concepts are described.

3.1 Hoare Logic

Reasoning about programs is always reasoning about state. Hoare Logic [14]
addresses this concern by inventing the Hoare Triple, which describes how a
certain piece of code alters the program’s state. In the form of

{P}C{Q}

it defines how the precondition P is transferred to the postcondition Q executing
the command C. By formulating rules of inference, Hoare Logic enables formal
proofs of program properties. Therewith, it has become very important in the
area of software verification, not only in theoretical but also in practice-oriented
respect.

3.2 Separation Logic

In the early 2000’s J. Reynolds and P. O’Hearn et al. extended the classical
Hoare Logic to the theory of SL [16, 20] building the foundation of Symbolic
Heaps [2, 11]. Thereby, the program’s state is defined by two components, a
pure and a spatial part, respectively a store and a heap. The store keeps track
of the variables by assigning them to values whereas the heap represents the

6



3.2. Separation Logic

allocated memory cells as locations mapped to values using the points-to-relation
7→ [11, 16]. Together with the separating conjunction ∗ (star) a heap can be
segmented into chunks each to be considered separately. The spatial connective
emp denotes the empty heap. As an example, the following logical formula
denotes a cyclic list with two allocated nodes:

x 7→ y ∗ y 7→ x

In contrast to the and-conjunction ∧ - as part of Hoare Logic - ∗ clarifies that
here x and y are ”separately in memory” and thus no aliases. This characteristic
stands in direct relation to the Frame Rule

{P}C{Q}
{P ∗ F}C{Q ∗ F}

(Frame Rule)

saying, that if the precondition P suffices for the program C to run leading
to the postcondition Q, there can be additional allocated memory remaining
unaffected (the frame F ). The Frame Rule holds if C does not modify any free
variables included in F : Modifies(C)∩Free(F ) = ∅ [11, 16, 18]. ”This support
for local reasoning is critical, supporting compositional reasoning about large
programs by facilitating their decomposition into many smaller programs that
can be analysed and verified independently.” [18]

3.2.1 Frame Inference and Abduction

The idea of compositional reasoning raises the question how to decide whether
a certain part of memory is or is not affected by a program. Hence, the primary
goal is to determine the frame F to be as precise as possible. Let us assume -
concerning the previous example of a cyclic list - a symbolic heap P entails the
necessary memory cells:

P ⊢ x 7→ y ∗ y 7→ x

If now x points to a new value z, only the first part of the heap formula will be
affected. Thus the frame F can be determined as y 7→ x (cf. Frame Rule).

Although this frame inference is exposed to be trivial, it becomes arbitrar-
ily complex for large programs. An efficient method to address this issue and
determine the frame in a prover-based way is called bi-abduction [9].

A ∗ ?antiframe ⊢ B ∗ ?frame (Bi-Abduction)

Given two symbolic heaps A and B, bi-abduction (see algorithm 1) discovers a
pair of frame and antiframe. The latter is the part of memory that is affected by

7



3.3. Satisfiability Modulo Theories

Algorithm 1: Bi-abduction from Calcagno et al. [9]

Input: symbolic heaps A and B
Output: antiframe, frame

antiframe = Abduce(A,B) =⇒ A ∗ antiframe ⊢ B
frame = Frame(A ∗ antiframe,B) =⇒ A ∗ antiframe ⊢ B ∗ frame
return (antiframe, frame)

a program (footprint), whereas the frame remains unchanged. The computation
is done in two distinct steps: First, the antiframe is inferred recursively using
ranked abduction rules. Consequently, a set of potential solutions is acquired
and a suitable ”best” is chosen in a heuristic manner. Nevertheless, abduction is
about forming hypotheses (cf. Peirce, p. 106 [17]). In other words the assertion
of - potentially weakened - preconditions might be unsound. This is why the
algorithm’s second step is crucial for its correctness.

As we have seen, SL is able to give a formal representation of heap-manipulating
programs. The related logical formulae are composed of two distinct parts. The
store contains all of classic logic and boolean expressions, whereas the heap ad-
ditionally includes the spatial connectives. Thus, it needs special solvers to deal
with this kind of formula. The next section attends to this matter and gives a
broad overview of the underlying concepts and the steadily growing community.

3.3 Satisfiability Modulo Theories

The decision problem of Satisfiability Modulo Theories (SMT) targets the satisfi-
ability of first-order logic formulae considering a chosen theory. For this purpose,
a SMT solver is used to determine for a given formula whether at least one so-
lution exists or not. SMT solvers are strongly related to SAT solvers. Although
the latter are limited to propositional formulae, SMT solvers operate on a higher
abstraction level. This allows them to gain in performance compared to pure
SAT solvers due to the implementation of theories like arrays and bit-vectors. In
this way, an encoding overhead to the bit level is avoided [1].

The high impact of SMT solvers in the area of automated reasoning lets the
community rise in a continuous manner. As a result, standards and a wide range
of related projects arose.

SMT-LIB constitutes the approach to provide a common input language to
formulate SMT problems. SMT-LIB includes a standard format for SMT solvers
as well as standard definitions of background theories. Furthermore a set of

8



3.4. Configurable Program Analysis

benchmarks facilitates to analyze and improve new approaches [1]. In this spirit,
the annual SMT-COMP organizes a competition for SMT solvers since 2005 in
order to boost the state of the art in SMT.

SL-COMP - as a counterpart to SMT-COMP - provides an analogous com-
petition for solvers supporting SL. The input format is also based on SMT-LIB.
With eleven competitors in the last edition of the competition, SL-COMP has
already contributed to the SL community to a significant degree [21].

3.4 Configurable Program Analysis

Beyer et al. introduced the concept of CPA that brings both model checking and
program analysis together [5]. On the one hand, model checking is traditionally
path-sensitive. Thus, it can result in an overwhelming or even infinite growth of
the abstract reachability tree for large programs. On the other hand, program
analyses most commonly join program paths at the expense of precision [5].

In their formalism, Beyer et al. make use of a CFA CFA = (L, pc0, G) as the
semantic representation of a program. The set of program locations L represents
the program counter pc with pc0 as the initial location, meaning the program
entry. The set G ⊆ L×Ops×L depicts the control-flow edges between program
locations with Ops as the set of supported operations. If such an operation is
executed, the program counter and other variables are modified. The assignment
of values to all variables in X∪{pc} is referred to as the program’s concrete state
c with C as the set of all concrete states. Each control-flow edge g ∈ G defines a
labeled transition relation g−→ ⊆ C×{g}×C. Assumed a concrete state c and its
successor c′, there exists a control-flow edge g ∈ G with (c, g, c′) ∈ g−→ or c g−→ c′

for short.
The CPA-formalism implements a reachability analysis in a practice-oriented,

experimental fashion. It composes different (independent) modules - the CPAs
- that can be adjusted to the individual working task concerning precision and
performance [5]. Each CPA D = (D,⇝,merge, stop) consists of the following
components defined by Beyer et al. [5]:

1. The Abstract Domain D = (C, E , ⟦·⟧) represents the states a program can
occupy during execution. A distinction is made between the concrete states
C and the elements of the semi-lattice E = (E,⊤,⊥,⊑,⊔), the abstract
states E. The linkage between the two is captured due to the concretization
function ⟦·⟧ : E −→ 2C , that maps each abstract state to a set of concrete
ones. Further, the semi-lattice E defines a preorder ⊑ ⊆ E × E, a join-

9



3.4. Configurable Program Analysis

operator ⊔ : E × E −→ E as well as a least upper bound ⊤ ∈ E and a
greatest lower bound ⊥ ∈ E.

