
Master Thesis

in Computer Science

New Approaches and Visualization for
Verification Coverage

Maximilian Hailer

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Dr. Philipp Wendler
Submission Date: 11.06.2022

Abstract

Formal verification can help prove the correctness of software systems. Mul-
tiple results are possible when verifying software with typical model checkers:
true, false, or unknown. While comprehensive statistics exist for completed
analysis, cases like timeout or out of memory provide little information about
the fulfillment of the specified properties.

Therefore, we propose and implement new software-verification coverage
measures to help understand how much of the code is already considered by
the verifier. In contrast to the well-known test coverage, verification coverage
does not have a common definition yet. Consequently, we try to clarify this
with a literature overview to discuss the different interpretations depending
on the research area. Afterward, we define verification coverage as a measure
for the verifier to depict the current progress regarding the coverage of the
program. As a second scenario we could have the case that we want to verify a
program, but we use an inappropriate specification. Consequently, the result
is not meaningful, since the verifier did not check the properties we actually
wanted to verify. Having a proper coverage measure can help detecting cases
like this by indicating parts of the program which were not covered due to the
specification. What coverage in this context means can depend on the used
verification analysis and will be discussed within this thesis.

Different visualizations augment theses approaches by granting the user an
alternative view of the coverage of the program. This can be accomplished by
coloring or using heat maps for locations of a control flow automaton (CFA)
or source code lines. Furthermore, it is also interesting to know how much
the verification tool has covered during the analysis at a certain time to de-
termine the overall progress. Therefore we suggest an approach for visualizing
the development of the verification coverage over time. All mentioned ideas
packaged together should enhance the usability of verification tools so that
users can determine the progress of the analysis on unknown cases and on the
other hand can check if the used specification lead to a high coverage if the
analysis finished without problems.

Acknowledgments

My special thanks go to my mentor Dr. Philipp Wendler, who gave me great
and fast feedback on my drafts. Our weekly discussions resulting in construc-
tive advice helped me improve and rethink concepts. I also want to thank my
supervisor Prof. Dr. Dirk Beyer, for giving me the opportunity to write this
thesis. Beyond that, many thanks go to my mother, who always believed in
me and helped me to have the time to focus on my work.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Formal Verification . 2
1.3 Comparison to Software Testing 3
1.4 Contribution . 3

2 Literature Overview 5
2.1 Verification Coverage in Hardware-Design Verification 5

2.1.1 Verification Coverage in Formal Method-based Verification 7
2.1.2 Verification Coverage in Simulation-based Verification . . 7

2.2 Verification Coverage in Software Model Checking 9
2.2.1 Completeness of Properties 10
2.2.2 Completeness of Verification Procedure 10

2.3 Classification of this Thesis . 11

3 Background 12
3.1 Abstract Measure Definition . 12

3.1.1 σ-Algebra . 12
3.1.2 Measure Properties . 12
3.1.3 Normalization . 13
3.1.4 Verification Coverage Measure 13
3.1.5 Growing Coverage Data 13

3.2 Control Flow Automaton (CFA) 14
3.3 Configurable Program Analysis 15

vi

3.3.1 CPA . 15
3.3.2 Abstract Domain . 15
3.3.3 Transfer Relation Operator 15
3.3.4 Merge Operator . 15
3.3.5 Stop Operator . 16
3.3.6 CPA Algorithm . 16
3.3.7 Abstract Reachability Graph (ARG) 17
3.3.8 Predicate Abstraction 17

3.3.8.1 CEGAR . 17
3.3.8.2 Lazy Abstraction 17

3.4 CPAchecker . 18
3.4.1 Predicate CPA . 18
3.4.2 HTML Report . 18

4 Verification-Coverage Measures 20
4.1 Categorization of Verification Coverage 20

4.1.1 Application Purposes . 20
4.1.2 Output Domains . 21

4.1.2.1 Nominal . 21
4.1.2.2 Ordinal . 21
4.1.2.3 Interval . 22
4.1.2.4 Ratio . 22

4.1.3 Input Domains . 22
4.1.4 Analysis Dependencies 23

4.1.4.1 Verification Coverage with Predicate Analysis . 23
4.2 Approaches for Verification Coverage 24

4.2.1 Completeness of Properties 24
4.2.1.1 Visited-Lines Coverage Measure 24
4.2.1.2 Visited-Variables Coverage Measure 25
4.2.1.3 Predicate-Abstraction-Variables Coverage Mea-