2. The Transfer Relation ⇝ ⊆ E × G × E provides the successors for each
abstract state. Analogous to the transition relation over concrete states,
each transfer is labeled with a control-flow edge. Thus, for an abstract
state e and a possible successor e′ there exists a control flow edge g ∈ G

with e
g
e′

3. ”The Merge-Operator merge : E × E −→ E combines the information of
two abstract states. To guarantee soundness of [...][the] analysis” [5] e′ ⊑
merge(e, e′) has to be fulfilled. In our approach we use mergesep(e, e′) = e′.

4. The Termination-Check stop : E × 2E −→ B determines for each new en-
countered abstract state along the reachability analysis, whether it is coped
by the already visited states or not. Hence, it ensures the termination of
the CPA-algorithm.

3.4.1 CPA algorithm

The reachability algorithm CPA(D, e0) (see algorithm 2) returns for a given
configurable program analysis D and an initial state e0 a set reached of all ab-
stract states that have been encountered. Together with reached, the algorithm
updates another set waitlist of abstract states that have to be treated. The
algorithm terminates when waitlist is empty.

At the beginning, both sets have one entry, the initial abstract state e0. For
all elements in waitlist the algorithm determines its successors obtained from the
transfer relation ⇝. Now, each abstract successor state e′ is merged with each
already encountered abstract state e′′ in reached. In the case that information
was added to e′′, i.e. merge(e′, e′′) ̸= e′′, e′′ is replaced by the merge result. If
the abstract successor state is not yet covered by reached after the merge-step,
it is added to waitlist and reached to be processed later on.

In this chapter we illustrated the bases of our approach. One of the main
challenges in the field of software verification is the trade-off between precision
and performance. As discussed earlier, SL is able to bring both properties to-
gether. The combination with the concept of CPA allows us to investigate its
capabilities in the scope of a pointer analysis.

10



3.4. Configurable Program Analysis

Algorithm 2: CPA(D, e0) from Beyer et al. [5]

Input: a configurable program analysis D = (D,⇝,merge, stop), an
initial abstract state e0 ∈ E, let E denote the set of elements of
the semi-lattice of D

Output: a set of reachable abstract states
Data: a set reached of elements of E, a set waitlist of elements of E
waitlist := {e0}
reached := {e0}
while waitlist ̸= ∅ do

pop e from waitlist
foreach e′ with e⇝ e′ do

foreach e′′ ∈ reached do
// Combine with existing abstract state.
enew := merge(e′, e′′)
if enew ̸= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

end
end
if ¬stop(e′, reached) then

waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

end
end

end
return reached

11



4 Theory

Our approach implements a pointer-analysis based on SL by following the con-
cept of symbolic execution. We derive heap formulae from standard C code and
analyze them in respect to memory safety properties. Thereby, we make use of
the CPA formalism to gain from its extensive infrastructure of tools and concepts.
In this chapter, we want to give an understanding of our method’s structure and
the semantics it encapsulates.

4.1 Abstract Domain

For each element of the abstract domain, a Hoare Triple {P}C{Q} defines the
program’s abstract state. The command C is obtained from the CFA, that
provides the related control-flow edge for each abstract state. The pre- and
postcondition P and Q are represented by SL-formulae. These describe the
program’s state as a symbolic heap before and after C is executed.

VarsVars := {x, y, ...}{x, y, ...} ValuesValues := {... -1, 0, 1, ...}{... -1, 0, 1, ...} ∪ {nil}{nil}
Vars’Vars’ := {x’, y’, ...}{x’, y’, ...} LocationsLocations ⊆ ValuesValues
StoresStores := (Vars ∪ Vars’)(Vars ∪ Vars’) → ValuesValues HeapsHeaps := LocationsLocations ⇀fin ValuesValues
StatesStates := StoresStores×HeapsHeaps

According to [16] and [11], each state consists of a store and a heap. The store
maps program variables V ars and symbolic variables V ars′ to values. Elements
of V ars′ do not occur in programs and are limited to logical formulae. The
heap is a finite partial function from locations to values. In this concern, the
satisfaction relation

s, h |= Π ∧ Σ

declares that a given store s ∈ Stores and a (concrete) heap h ∈ Heaps satisfy
a symbolic heap with the pure part Π and spatial part Σ. In this respect, the

12



4.1. Abstract Domain

κ := typical constants Constants
V ar := x, y, ... Program variables
V ar′ := x′, y′, ... Symbolic variables

E,F,G := κ | V ar | V ar′ | E ⊙ F Expressions
C := true | E = F | E < F | ¬C Constraints
Π := C | Π ∧Π Pure formulae
Σ := emp | E 7→ F | Σ ∗ Σ Spatial formulae
H := Π ∧ Σ (Quantifier-free) Symbolic heaps

Figure 4.1: Grammar of formulae describing a symbolic heap

notation Σ ∗ P stands for the (disjoint) union of a formula P onto the spatial
part of a symbolic heap, and respectively Π ∧ P for the pure part.

Figure 4.1 shows the grammar of formulae representing a symbolic heap.
The pure formulae describe the store by conjunctions of constraints that include
relations among expressions. These expressions are limited by the theory of
integers and are either constants, variables or arithmetic expressions involving
all of these. The spatial formulae specify properties of the heap by assigning
values to each memory cell. A single points-to predicate x 7→ y represents a heap
with only one allocated cell at address E with content F . We use E 7→ − to
indicate an arbitrary value for F . Besides, the following definition is used to
declare a contiguous segment of allocated cells with their associated content:

E 7→ F0, ..., Fn := (E 7→ F0) ∗ ... ∗ (E + n 7→ Fn)

Memory Safety Properties As defined by the CPA-formalism, the abstract
domain specifies the greatest lower bound ⊥. We define four abstract bottom
states related to the memory safety properties that our pointer analysis targets:

• invalid read ⊥R,

• invalid write ⊥W ,

• invalid free ⊥F and

• memory leak ⊥L.

In order to facilitate a pointer analysis, SL-formulae as semantic represen-
tation of programs have to be constructed. We describe this procedure in the
following section.