sure . 26
4.2.2 Completeness of Verification Procedure 27

4.2.2.1 Predicates-Considered-Locations Coverage Mea-
sure . 27

4.2.2.2 Predicates-Relevant-Variables Coverage Measure 28
4.3 Time-Dependent Coverage (TDC) 29

4.3.1 Basic Idea . 29
4.3.2 Implementation . 30
4.3.3 Requirements . 30
4.3.4 Visualization . 30

vii

5 Verification Coverage Visualization 31
5.1 Source Code Lines Visualization 31

5.1.1 Visited-Lines Heat-Map Coloring 32
5.1.1.1 Improvement 32
5.1.1.2 Discussion . 33

5.2 CFA Visualization . 33
5.2.1 Visited-Locations Heat-Map Coloring 35

5.2.1.1 Idea . 35
5.2.1.2 Discussion . 35

5.2.2 Considered-Locations Heat-Map Coloring 36
5.2.2.1 Idea . 36
5.2.2.2 Discussion . 38

5.2.3 Predicate-Considered-Locations Coloring 39
5.2.3.1 Idea . 39
5.2.3.2 Discussion . 39

5.3 Program Variable Visualization 41
5.3.1 Visited-Variables Coloring 41

5.3.1.1 Idea . 41
5.3.1.2 Discussion . 41

5.3.2 Predicate-Abstraction-Variables Coloring 43
5.3.2.1 Idea . 43
5.3.2.2 Discussion . 43

6 Implementation 45
6.1 Verification Measures . 45

6.1.1 Coverage Measure Implementations 47
6.1.1.1 LocationCoverageMeasure 47
6.1.1.2 LineCoverageMeasure 47
6.1.1.3 MultiLineCoverageMeasure 47
6.1.1.4 VariableCoverageMeasure 47

6.2 Coverage Data Collectors . 48
6.2.1 Coverage Collector Implementations 48

6.2.1.1 AnalysisIndependentCoverageCollector 48
6.2.1.2 PredicateAnalysisCoverageCollector 49
6.2.1.3 ReachedSetCoverageCollector 49
6.2.1.4 CounterexampleCoverageCollector 49

6.2.2 Adding New Measures 49
6.3 Coverage CPAs . 50

6.3.1 Analysis-Independent . 50
6.3.2 Predicate Analysis . 50

6.4 Time-Dependent Coverage Graph (TDCG) 51

viii

6.5 Statistics Report . 51
6.6 Visualization . 51

7 Evaluation 54
7.1 Setup . 54
7.2 Coverage Measure Overview . 56
7.3 Program-Comparison of Measures 57
7.4 Analysis-Comparison of Measures 60
7.5 Comparison of TDCGs . 60

7.5.1 TDCGs for test locks 7.c 61
7.5.2 TDCGs for s3 srvr 1b.cil.c 62
7.5.3 TDCGs for nested 1b.c 62
7.5.4 Critical Reflection . 63

7.6 Performance Costs . 64
7.6.1 Results . 65

8 Conclusion and Future Work 66

A Implementations 68
A.1 Bubble Sort C-Program . 68
A.2 C-Program for Predicate-Considered-Locations Coloring Com-

parison . 70

Bibliography 71

ix

List of Figures

2.1 Equivalence Checking and Property Checking 6
2.2 Flow of Simulation-Based Verification 8
2.3 Flow of Coverage-Driven Verification 8

3.1 CFA for C-Code Snippet . 14
3.2 CFA Tab in Report.html . 19
3.3 Source Tab in Report.html . 19

5.1 CFA and Source Code Visualizations 34
5.2 CFA with Considered-Locations Heat-Map Coloring 37
5.3 Predicate-Considered-Location Coloring Comparison 40
5.4 Visited-Variables Coloring Comparison 42
5.5 Variables Coloring Comparison 44

6.1 Class Diagram of the Measures Package 46
6.2 Class Diagram of the Collectors Package 48
6.3 TDG Tab Screenshot of the Report.html 52
6.4 CFA Tab Screenshot of the Report.html 53
6.5 Source Tab Screenshot of the Report.html 53

7.1 Predicate-Considered Locations Coverage Measure Issue 58
7.2 TDCG Comparison for test . 61
7.3 TDCG Comparison for s3 s . 62
7.4 TDCG Comparison for nest . 63

x

List of Tables

7.1 Overview of Evaluation Programs 56
7.2 Overview of Verification Coverage Measures 57
7.3 Coverage Values for Programs 58
7.4 Coverage Values for Analyses 60

xi

1
Introduction

1.1 Motivation

Nowadays, our society relies heavily on software. It can help simplifying and
automating processes. This often leads to a more efficient workflow and opens
use cases that would not be considered without software. We have a good
chance to meet systems that rely on software in our everyday life. Sometimes
they are in the background and assist the demanded process. This could
be the case for software which coordinates trains or deals with withdrawals
from ATMs. However, there are also more obvious use cases like email client
programs on computers to send messages or smartphone applications to make
video calls or search the web.

When dealing with software, it is crucial to keep in mind that there is a
particular possibility of failure in using a software system. Software failure does
not mean wrong user inputs, which the program does not accept. Instead, we
specify failure here as unexpected behavior of the program, meaning that the
program is not working according to its specifications. This could typically
be a program crash. Those incidents most often have one of two reasons.
One is the case when we have wrongly written software code, so-called bugs.
The second case is due to hardware problems. Some can be nondeterministic,
like random bitflip occurrences. Some others are caused by a bad hardware
architecture or internal component faults, which directly affect the software
and lead to unexpected behavior. Since the second reason is focused on a
hardware-specific research field, we want to limit our scope to software bugs.