13



4.2. Pointer Analysis

4.2 Pointer Analysis

The analysis creates a memory model for each node along the execution path.
Every atomic command is transferred into its representative memory manipu-
lation. Thus, we gain a SL-formula for each state that can be analyzed by a
solver. Thereby, the following memory safety properties are observed: invalid
dereference, further distinguished between invalid read and write, invalid free
and memory leak.

4.2.1 Memory Model

In C (e.g. ISO/IEC 9899:1990) the memory is seen as a sequence of bytes,
although the interpretation of a chunk of memory depends on the type of the
pointer that is used for access. According to this, we model the symbolic heap Σ

as a collection of byte-sequences, each byte having an unique address. In terms
of SL, Σ is composed of locations equal to the size of *void pointing to values
with the size of char.

For a variable x ∈ V ar (with a type greater than one byte) its assigned value
is split into a sequence of adjacent cells. The size of the sequence corresponds
to the type size and is determined using the function sizeof(x) related to the
sizeof() operator in C. Thereby, we define an injective function

SymLoc := V ar ↪→ V ar′

that gives exactly one match &x ∈ V ar′ for each x.1 The symbolic variable
indicates the start of the segment as the memory address of x. Each consecutive
location is then composed of &x and an offset. Figure 4.2 illustrates this proce-
dure by the example of three variables with different types. The corresponding

Figure 4.2: Three variables with different types separately in memory

1 We use the notation &x to indicate the relation to the address-of operator in C.
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4.2. Pointer Analysis

SL-formula describes the symbolic heap as follows,

&i 7→ i0, i1, i2, i3 ∗ &c 7→ c ∗ &a 7→ a[0], a[1], a[2]

whereby the superscripts in indicate the n-th byte of the value i.
Another characteristic of the C memory management is the differentiation

between several allocation methods, namely: static and global as well as auto-
matic and dynamic allocation. The different memory sections are often referred
to as stack and heap. We handle the related properties by subdividing Σ into
two distinct parts:

Σ = Σs ∗ Σh

Σh denotes the part of memory, that is allocated dynamically on runtime, for
example due to malloc(). Everything else is then described by Σs. Therewith,
we are able to detect invalid frees on the one hand, and apply solver calls more
efficiently on the other hand.

4.2.2 Language

Our formalism copes with a subset of the standard C language illustrated in fig-
ure 4.3. A program is defined as a list of statements s. We essentially distinguish
between declarations and assignments, as the CFA already handles more com-
plex statements related to control flow and variable scope. The associated edges
are illustrated in section 4.2.5. Expressions of type CExpression are divided
into left-hand side expressions ϵℓ and right-hand side expressions ϵ, whereby all
of them exclude floats. At this point, we want to emphasize the distinction

τ := typical types excluding floats
κ := typical constants
ϵℓ := x, y, ... | ∗ ϵ | a[ϵ] | a.b
ϵ := κ | ϵℓ | &ϵℓ | ϵ⊙ ϵ | f(ϵr, ..., ϵr) | (τ)ϵ
s := τ a | ϵ | ϵℓ = ϵ | {s} | s; s

| while(ϵ) s | if(ϵ) s else s

Figure 4.3: A subset of C

between expressions of the program (ϵ of type CExpression) and those that
are part of the SL-formulae (E of type Expression). The left-hand side expres-
sions include identifier, pointer and array subscript expressions as well as field
references according to structures and unions. The right-hand side expressions
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4.2. Pointer Analysis

extend ϵℓ by constants, the address-of operator, function calls and cast as well
as binary expressions. Concerning the latter, the associated operators denoted
by ⊙ and constants κ refer to typical binary operators, respectively constants
as part of the SL-formulae. Further, there exists a canonical mapping between
identifier expressions and the elements of V ar. For the sake of completeness, we
make the following assumptions:

• A variable is declared only once. With this, a static typing of all variables
is ensured. The CType of an expression is determined using the function
type := CExpression → CType;

• The function cast := Expression × CType × CType → Expression ab-
stracts from the concrete cast implementation of the target system;

• All binary operators of ⊙ are solely defined for operands of the same type;

• We cope with pointer arithmetic by introducing the commutative operators
⊛ ⊂ ⊙ that allow addition and subtraction of pointer offsets.

4.2.3 Memory Access

Whenever a value is read from or written to memory, the associated location has
to be dereferenced. Thereby, it is crucial to determine whether the location in
form of an expression E points to an allocated cell on the heap Σ. We define

Σ |= Allocated(E) ⇐⇒ Σ |= ∃Σ′, F.(E = F ∧ Σ = Σ′ ∗ F 7→ −)

saying that a heap Σ satisfies the allocation of memory at address F that is
semantically equivalent to address E.

It is crucial for the analysis to access the value F in some way. Assume a
dereference function Deref() that retrieves the value at a location E in a context
heap Σ. If the location is invalid or if it is nil itself, the function returns nil.

Deref := Spatial formula× Expression → Expression

Here, we give a recursive definition that checks each heaplet whether it gives a
model for Allocated(E):

Deref(emp, E) := nil

Deref(Σ, nil) := nil

Deref(F 7→ G ∗ Σ, E) := if F 7→ G |= Allocated(E)

then G else Deref(Σ, E)
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We use the function Deref() in order to resolve memory accesses. A concrete
implementation is given in chapter 5. However, in C a memory access also
depends on the type of the dereferenced pointer. We target this characteristic
with the use of the definition

Σ[E]n := Deref(Σ, E) :: Deref(Σ, E + 1) :: ... :: Deref(Σ, E + n− 1)

denoting that the memory segment with size n starting at address E is deref-
erenced. By doing so, all bytes inside the segment are dereferenced and con-
catenated afterwards. If any of the memory accesses fails, nil is returned. The
arrangement of the bytes depends on the endianness of the source code’s target
system. Here, the notation describes little-endian order.

4.2.4 Locations and Values

The pointer analysis captures the meaning of each CExpression by transforming
it to a primitive Expression as part of the SL-formulae defined in 4.1. Thereby,
a distinction is made between locations and values as the interpretation of C code
implies. For example, an assignment in C is composed of a left- and right-hand
side ϵℓ = ϵ. The meaning of this assignment can be worded as ”the value of ϵ is
written to the location of ϵℓ”. It is crucial that expressions referring to the same
memory location are transformed to the same symbolic representation. Assume
two variables char x and its pointer char* p = &x. Then, all of the following
expressions refer to the same memory location: x, x[0] and *(p + x - 1). In
this spirit, we introduce two notations:

Σ |= ϵℓ ⇓l E Σ |= ϵ ⇓v E

The first denotes the evaluation of a left-hand side expression ϵℓ to its corre-
sponding location, whereas the second retrieves the value of ϵ. Both evaluations
are accomplished in the context of a symbolic heap Σ. Figure 4.4 provides the
corresponding semantic rules.

As the definition of ⇓l implies, only left-hand side expressions can be eval-
uated to a location. For the trivial case of identifier expressions representing
program variables x ∈ V ar, SymLoc() provides an unique symbolic location for
each variable. For array subscript expressions in the form of a[ϵ], the location of
a is incremented by the evaluated offset, meaning the value of ϵ. Similar to the
procedure of a compiler, a factor according to the type of a is multiplied to the
value. Pointer expressions ∗ϵ are similarly treated since they can be rewritten as
array subscripts. Their evaluation is straightforward by evaluating the operand.
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&x = SymLoc(x)

Σ |= x ⇓l &x
Var

Σ |= ϵ ⇓v E

Σ |= ∗ϵ ⇓l E
Ptr

Σ |= x ⇓l E Σ |= ϵ ⇓v E′ F = E + E′ · sizeof(type(∗x))
Σ |= x[ϵ] ⇓l F

Array

Σ |= x ⇓l E F = E +Offset(x, y)

Σ |= x.y ⇓l F
Field

a: The operational semantics of ⇓l

Σ |= κ ⇓v κ
Const

Σ |= ϵℓ ⇓l E n = sizeof(ϵℓ) F = Σ[E]n

Σ |= ϵℓ ⇓v F
Lhs

Σ |= ϵℓ ⇓l E

Σ |= &ϵℓ ⇓v E
AddressOf

E = SymV al(f)

Σ |= f(ϵ0, ..., ϵn) ⇓v E
FunCall

Σ |= ϵ ⇓v E F = cast(E, type(ϵ), τ)

Σ |= (τ)ϵ ⇓v F
Cast

Σ |= ϵ0 ⇓v E
Σ |= ϵ1 ⇓v F

G = E ⊙ F
type(ϵ0) = type(ϵ1)

Σ |= ϵ0 ⊙ ϵ1 ⇓v G
BinExp

Σ |= ϵ0 ⇓v E
Σ |= ϵ1 ⇓v F

ϵ0 is a pointer
G = E ⊛ (F · sizeof(type(∗ϵ0)))
Σ |= ϵ0 ⊛ ϵ1 ⇓v G

PtrArithmetic

b: The operational semantics of ⇓v

Figure 4.4: The operational semantics of transforming an expression to its
corresponding location (4.4a) and value (4.4b)
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In order to handle composite types such as structures and unions, the asso-
ciated field accesses have to be exchanged by location offsets. We introduce the
offset function Offset(x,m).

Offset := CExpression× CExpression → Int

It returns for a variable x the offset of its member m including potential padding.
In the case of unions, the offset is always equal to zero. For structures the offset
function traverses the member list of the composite type and accumulates the
type sizes of each member until m is reached. To clarify this procedure, let us
consider a variable x of type A denoting a structure that entails the variables of
figure 4.2: struct A {int i; char c; char a[3];}. The offset function then
returns for Offset(x, a) the following:

Offset(x, a) = sizeof(i) + pad0 + sizeof(c) + pad1

= 4 + 0 + 1 + 0

= 5

with the assumption all paddings being zero. A field reference x.a then leads to

&x = SymLoc(x)

Σ |= x ⇓l &x
Var

F = &x+Offset(x, a)

Σ |= x.a ⇓l &x+ 5
Field

The counterpart of the left-hand side evaluation constitutes the same of the
right-hand sides. This leads us to the rules of ⇓v (see figure 4.4b). All of the
expressions in the form of ϵℓ are evaluated by dereferencing the corresponding
location denoted by the rule Lhs. Besides, the value of a constant is its canonical
representative, whereas the address-of operator is evaluated by returning the
location of its operand. The more special case of a function call expression is
handled by providing a symbolic variable v ∈ V ar′ for its return value. The
function SymV al() exemplifies this behavior. The Cast rule enables us to cope
with the premise of binary expressions in rule BinExp, that restricts all operands
to have the same type. Further, we provide a separate rule to handle pointer
arithmetic. In this special case of a (commutative) binary expression, the types of
the operands are considered. Similar to the offset calculation concerning array
subscripts, a multiple of the numeric operand’s value is added or subtracted
considering the size of the pointer’s target. There is no rule for the case of both
operands being pointers as its application might directly offend memory safety
properties.
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Invalid Dereference At this point, it is important to mention that whenever a
memory access in the form of Σ[E]n causes an invalid dereference, the evaluation
leads to the result nil as defined in 4.2.3. This behavior is crucial for the transfer
relation, as the memory safety properties depend on whether a failed memory
access occurred on a left- or right-hand side expression.

The previous section introduced the procedure of evaluating expressions to
the associated locations, respectively values. Based on this, the next part of the
thesis gives insights to the construction of SL-formulae.

4.2.5 Transfer Relation

The heart of our approach constitutes the transfer relation as part of the CPA.
The transfer relation returns the successors for each outgoing edge of a state.
Thereby, the CFA provides us different types of edges related to the statement the
respective edge is labeled with. For all of them, the transfer relation implements
the corresponding semantic rules that define the behavior of our analysis. We
denote an abstract state as a symbolic heap Π ∧ Σ. In the following, we discuss
each edge and provide the associated semantic rules.

Declaration Edge A variable declaration allocates memory on Σ according to
the variable’s type. The initialization of the allocated cells is not further specified,
since the initial assignment can be modeled by an additional statement edge.

Σ |= x ⇓l E n = sizeof(τ)

{Π ∧ Σ} τ x {Π ∧ Σ ∗ E 7→ −0, ...,−n−1} Declare

Statement Edge In C there are two essential groups of statements: assign-
ments and ”pure” statements. Concerning the former, the location of the left-
hand side as well as the value of the right-hand side are determined. Afterwards,
the heap is updated accordingly:

n = sizeof(ϵℓ)

Σ ∗ E 7→ −0, ...,−n−1 |= ϵℓ ⇓l E

Σ ∗ E 7→ −0, ...,−n−1 |= ϵ ⇓v F

{Π ∧ Σ ∗ E 7→ −0, ...,−n−1} ϵℓ = ϵ {Π ∧ Σ ∗ E 7→ F 0, ..., Fn−1} Assign

Σ |= ϵ ⇓v nil

{Π ∧ Σ} ϵℓ = ϵ {⊥R} AssignInvR Σ |= ϵℓ ⇓l nil

{Π ∧ Σ} ϵℓ = ϵ {⊥W } AssignInvW

As the left- and right-hand side are independently processed of each other, the
analysis is able to distinguish between an invalid dereference while reading from
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4.2. Pointer Analysis

(⊥R) and writing to (⊥W ) memory. Likewise, the pure statements are treated
as they only differ in the absence of the left-hand side.

However, there are a few special cases that deserve a discussion in more
detail. We cope with dynamic memory allocation using malloc() from stlib.h
by evaluating the passed parameter ϵ defining the segment size. Afterwards, the
given amount of memory cells is added to the spatial part Σ of our heap formula.