For non-safety-critical systems, having bugs in software can cause some

1

annoyance for the user, since they make it more challenging to use the sys-
tem as designed. Usually, they get reported and fixed afterward via updates.
Nevertheless, when dealing with safety-critical systems, like software for air-
planes and rockets or self-driving cars, it is absolutely important to prevent
the occurrence of critical bugs. Otherwise, we could have outcomes like death,
injury, and severe damage to properties or the environment. The consequence
of this is that we should know before deploying productive systems that the
software is safe.

1.2 Formal Verification

To accomplish safety checks, we need a specification to know when we con-
sider software safe. When we have one, we can check if the software fulfills
this specification. There are typically two main approaches for this process:
testing and formal verification. While testing focuses on checking the pro-
gram for specific use cases, formal verification has the aspiration of verifying
all possible program paths. This comes with the cost of high demand regard-
ing computational power since checking all program paths can lead to a state
explosion with an exponential runtime or memory complexity. This opens a
research field to find efficient algorithms which have better performance in
checking the whole program than just naive iterating through every possible
path. Ideally, when the analysis is done, we have one of two different out-
comes; either the program fulfills the given specification, or we have found a
violation. When something during the analysis goes wrong, there is a third
possible result, which we call unknown. Reasons for this can be insufficient
memory, taking too much compute-time, or occurrences of bugs and errors
within the analysis software itself. The problem with an unfinished analysis
is that we are not sure about fulfilling the given specifications. Therefore we
cannot approve the program safe. The point here is that an unknown case does
not help the verification engineer with its work. Consequently, the software
developers of the verification analysis tool need to optimize their verifier based
on those unknown cases to lead to correct results. But even if the outcome is
not unknown we need to assure that our used specification is correctly defined.
If we want to verify that our program does not reach certain parts of code, but
our specification does not consider all of these parts as property violation our
verifier will not detect it. This would lead to correct true result for the given
specification, but for our actual problem the verdict would be nevertheless in-
correct. Checking for a right a specification is not a trivial problem, since it
depends on the user what they actually assume as correct code.

Taking the relevance and importance of efficient and reliable software into

2

account and considering that verifying software is compute-intensive and can
lead to unknown results, it would be helpful to have as much detailed infor-
mation about the uncompleted analysis as possible. Similar approaches like
conditional model checking [4] exists, but in this thesis we want to focus on a
measure or visualization which describes the coverage of the program. In addi-
tion, it would be beneficial if we could check how much the used specification
affected the verifier in analyzing the program. Hence, we could then determine
how appropriate the used specification for our problem was. Therefore, we pro-
pose in this thesis multiple verification coverage measures and visualizations
to deliver more information helping to compensate the mentioned issues.

1.3 Comparison to Software Testing

In contrast to software testing, no common verification coverage definition
exists. We will see within the literature overview chapter that this kind of
coverage depends on the actual application environment. When working with
test coverage, we actually run the program and look at lines that were executed
by tests or not. When we want to adapt this idea to verification coverage
we need to consider the issue that we are actually not running the program;
instead we analyze it depending on our given specification. Therefore we need
a replacement of the criteria “line x executed”. The obvious answer would
be we consider the alternative “line x analyzed”. Consequently, we then need
to answer the question what does “analyzed” mean in this context? There
is no definite answer to this question, wherefore we try to find suitable new
approaches to calculate the verification coverage.

1.4 Contribution

In this thesis, we elaborate on methods that should help the verification en-
gineer to better understand how much of the given program was already pro-
cessed and covered by the verifier. In the beginning we give a literature
overview about the current research regarding verification coverage. After-
ward, we clarify all needed background knowledge for the upcoming chapters.
We separate between our proposed ideas and the concrete implementation
procedure. Regarding the main topic of verification coverage, we focus our
approaches on the concept of completeness of properties and completeness of
verification procedure. Especially for the last concept we mainly work with
visualization techniques, since it should be better comprehensible for the veri-
fication engineer to interpret graphs and colorful pictures instead of raw num-
bers. This is due to the high architectural complexity of current verification

3

frameworks, where in contrast to just running a test suite, there are no reliable
dedicated progression numbers available.

We implement our work in the verification framework CPAchecker. There
already exists an approach of printing a GCOV-formatted verification coverage
file. It can be used to create an HTML report which shows the coverage per
line for the source code. This approach has the disadvantage that it is not
integrated within the default HTML report of CPAchecker and is limited to
the source code statements regarding the coverage visualization. Therefore
we implement our own visualization approaches in CPAchecker and enhance
the resulting Report.html so that the user automatically has access to the
graphics without the need to run extra commands. In addition, we do not
limit our scope on source code, instead we also consider further verification-
related structures to visualize. We also refactor and enhance the current code
regarding verification coverage in CPAchecker to allow, due to a more modular
design, a simple way to add further verification coverage measures. Those can
be then automatically visualized in the HTML report without the need of
implementing a dedicated visualization method.