Σ ∗ E 7→ −0, ...,−n−1 |= ϵℓ ⇓l E

Σ ∗ E 7→ −0, ...,−n−1 |= ϵ ⇓v κ

n = sizeof(ϵℓ)

Σ |= malloc(ϵ) ⇓v x

{Π ∧ Σ ∗ E 7→ −0, ...,−n−1} ϵℓ = malloc(ϵ) {
Π ∧ Σ ∗ E 7→ x0, ..., xn−1

∗ x 7→ −0, ...,−κ−1
}

Malloc

The function alloca() is analogously treated. In order to model the return
value of malloc(), the function SymV al() provides a symbolic variable x that
is written to the left-hand side’s location. By doing so, we assume on the one
hand that the allocation by malloc() is always successful, on the other hand we
require a deterministic value for κ, that can be statically evaluated. We provide
an additional rule for a trivial case that directly leads to a memory leak, namely
if the heap pointer returned by malloc() remains unutilized.

{Π ∧ Σ} malloc(ϵ) {⊥L} MallocLeak

As the counterpart of dynamic allocation, we further provide rules for the deal-
location using free(). In order to identify the associated segment of the heap
pointer, we introduce the function segmentSize(E). The function works as a
lookup table including all memory segments with their associated size. If E is
not a start address of such a segment −1 is returned (see 5).

Σ ∗ E 7→ −0, ...,−n−1 |= ϵ ⇓v E n = segmentSize(E)

{Π ∧ Σ ∗ E 7→ −0, ...,−n−1} free(ϵ) {Π ∧ Σ}
Free

At this point, it is crucial to establish the allocation check of address ϵ solely
on the dynamic part of the heap Σdyn in order to model the function of free()
correctly. The event that there is no match for the value of ϵ leads to an invalid
free ⊥F violating the memory safety properties.

Σ |= ϵ ⇓v E Σh ⊭ Allocated(E)

{Π ∧ Σs ∗ Σh} free(ϵ) {⊥F } FreeInv1

Σ |= ϵ ⇓v E segmentSize(E) = −1

{Π ∧ Σ} free(ϵ) {⊥F } FreeInv2
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Besides, whenever memory is released the resulting state has to be checked
for potential leaks. We further discuss this memory safety property together
with variable scope in the last paragraph of this section.

Assumption Edge The CFA provides us with assumption edges in order to
model control flow paradigms like conditionals or loops. Each of them comes
with an assumption expression ϵ that functions as a constraint for the potential
successor(s). We evaluate ϵ according to Σ and conjugate it to the pure formula
part of the successor’s state. Finally, the pure formula Π∧C is checked whether it
is satisfied or not. Concerning the latter, there is no successor to be reached and
the termination is ensured. For each case, the corresponding rule is provided.

Σ |= ϵ ⇓v C Π ∧ C is SAT
{Π ∧ Σ} ϵ {Π ∧ C ∧ Σ} Assume+

Σ |= ϵ ⇓v C Π ∧ C is not SAT
{Π ∧ Σ} ϵ {⊤} Assume−

Function Call Edge A function that is defined inside the executed program
itself is modeled by the function call edge. The edge describes the function
entry node. Here, its parameters and space for a potential return value are
allocated according to the function type. In this respect, SymLoc() provides
us the corresponding symbolic locations. We write SymLoc(f) to address the
location reserved for the return value and SymLoc(fn) for the n-th parameter,
respectively. Therewith, we formalize the memory segment of a void function f

with n parameters as

ΣP (f, {ϵ0, ..., ϵn−1}) :=⋆n−1
i=0 (SymLoc(fi) 7→ F 0

i , ..., F
sizeof(ϵi)−1
i ))

with Fi being the value of each parameter: Σ |= ϵi ⇓v Fi. In case of a function
with a return value, ΣR() defines its reserved memory:

ΣR(f) := SymLoc(f) 7→ −0, ...,−sizeof(f)−1

Taken together we are able to define the semantic rules for a function call edge.

type(f) = void
{Π ∧ Σ} f(ϵ0, ..., ϵn) {Π ∧ Σ ∗ ΣP (f, {ϵ0, ..., ϵn})}

FunCallvoid

Σf = ΣP (f, {ϵ0, ..., ϵn}) ∗ ΣR(f) type(f) ̸= void
{Π ∧ Σ} f(ϵ0, ..., ϵn) {Π ∧ Σ ∗ Σf}

FunCall
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The rules differ merely in the function’s return type. If a return value is present,
its associated memory segment is conjugated using the spatial conjunction illus-
trated by the second rule FunCall. Further, each parameter expression might
cause an invalid memory access:

∃ϵ ∈ {ϵ0, ..., ϵn}.(Σ |= ϵ ⇓v nil)

{Π ∧ Σ} f(ϵ0, ..., ϵn) {⊥R} FunCallInv

Return Statement Edge The return statement edge models the assignment
of the computed return value to the previously allocated return variable space.
In case that the function f has no return value nothing has to be done.

type(f) = void
{Π ∧ Σ} returnf {Π ∧ Σ} Returnvoid

Otherwise, the passed expression has to be evaluated and assigned to the corre-
sponding location.

E = SymLoc(f) Σ |= ϵ ⇓v F type(f) ̸= void n = sizeof(f)

{Π ∧ Σ ∗ E 7→ −0, ...,−n−1} returnf ϵ {Π ∧ Σ ∗ E 7→ F 0, ..., Fn−1 Return

Function Return Edge As a counterpart to the function entry node, the
function return edge models the exit node. Here, the previously allocated mem-
ory space for the parameters and the return value has to be released. We define
the following rules coping with the described behavior:

type(f) = void
{Π ∧ Σ ∗ ΣP (f, {x0, ..., xn})} f(x0, ..., xn) {Π ∧ Σ} FunRetvoid

type(f) ̸= void
{Π ∧ Σ ∗ ΣP (f, {x0, ..., xn}) ∗ ΣR(f)} f(x0, ..., xn) {Π ∧ Σ}

FunRet

As a special case, all memory that was allocated due to alloca() has to be
disposed as well. We give further insights to this procedure in the scope of
chapter 5.

Variable Scope For each edge, the CFA provides a set of variables, which
go out of scope for the next successor. Our analysis makes use of this feature
to accomplish an efficient way to determine memory leakage: Only the part
of memory that was addressed by the released variables has to be examined.
Thereby, a memory leak occurs when the only pointer to a memory cell allocated
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on Σh is lost. We formalize this characteristic by defining a function reachable

reachable(Σs ∗ Σh, E) := Σs |= Allocated(E)

∨ (∃F,G.(F 7→ G ∧ E = G ∧ reachable(Σs ∗ Σh, F )))

saying that a memory cell at address E is reachable, if it is either allocated on
the non-dynamic part of the heap Σs, or if there exists an alias G. In case of
the latter, the cell at address F containing the value G is recursively checked for
reachability.

As the above definition might lead to endless recursion in case of a cyclic list
where chunks of memory are referencing each other, one has to remember those
locations that have already been processed. For the sake of completeness, an
alternative formalization is stated in the appendix that copes with this criterion
(see A.1).

If now a variable goes out of scope and thus has to be removed from memory,
only the effected heap cells are analyzed according to potential memory leaks.
Thus, we define the function Leak() dependent on the value of the variable that
went out of scope.

Leak(Σs ∗ Σh, E) := Σh |= Allocated(E) ∧ ¬reachable(Σs ∗ Σh, E)

Therewith, a memory leak occurs when the value E is the address of a memory
cell in Σh that is furthermore not reachable anymore. To bring both formulae
together, we provide semantic rules that are applied for any edge with variables
that go out of scope for the successors.

Σ |= x ⇓l E

Σ |= x ⇓v F

n = sizeof(x)∧n−1
i=0 Leak(Σ, F i) = false

{Π ∧ Σ ∗ E 7→ F 0, ...Fn−1} oos(x) {Π ∧ Σ} OutOfScope

Σ |= x ⇓l E

Σ |= x ⇓v F

n = sizeof(x)∧n−1
i=0 Leak(Σ, F i) = true

{Π ∧ Σ ∗ E 7→ F 0, ...Fn−1} oos(x) {⊥L} OutOfScopeLeak

We have introduced the operational semantics that cope with the different
types of edges provided by the CFA. In order to achieve a pointer analysis, the
discussed transfer relation and abstract domain have to be implemented as part
of an independent CPA. We illuminate this procedure in the next chapter.
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5 Implementation

The theory part of this thesis abstracts from several details in order to bring
out the most important aspects of the approach. However, a concrete implemen-
tation can only be achieved by a precise specification. In this spirit, we now
give insights to the used technologies and further discuss the construction of the
SL-CPA.

Figure 5.1: CPA structure

The whole implementation is written in Java and constitutes a distinct CPA
implementation of the CPAchecker framework. Thereby, the actual pointer
analysis is a composition of our SL-CPA and the Location CPA (see figure 5.1).
The latter provides the meaningful transfer edges e

g
e′ through a syntactic

reachability analysis for all control-flow edges of the CFA. The operational
semantics are then applied by the SL transfer relation for each transfer given
by the Location CPA.

5.1 Symbolic Heap Formula

Figure 4.1 has introduced the grammar of symbolic heap formulae. With the
help of JavaSMT, we construct a formula of this grammar that suffices the SMT-
LIB standard format. This further requires each formula to be strongly typed
in respect to locations and values. Since we designed the memory model to
be of the precision of bytes, bit-vectors are used for both. Thereby, locations
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Σs : LinkedHashMap⟨BVFormula → BVFormula⟩
Σh : LinkedHashMap⟨BVFormula → BVFormula⟩
Π : BooleanFormula

SegmentSizes : Map⟨BVFormula → Int⟩
Allocas : Map⟨String → Set⟨BVFormula⟩⟩

SSA-Indices : SSAMap
Properties : Set⟨String⟩

Figure 5.2: The SL state

are bit-vectors of length eight times sizeof(*void), respectively sizeof(char)
for values. At this point, we refer to the functions SymLoc() and SymV al()

introduced in the scope of the operational semantics of 4.2.4. Symbolic locations
or values returned by SymLoc() respectively SymV al() are bit-vector variables
with unique names including the function scope and SSA-index.

5.2 SL State

Each element of the abstract domain is represented by a SL state shown in
figure 5.2. The SL state encapsulates two maps of type LinkedHashMap which
represent the spatial part of the symbolic heap Σs ∗Σh. The persistent insertion
order of the maps enables us to resolve consecutive memory segments more
efficiently. The pure part of a formula represents the conjugation of constraints
as BooleanFormula. In contrast to the spatial part, Π is already a formula
because a predicate constraint once conjugated to Π will never be removed for
a successor.

Besides, a SL state tracks the size of all memory segments. In this respect, the
SL state provides a map SegmentSizes between the start address of a segment
and its associated size. The map is updated whenever a segment is (de)allocated
due to a variable declaration or a dynamic memory allocation. With this, we
are able to dispose allocations caused by free(). The function SegmentSizes()

stands in direct relation to this implementation detail. Further, as the map only
contains the start address of each segment, invalid frees are also detected.

In terms of allocation, the analysis also copes with the function alloca. In
this special case, the allocated memory is only available in the function scope
where alloca was called. Therefor, the SL state includes Allocas, which maps
a function to the start addresses of all memory segments allocated by alloca.
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Since all memory - according to the C standard - is automatically released when
the function scope is left, our transfer relation implements the same as part of
the function return edge.

We previously assumed, that a program has exactly one declaration for each
variable in order to achieve static typing. However, there are cases of local decla-
rations (cf. example program 1.1a, line 4) that make a more specific treatment
necessary. For this reason, the SL state has a SSAMap, which is updated whenever
a variable is declared or assigned. Respectively, each symbolic location returned
by SymLoc() is clearly related to a variable.

Last but not least, the SL state includes the memory safety properties that
have been offended by the control flow edge between the state and its predecessor.
In this fashion, the set Properties is utilized to report the result of the analysis.

5.3 Solver

The constructed formulae eventually have to be analyzed by a solver. In this
concern, JavaSMT provides with CVC4 [19] a SMT solver that is additionally
capable of SL theory without quantifiers. Furthermore, CVC4 supports bit-
vectors and has also participated in the SL-COMP [21].

Allocation Check Whenever a chunk of memory is accessed, the correspond-
ing location has to be checked for allocation. As the term Σ |= Allocated(E) im-
plies a semantic check for E, a syntactical lookup alone is not sufficient. Therefor,
we need CVC4 in order to prove the allocation of E.

In this concern, the spatial part of the associated state is converted to a
SL-formula by the recipe of algorithm 3. For reasons of efficiency, first a trivial

Algorithm 3: Allocation check in terms of Σ |= Allocated(E)

Input: a symbolic location E as BVFormula and a Map M describing a
symbolic heap

Output: true if allocated, false otherwise
if M.containsKey(E) then

return true;
end
Σ = emp;
foreach (key, value) ∈ M do

Σ = Σ ∗ (key 7→ value);
end
return ¬SAT (Σ ∗ E 7→ −);
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syntactic check is performed. If no match is found, the map is converted to a
symbolic heap formula. Points-to predicates for all key-value pairs of the map
are created and conjugated with each other using the spatial conjunction ∗. We
point out, that it is not always necessary to consider Σs ∗ Σh as a whole, since
for instance variables do not occur on Σh, whereas memory segments that shall
be freed must not to be found on Σs either. After the formula is constructed,
another points-to predicate with the location E pointing to some free variable
is conjugated. The resulting symbolic heap is then passed to the solver. By
the definition of ∗, the satisfiability of the formula implies that E cannot be
allocated yet. Hence, the negation of the solver call result is returned. However,
a drawback of this implementation is that the antiframe is not explicitly deter-
mined. In the case of E being an alias, meaning a semantic but not a syntactic
equivalent to this particular cell, one cannot retrieve the matching map entry.