In the end we evaluate our approaches on different verification analyses and
programs. We show the differences and discuss the advantages and disadvan-
tages of each proposed verification coverage idea.

4

2
Literature Overview

Verification coverage is a term in the scientific literature used in different re-
search areas. When trying to cluster all the contributions, two main application
fields result. First, hardware-design verification, and second, software model
checking. However, the concepts and ideas behind this topic are not strictly
separated from the mentioned application fields. Therefore we can say that
these clusters are not disjoint. In this thesis, we will focus our new approaches
on software verification frameworks like CPAchecker, which belongs to the
software model checking application area. Nevertheless, we will discuss in this
chapter both fields to give an overview about the current state of research in
the literature about verification coverage.

2.1 Verification Coverage in Hardware-Design

Verification

According to William K. Lam, “hardware design verification encompasses
many areas, such as functional verification, timing verification, layout veri-
fication, and electrical verification” [20]. The book of the mentioned source
is mainly about “functional verification” and refers to it as “design verifi-
cation”. We follow the convention of this book since the term “verification
coverage” is most commonly used in this area. On the other hand, Andrew
Piziali claims that “functional verification is demonstrating the intent of a de-
sign is preserved in its implementation” [22]. This means that the objective
is to bring the design intent, the specification, and the implementation into
coincidence. When considering the definition of William K. Lam this becomes

5

Figure 2.1: The basic principle of equivalence checking (left) and property
checking (right) [20].

clear in combination with the figure about the basic principle of design verifi-
cation (cf. Fig. 2.1). There are two approaches of design verification depicted
in Fig. 2.1. Property checking (right) has a design based on the given speci-
fications. Furthermore the design has to satisfy the specification expressions,
meaning that the verification engineer is doing a transformation from specifi-
cations to an implementation using properties deduced from the specifications.
This methodology is typically adapted in model checking [20].

When looking at equivalence checking (left figure), we see that the veri-
fication engineering team tries to build an alternative design with the same
specification from the design verification team and then checks for equiva-
lence. The methodology in this kind of verification typically has a test plan.
The book claims that since, in reality, it is infeasible to uncover all bugs by
verifying a set of specifications thoroughly, a measure of verification quality is
desirable to track the progress of the verification. Commonly used ones are
code coverage and functional coverage. Code coverage is defined similarly as
in software testing. It measures the percentage of code stimulated (tested),
whereas functional coverage is mainly used in hardware verification. Its use
case is to approximate the percentage of functionality verified [20].

In the following, we want to discuss more profoundly functional coverage.
Since this measure varies depending on the kind of verification, we look into
the two main categories of design verification: Simulation-based and formal
method-based verification. There are also hybrid forms called semi-formal
verification, which combine both positive aspects of each category: Exhaus-
tive regarding inspecting the state space like in formal verification and good
scalability and ease to use like in simulation-based verification.

6

2.1.1 Verification Coverage in Formal Method-based Ver-
ification

Formal-based verification uses mathematical methods to verify that a design
works correctly for all allowed inputs [19].

There are two types of verification techniques: reachability analysis and de-
ductive methods. The first technique includes approaches like model checkers.
This means a formal mathematical specification, such as temporal properties,
is needed to define which states of the program are allowed to be reachable and
which are not. The verifying tool tries to exhaust all possibilities to conclude:
Properties violated or not. As already described in the previous chapter, there
is also the option that the verifier does not come up with a conclusion, and
the result then would be unknown. As we will show in this thesis, a coverage
measure can help get more information when dealing with unknown results.
In the context of hardware verification, the model checking properties, which
are defined in temporal logic, describe parts of the circuit’s behavior. There
are approaches to estimate the functional coverage in bounded model check-
ing. An application case can be where a possible verification engineer wants
to know if the proven properties describe the complete functional behavior of
the circuit [13]. The goal of the coverage definition here is to automatically
detect scenarios where none of the properties specify the value of the consid-
ered output. The author describes a way to generate a coverage property for
each considered output to achieve this. The next step is to check if the cover-
age property holds. If true, then the output value is only determined by the
properties. In this scenario, a higher coverage means more coverage properties
were found.

2.1.2 Verification Coverage in Simulation-based Verifi-
cation

Simulation-based verification is the most frequently used technique for complex
designs. Whereas this approach is limited to a test bench, formal methods con-
sider a design exhaustively, but this comes with a cost of high computational
effort [24, 20].