The function Deref() - defined in section 4.2.3 - targets this issue. In respect
to that, we now provide the corresponding algorithm 4 as part of our implementa-
tion. The algorithm is slightly different to the former one as it performs a solver
call for each memory cell in order to determine the allocated cell. In this way,
it is possible to retrieve the antiframe as each heaplet is independently checked
whether it leads to an inconsistent symbolic heap or not. Nevertheless, this pro-
cedure leads to a drastic increase of solver calls. Further, as the SL-formula of
key 7→ value∗E 7→ − is semantically the same compared to a trivial equivalence
check key = E, another algorithm is presented.

In order to perform an equivalence check over a set of locations, only a SMT
solver is necessary. As algorithm 5 illustrates, even multiple solver calls can be

Algorithm 4: Dereferencing a memory location Deref(Σ, E)

Input: an expression E as BVFormula and a Map M describing a
symbolic heap

Output: a pair of BVFormula denoting the location and value of the
cell at address E if allocated, nil otherwise

if M.containsKey(E) then
return M.get(E);

end
foreach (key, value) ∈ M do

if ¬SAT (key 7→ value ∗ E 7→ −) then
return (key, value);

end
end
return nil;
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Algorithm 5: Dereferencing with SMT solver DerefModelSAT (Σ, E)

Input: an expression E as BVFormula and a Map M describing a
symbolic heap

Output: a pair of BVFormula denoting the location and value of the
cell at address E if allocated, nil otherwise

if M.containsKey(E) then
return M.get(E);

end
// Assume auxiliary variable auxk for each k
formula =

∧
k∈M.keys() k = E ⇐⇒ auxk;

if SAT (formula) then
model = getModel(formula);
foreach (auxk, value) ∈ model do

if value then
return k;

end
end

end
return nil;

avoided by introducing boolean auxiliary variables each related to an unique key.
Afterwards, a model is generated and the key which is linked to the auxiliary
variable that evaluated to true is returned.

Once the location is determined, the corresponding value is computed regard-
ing the segment size used in algorithm 6. Here, the persistent insertion order of
the entries provided by the LinkedHashMap is crucial for the correctness of the
algorithm. Therewith, expensive solver calls are saved under the premise that
consecutive memory cells of the same segment are inserted in the map accord-
ingly.

Feasibility Check In the case of an assumption edge, the transfer relation
provides a successor, only if the corresponding assumption leads to a satisfiable
pure part of the symbolic heap (see 4.2.5). Though, this requires another solver
call in order to ensure the termination of the analysis.

In this chapter, we worked out how the abstract domain and transfer relation
are embedded into a concrete CPA implementation of the CPAchecker frame-
work. Thereby, the allocation check is emphasized to be the crucial part of the
analysis. The algorithms 4 and 5 introduced procedures which cope with these
allocation checks by additionally providing the values of the cells. However, the
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stated algorithms either lead to an increased amount of solver calls or a poten-
tially complex model generation. Both might lead to significant performance
limitations. We want to illuminate this conjecture in the evaluation part of this
thesis.

Algorithm 6: Dereferencing a memory segment Σ[E]n

Input: a symbolic location E as BVFormula, a LinkedHashMap M
describing a symbolic heap and a segment size n

Output: a BVFormula denoting the value of the segment starting at
address E if allocated, nil otherwise

// Get start address of the segment.
(loc, val) := Deref(M,E);
if (loc, val) == nil then

return nil;
end
// Construct value.
found := false;
i = n;
res = nil;
foreach (key, value) ∈ M do

if i==0 then
break;

end
found = found ∨ key == loc;
if found then

res = res :: value; // Little-endian
i = i− 1;

end
end
return res;
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6 Evaluation

In order to achieve reasonable information, we compared the analysis to an al-
ready established procedure based on SMGs. The corresponding implementation
as part of the CPAchecker framework constitutes the SMG-CPA. We evalu-
ated our approach using a small benchmark set memsafety-ext3. It is part
of the SV-Benchmarks1 collection in the version as included in the SV-COMP
2020 [3]. The benchmark set comprises 18 distinct tasks all of them matching
the category MemorySafety of the SV-COMP 2020. The following features of C
were covered among others: pointer arithmetic with aliasing; dynamic allocation
using malloc(), realloc() and alloca(); function calls and variable scope.

6.1 Execution Environment

The tasks were executed on machines with Intel Xeon E3-1230 v5 CPUs,3.40 GHz
CPU frequency, and 33 GB RAM. The execution time was limited to 90 seconds
with the use of 15GB RAM and two CPU cores. We utilized BenchExec [6]
to measure the consumed memory and the elapsed time. Further, the number
of solver calls and the overall solver call time was determined. Thereby, all
solver calls were executed using CVC4 and the discussed data is solely based on
successfully terminated tasks with the correct property result. Two exceptional
cases denote tasks 16 and 17 that lead to segmentation faults caused by a solver
call related to algorithm SMT_ModelSAT. Besides, we renounced the calculation
of mean values of multiple runs because of clear differences between all algorithms.
The experiments refer to the CPA implementations of the sl-integration0
branch as part of the CPAchecker subversion repository2. The revision is
r34851 and any of the used configuration files according to BenchExec and
the CPA can be found in the appendix (see A.2 and A.3).

1 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20/c/memsafety-ext3
2 https://svn.sosy-lab.org/software/cpachecker/branches/sl-integration0/
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6.1. Execution Environment

(a) Elapsed CPU time per task

(b) Used memory per task

(c) Comparison of SLCPA implementations

Figure 6.1: The elapsed CPU time (6.1a) and used memory (6.1b) as well as
the combination of both in 6.1c
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6.2 Results

The figures of 6.1a and 6.1b illustrate the performance of the SMG-CPA com-
pared to the different algorithms of the SL-CPA. For each algorithm discussed
in 5 we provide an evaluation with the setup described above: the red pillars
(SL) refer to algorithm 4 based on SL; yellow refers to the same algorithm except
that trivial equivalence checks are performed (SMT); the green pillars represent
algorithm 5 as an optimization of the latter by reducing the amount of solver
calls (SMT_ModelSAT).

As one can see, the SMG-CPA has a low volatility across the entire test set,
whereas the SL-CPA has a CPU time and memory usage increase in a couple
of tasks across all algorithms. Especially tasks 9 and 10 are more time- and
memory-consuming. Although the SMT-based algorithms are slower and less
memory efficient than the SMG approach, they still are significantly better than
the SL algorithm. Besides, the optimization by SMT_ModelSAT is reflected in
the associated memory consumption, which is much lower compared to the other
two SL-CPA implementations.