The test bench consists of code that supports the operations of the design.
It is then possible to apply the so-called input stimuli, a kind of test vector,
to the test bench. As a result, we get an output which we can compare to
the reference output. In contrast to conventional testing, the input vector can
be generated during the simulation. Similarly, the reference output can be
generated in advance or on the fly [20]. Coverage in this approach plays an
important role. Since the coverage measure is directly involved in the stimulus

7

Figure 2.2: Flow of simulation-based verification [20].

Figure 2.3: Flow of coverage-driven verification [1].

generation, it is important to deduce the relevant information appropriately
during the simulation (cf. Fig. 2.2). The abstract definition here is how much
the design is stimulated and verified during simulation. A coverage tool can be
used to measure the code coverage or functional coverage to accomplish this.
While the first one is analogously defined as code coverage in software testing,
the latter is the percentage of exercised functionality. In addition to automati-
cally generating stimuli, the test designer can manually create additional tests
to increase the coverage potentially, or they can leave out tests that do not
increase coverage to minimize redundancy [20].

Based on simulation-based verification a subarea has evolved called coverage-
driven verification (CDV). This approach allows in addition to the automatic
stimuli generation, also the generation of effective tests to explore a system
under test (SUT) to achieve steadily higher coverage.

When we compare Fig. 2.3 to the one before, we can see that the coverage
metrics are now applied to the test generation directly instead of just to the
stimuli generation. This has as a consequence, that the coverage now influ-
ences the generation of the next tests. Automatically generating tests needs

8

much information. For that reason, we can see in Fig. 2.3 that the Cover-
age Collector depends on many other modules. The procedure applied to the
gathered information is called coverage closure. It aims to identify coverage
holes and create new tests to cover those [1]. The resulting feedback loop of
coverage analysis to test generation is called coverage-directed test generation
(CDG). In practice, CDG is a difficult challenge, wherefore there are research
attempts based on machine learning to accomplish this process [17].

There are also coverage measures defined on the hardware itself. They be-
long to the group of circuit coverage. The idea behind this group is to identify
the covered physical parts of the circuit [10]. Advantages are that realizing
the measuring process is usually straightforward, and also, the interpretation
of the result is often no problem. On the other hand, it is not easy to gen-
erate new tests based on this data for the simulation-based approach. Some
popular examples for circuit coverage measures are latch and toggle [15, 18].
A latch is covered if it is changing its value at least one time, whereas a tog-
gle is covered when it is changing at least twice, meaning that the bit of the
register is changed, for example, from value 0 to 1 and then back from 1 to 0
during simulation. All coverage measures before can be categorized into syn-
tactic coverage measures since they make use of specific formalism to describe
how much of a design is covered [10]. To close the spectrum of coverage cate-
gories in this section, we also need to mention the so-called semantic-coverage
measures. They require interaction with the user to measure the part of the
functionality of a design depending on the input. Commonly used ones are
assertion coverage, which measures the percentage of covered assertions. The
user defines an assertion as a condition that needs to hold during the simu-
lation. Some more advanced approaches would be mutation coverage, where
the user slightly changes (mutates) the design and checks if this leads to any
bugs. Here the coverage would be measured as the relation of failed tests to
all test runs, where we keep the same test and modify the design. This would
lead to multiple coverage values since each test is considered separately.

2.2 Verification Coverage in Software Model

Checking

Software model checking belongs to the group of formal verification. Therefore
there are some similarities to Chapter 2.1.1. In contrast to the application of
verification coverage within the hardware domain, we look in this chapter
specifically at software model checking. The main difference here is that we
do not look at the design of the hardware. This leads to alternative coverage
definitions discussed in the following sections.

9

2.2.1 Completeness of Properties

Discussing the completeness of properties is essential since even though model
checking is an exhaustive method, it is nevertheless possible that bugs can
occur. The verifier cannot detect erroneous behavior if it does not violate the
specification. Therefore we can only conclude that a program is safe when we
can assure that the formal definition of our specification is complete. Con-
sequently, talking about verification coverage also means measuring the com-
pleteness of our specification. An approach like mutation coverage can realize
this kind of coverage idea. It is defined as making changes to a system model
and subsequently checking whether a given property set can spot those mod-
ifications. There are two categories of mutation techniques. Where semantic
mutation describes a change in values of elements, like replacing variable val-
ues in a state with different ones, structural mutation focuses on modifying
the structure of a model by replacing a state or a transition [21].

2.2.2 Completeness of Verification Procedure

Checking the completeness of properties is an attempt to gain information to
improve the specification. On the other hand, it can be interesting also to
process data regarding the verification procedure itself. Since model checking
suffers from the state-explosion problem, there are scenarios where the verifier
does not come to a conclusion. As a consequence, the verdict is neither true nor
false; instead, it is unknown. As a verification engineer, it can be beneficial if
more data regarding the result outcome exists. This is reasoned by the idea of
instead continuing the verification on the point it failed instead of starting from
the beginning [4]. Approaches like this already exist in the way of giving them
information that one model checker produces as input to another model checker
such that the verification problem is limited to the reduced state space. This
means that the state space only consists of the uncovered part from the first
model checker. In literature, experiments prove this approach’s effectiveness by
showing a significant improvement of the verification result and improvement
of the performance [4].

Building upon this idea, there are some more abstract approaches to this
problem by defining a measure that depicts the progress of the verification
procedure. There are ideas based on abstract reachability trees to compute an
under-approximation of such measure [8]. One realization is taking as input
an assumption automaton and giving the verification coverage as output. The
computation is done by encoding the negation of the conditions under which
a statement is covered as a safety property. The approach of under-approx. is
used to compensate performance penalties of the calculation [8].

10

2.3 Classification of this Thesis

When classifying this thesis alongside the broad spectrum of research fields
of verification coverage measures, it belongs to the domain of software model
checking, more precisely, to the category of checking the completeness of prop-
erties and verification procedure. The first category applies since we show
in this thesis verification coverage approaches which indicate if some parts of
the program were not considered during the analysis. Regarding the second
category we try to improve the information output at the end of an unfin-
ished analysis to help the verification engineer better handle unknown cases.
In addition, a new approach that is less discussed in the literature regarding
the development of the verification coverage during the analysis is proposed.
This idea tries to help evaluate the whole verification procedure according to
its effectiveness since it shows at which period the coverage increase was at its
highest.

11

3
Background

Before we discuss the new proposed measures, we need to clarify first the
theoretical background of this thesis. In addition, we give a small overview of
the tools used to implement the ideas.

3.1 Abstract Measure Definition

In literature the term “coverage metric” is often used which does not confirm to
the standard mathematical definition of metric. For that reason, we use instead
the term “coverage measure”, since the standard mathematical definition for
measure is more appropriate in this context. Therefore we consider a measure
as an abstraction of the length of an interval in IR [16].

3.1.1 σ-Algebra

Let X be a set. A nonempty system A of subsets from X is called σ-algebra

if a ∈ A implies X \ a ∈ A and a1, a2, ..., an ∈ A implies
∞⋃
i=1

ai ∈ A.

3.1.2 Measure Properties

Formally we define a measure as a function µ : A → IR+ where IR+ stands for
the expanded set of positive real numbers which includes 0 and +∞ and µ is
defined on a σ-algebra A. In addition following properties must apply:

1. Non-negativity: ∀a ∈ A : µ(a) ≥ 0

12

2. Null empty set: µ(∅) = 0

3. σ-additivity: a1, a2, ..., an ∈ A with ak ∩ al = ∅ and k ̸= l

implies: µ(
∞⋃
n=1

an ∈ A) =
∑∞

n=1 µ(an)

3.1.3 Normalization

In addition to the mathematical definition, we specify an additional fourth
property.

4. Normalization: ∀a ∈ A : µ(a) ≤ 1

This is most often achieved by taken the theoretically maximum possible mea-
sure value as divisor: µnormalized(a) =

µ(a)
µmax

Ultimately, this property is not necessarily required to define a measure.
Nevertheless, we apply it for all proposed coverage measures to make them
better comparable to each other.

3.1.4 Verification Coverage Measure

Verification coverage measure in this thesis means that we build upon the
mathematical definition of measures and apply this to verification coverage.
Therefore, mapping from verification-specific data to the set of real numbers
is necessary. We use Function Domain (3.1) for this mapping where the input
domain CoverageData is verifier and analysis specific. We consider every data
structure used during the verification as potential element of CoverageData,
like for example a set of predicates or a set of code lines.

count : CoverageData → IR+ (3.1)

The concrete semantic meaning for the abstract mapping function count gen-
erally depends on the measures. In our case, we use for the later proposed
coverage measures as concrete definition for count(C) the cardinality of C,
where C is a set, consequently resulting into Function (3.2).

count(C) = |C| (3.2)

3.1.5 Growing Coverage Data

We differentiate between so-called growing coverage data and non-growing cov-
erage data. Growing coverage data are a collection of elements or a single scalar
value where the collection size or, respectively, the value only increases dur-
ing the verification analysis, whereas non-growing coverage data can vary on

13

Example C-code snippet

i f (x > 0) {
y = x ;

} else {
y = −x ;

}
i = 1 ;
while (i < y) {

i = 2 ∗ i ;
}

Corresponding CFA

l0

l1 l2

l3

l4

l5 l6

x>0 !(x>0)

y=x; y=-x;

i=1;

i<y
!(i<y)

i=2*i;

Figure 3.1: CFA for a given C-code snippet.

collection size or, in the case of a scalar, in its value during the verification
analysis. When reconsidering the σ-additivity characteristic, we can deduce
for the measure a monotonic growth from growing coverage data. This kind of
coverage measure development fulfills the idea that the more time the verifier
has, the more the coverage increases, or at least it staggers at some point. This
behavior is preferable. Otherwise, when we would allow a decrease of coverage
at some time during the analysis, that would be counter-intuitive. When we
look at the analogy of test coverage, that would mean that the coverage would
decrease if we run through a test suit and add further tests. Therefore we
focus in the next chapter on growing coverage data.