Figure 6.1c further compares the SL-CPA algorithms by plotting the amount
of solver calls on the x-axis and the efficiency - modeled as the product of con-
sumed memory and elapsed CPU time - on the y-axis. Again, the advantage
of the SMT_ModelSAT algorithm is illustrated. But also SMT performs bet-
ter than SL, even though more solver calls are executed. Although one might
challenge the equal weighting of memory and time consumption, the example
nonetheless retains its meaning.

Figure 6.2: Assignment of
CPU time to solvertime (red)
and other computations (green)

According to the time elapsed during
solver calls, figure 6.2 gives more insights.
It clarifies that the higher execution time of
the SL algorithm is mainly caused by solver
calculations. Furthermore, the decrease of
solver calls related to the SMT_ModelSAT
algorithm does not lead to a significant in-
crease of execution time, since it is compen-
sated by a reduced ∆-time.

The evaluation has shown the advan-
tages and drawbacks of the different algo-
rithms. It clearly exposed the lack of performance of SL for alienated procedures
such as equivalence checks that SMT solvers are much more suitable for. This
strongly motivates the extension of the SL solver interface oriented towards prob-
lems such as allocation checks and dereferencing.
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7 Discussion

On the one hand, the evaluation has demonstrated the successful application
of our approach in practice. Though, on the other hand, it has simultaneously
revealed its limitations. In this concern, we want to highlight the gained knowl-
edge and clarify the important aspects that have emerged in the scope of this
thesis.

We applied a pointer analysis based on symbolic execution in order to track
a program’s state in terms of memory manipulation. Therewith, we successfully
implemented a CPA into the CPAchecker framework that uses a SL solver
interface provided by JavaSMT.

A fundamental part of the approach constitutes the memory model. The
abstraction level of symbolic locations mapping to symbolic values allows us to
represent the side effects of memory-involved operations. The use of bit-vectors
for all parts of the model enables a generic application. At the same time, com-
posite types such as structures and also more complex data structures including
lists are supported. Furthermore, the model can either be directly transferred
into SL, or alternatively, particular parts can be analyzed by SMT solvers with-
out the awareness of a spatial context. In this respect, the combination of SMT
and SL has proven to yield high potential (e.g. Assumption Edge).

However, there are several issues that have been encountered by our approach.
These and the corresponding motivations are stated in the following:

Quantification and Abduction The main issue denotes the missing tool
addressing allocation check and dereferencing. In this concern, the resolution of
symbolic locations has to be improved by the means of a suitable solver interface.
This can be achieved by implementing a SL theorem prover that is aware of
quantified symbolic heaps and abduction techniques in order to provide results
for F and G according to an extended allocation check

Σ |= Allocated(E) ⇐⇒ Σ |= ∃Σ′, F,G.(E = F ∧ Σ = Σ′ ∗ F 7→ G).
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Furthermore, the support of quantification allows a treatment of nondeterminis-
tic values at compile time. This is of substantial importance for dynamic memory
allocation or external function declarations among others.

Scalability Another important aspect denotes the scalability. Thereby, one of
the key strength of SL is the spatial division of memory provided by the frame
rule:

{P}C{Q}
{P ∗ F}C{Q ∗ F}

By observing only the part of memory that is affected by a program, an analysis
can be subdivided into smaller tasks. Nevertheless, this procedures requires
the frame inference of F which is currently not supported by the used solver
interface.

Segment Predicate Our approach abstracts the memory as a collection of
byte-sequences. Thereby, we conjugate multiple heaplets forming a consecutive
data segment according to the segment size. In this spirit, an additional SL
predicate targeting this procedure would simplify the treatment of types and
further increase readability.

CPA Composition The CPAchecker framework allows a composition of
multiple CPAs for the same analysis. By this, features of the analysis can be
distributed. One example targeting this consideration constitutes the feasibility
check for assumption edges. Currently, a potentially expensive solver call is
used to check whether a pure formula is satisfiable or not. With the use of a
ValueAnalysisCPA, such a call might not be necessary in most cases and thus
further performance increase can be achieved.

This thesis has demonstrated that SL is indeed a powerful theory in order
to assess the behavior of programs according to memory. Especially in terms of
scalability, SL has high potential in the area of static program analysis. And
combined with a SMT solver the performance can be increased once more. Nev-
ertheless, its practical application depends a lot on the features provided by the
underlying solver interface.
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Appendix A

A.1 Reachability check with cycles

reachable(Σ+ ∗ Σdyn, R,E) := Σ+ |= Allocated(E)

∨ (∄F ∈ R.(E = F )

∧ ∃F,G.(F 7→ G ∧ E = G

∧ reachable(Σ+ ∗ Σdyn, R ∪ {G}, F )))

Leak(Σ, E) := ¬reachable(Σ, {}, E)

A.2 SLCPA Configuration - sl.properties

# Separation Logic CPA
cpa = cpa.arg.ARGCPA
ARGCPA.cpa = cpa.composite.CompositeCPA
CompositeCPA.cpas = cpa.location.LocationCPA, cpa.sl.SLCPA
solver.solver = CVC4
specification = specification/memorysafety.spc
memorysafety.config = sl.properties

# SL
cpa.sl.allocationCheckProcedure = SL

# PathFormulaManager
cpa.predicate.ignoreIrrelevantVariables = false
cpa.predicate.handlePointerAliasing = false
cpa.predicate.handleSL = true
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A.3. BenchExec - integration-sl.xml

A.3 BenchExec - integration-sl.xml

1 <?xml version=”1.0”?>
2 <!DOCTYPE benchmark PUBLIC
3 ”+//IDN sosy−lab . org//DTD BenchExec benchmark 1.0//EN”
4 ”http://www. sosy−lab . org/benchexec/benchmark−1.0.dtd”>
5 <benchmark tool=”cpachecker”
6 timelimit=”90s”
7 hardtimelimit=”120 s”
8 memlimit=”15 GB”
9 cpuCores=”2”>

10 <rundefinition/>
11 <option name=”−stats ”/>
12 <tasks name=”MemSafety−ext3”>
13 <inc ludes f i l e>
14 . . / programs/benchmarks/MemSafety−SL. set
15 </ inc ludes f i l e>
16 <propertyf i le>
17 . . / programs/benchmarks/properties/valid−memsafety . prp
18 </propertyf i le>
19 <option name=”−s l ”/>
20 <!−− One of the following procedures: SL, SMT, SMT_MODELSAT−−>
21 <option name=”−setprop”>cpa . s l . allocationCheckProcedure=SL</option>
22 </tasks>
23 <columns>
24 <column t i t l e=”solvertime”>solvertime</column>
25 <column t i t l e=” so lverca l l s ”>so lverca l l s</column>
26 </columns>
27 </benchmark>
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