3.2 Control Flow Automaton (CFA)

We take the basic definitions from the literature [3]. A control-flow automaton
(CFA) is a three-tuple P = (L, l0, G) where L is the set of program locations
with l0 ∈ L as the initial location and G represents all control-flow edges
G ⊆ L×O×L. We call locations l ∈ L also CFA nodes. The set of operations O
generally has two types of operations: assumes and assignments. An example
how a CFA is constructed from a C-code snippet is depicted in Fig. 3.1 where
on the left side is the code and on the right the control-flow automaton. We
will later consider CFA nodes as potential candidate in the calculation of some
measures.

14

3.3 Configurable Program Analysis

In the following, we want to define important terms regarding the verification
analysis which serves as our environment where we define our coverage mea-
sures. Since we use CPAchecker1 [6] as a verification framework where we
implement the upcoming approaches, we need to look closer at Configurable
Program Analysis (CPA) [5].

3.3.1 CPA

A CPA is defined as a four-tuple C = (D,⇝,merge, stop) and operates on a
CFA P = (L, l0, G). Its four components, the abstract domain D, the transfer
relation ⇝ operator, the merge operator and the stop operator are explained
in the following sections.

3.3.2 Abstract Domain

An abstract domain D is defined as a three-tuple D = (C, E , ⟨·⟩). The semi-
lattice E is an algebra consisting of a set E and a partial order operation ⊑
satisfying associative, commutative and idempotent properties [9]. The set
E represents during the analysis the abstract states of our program. The
concretization function ⟨·⟩ is defined as: ⟨·⟩ : E → 2C and maps an abstract
state to a set of concrete states C. Concrete states can potentially be reached
by the program, whereas abstract states represent multiple concrete states.

3.3.3 Transfer Relation Operator

A transfer relation is used to traverse through abstract states. It computes all
possible abstract successors of an abstract state and is defined as⇝⊆ E×G×E
where E represents the set of abstract states.

3.3.4 Merge Operator

The merge operator decides when and how abstract states are combined. For-
mally it is defined as merge : E × E → E. To fulfill the correctness criterion,
the second parameter must be subsumed: ∀e, e′ ∈ E : e′ ⊑ merge(e, e′). Oth-
erwise the new abstract state is an over-approximation of both input states.

1https://cpachecker.sosy-lab.org

15

https://cpachecker.sosy-lab.org

Algorithm 1 CPA algorithm taken from [5]

Input: CPA = (D,⇝,merge, stop), e0 ∈ E,CFA = (L, l0, G)
Output: Set of reachable abstract states
Variables: reached, waitlist

1: waitlist := {e0};
2: reached := {e0};
3: while waitlist ̸= ∅ do
4: pop e from waitlist
5: for all e′ with e⇝ e′ do
6: for all e′′ ∈ reached do
7: enew := merge(e′, e′′) ▷ Combine with existing abstract state.
8: if enew ̸= e′′ then
9: waitlist := (waitlist \ {e′′}) ∪ {enew};
10: reached := (reached \ {e′′}) ∪ {enew};
11: end if
12: end for
13: if ¬stop(e′, reached) then
14: waitlist := waitlist ∪ {enew};
15: reached := reached ∪ {enew};
16: end if
17: end for
18: end while
19: return reached

3.3.5 Stop Operator

The stop operator is formally defined as stop : E × 2E → {true, false} and
decides when to stop exploration, meaning if newly computed abstract states
should be added to the waitlist or not.

3.3.6 CPA Algorithm

The CPA algorithm depicted in Algorithm 1 starts by initializing the waitlist
and reached set with the initial element e0. We then compute the abstract
successors via the transfer relation ⇝ for the next element from the waitlist.
Afterward, the merge is performed for every successor with every existing
element reached. When we have a new element enew generated by the merge
operator, we replace the existing element [5].

16

3.3.7 Abstract Reachability Graph (ARG)

An abstract reachability graph is a representation of an abstract state space. It
is used as proof of the performed verification, and in case of property violations,
it is suitable for extracting error paths. All together we can now define formally
an ARG for a CFA P = (L, l0, G) and a CPA C = (D,⇝,merge, stop) as:
ARG = (N, root,G), where N is a set of abstract states which were reached
during the CPA algorithm, root is the initial abstract state and G is defined
as G ⊆ N ×G×N . We call g ∈ G an ARG edge and n ∈ N an ARG node. In
addition the following structural properties must apply: root ∈ N and N ⊆ E.

3.3.8 Predicate Abstraction

Predicate abstraction [12] is a reachability analysis traversing the CFA. During
this process, an ARG is generated. Predicates over program variables from a
given precision set represent the abstract states. We can create successor
abstract states from a given abstract state with an operation by computing a
boolean combination of predicates from the precision.

3.3.8.1 CEGAR

Counterexample-guided abstraction refinement (CEGAR) [11] is an approach
to increase the performance of the verification process. This means that we
have for our program P an initial precision π0 which approximates the reached
states. When we reach an error state, we can construct a counterexample
from the ARG and check if it is feasible. If true, we have found a property
violation, and therefore, we can end the analysis; if it is spurious, we do an
abstraction refinement, which leads to new predicates. With this updated,
refined precision π, we repeat the analysis as long as we do not find any new
counterexamples.

3.3.8.2 Lazy Abstraction

Lazy abstraction [14] improves the performance by not completely deleting the
previous computed ARG after the refinement step of the CEGAR algorithm.
It recomputes only those parts of the ARG where the new predicates are
necessary. In addition, new generated predicates will not be used globally
for all abstraction computations. In detail, this means that lazy abstraction
narrows the scope on relevant parts of the ARG or CFA regarding the usage
of predicates.

17

3.4 CPAchecker

We use the verification framework CPAchecker to realize all of our later ap-
proaches. It is based on the already discussed CPA algorithm and has a mod-
ular design to add further CPAs. This allows configuring the verification anal-
ysis to specific variants like predicate analysis with CEGAR or value analysis.
Both have their advantages and disadvantages. We will later propose some
coverage measures for predicate analysis. Regarding our analysis-independent
approaches we will also use value analysis for comparison. The analysis type
can be configured in the command line settings of CPAchecker.

3.4.1 Predicate CPA

When using CPAchecker, we specify the use of the Predicate CPA module
in the command line with the following option: -predicateAnalysis. If we
do so, the analysis uses predicate abstraction to compute all abstract states.
Consequently, we use a set of predicates to decide which parts of the program
are reachable during the analysis. Per default, the option for using CEGAR is
activated to increase the performance of the verification process. It is impor-
tant to note that if we talk later about the predicate set we also consider lazy
abstraction.

3.4.2 HTML Report

When using CPAchecker to analyze a simple C-program we can specify the
option to generate an HTML file typically called Report.html or in case of
a property violation outcome Counterexample.html to view details regarding
the verification result. The CFA tab (cf. Fig. 3.2) displays a visual representa-
tion of the control flow automaton used during the analysis. The tab-specific
toolbar below allows further customization regarding the visuals of the dis-
played CFA. There are also other tabs within the report, like for example the
Source tab (cf. Fig. 3.3). Here we can select any of the input source files and
display its content. As part of the realization of the later proposed visualiza-
tion approaches we will integrate additional visualization capabilities to both
mentioned tabs.

18

Figure 3.2: CFA tab in Report.html.

Figure 3.3: Source tab in Report.html.

19

4
Verification-Coverage
Measures

Based on the so far discussed theoretical background, we want now to pro-
pose new approaches for verification coverage. First, we look at the different
abstract categories of verification coverage. Second, we discuss concrete ap-
proaches based on the mentioned categories, resulting in new measure defini-
tions. Lastly, we build upon the idea of measures and define the concept of
time-dependent coverage (TDC) to allow the tracking of the progress of cov-
erage over time. The goal of this chapter is to understand more behind the
theory and realization of verification coverage measures allowing the verifica-
tion engineer to gain more information from the analysis.

4.1 Categorization of Verification Coverage

4.1.1 Application Purposes

When we talk about verification coverage software model checking, we should
first differentiate between possible application fields. As already mentioned in
the Literature Overview chapter, we consider two categories: completeness of
properties and completeness of verification procedure. The first one has the
goal of determining the verification coverage of the program at the end of a
completed analysis. The resulting number should help the verification engineer
to interpret how complete their specification was or, in other words, how much
of a specific program property was considered by the verifier during the anal-

20

ysis. This could help to find issues in the used specification because, e.g., we
could have a bad specification design and, therefore, some code fragments are
not considered. Consequently, the verifier is not checking the whole program
and we would miss some potential bugs. An untypical low coverage value could
alarm the verification engineer to check the used specification if it is correctly
defined for the given task.

Completeness of the verification procedure, on the other hand, has the goal
to determine how far the analysis was when we had an unknown case. Find-
ing a measure for accomplishing this goal and only relying on that resulting
number is difficult to interpret since verification tools typically do not have a
common interface delivering data to deduce the progress. Therefore we work
with various visualizations to give a better overview of the unfinished analysis.
This can be accomplished in many different ways, which we will discuss later.

4.1.2 Output Domains

For defining our output domain based on measurement theory, we need to con-
sider the levels of measurements [23]. We list here some of the most commonly
used ones and discuss them.

4.1.2.1 Nominal

When using nominal output data, we have distinguishable categories, for ex-
ample when measuring colors. We could have data like red, green or blue but
we have no natural rank order. As a consequence, we cannot compare single
data elements to each other. This is not suitable for verification coverage since
we want the possibility to detect comparable changes in coverage for differ-
ent scenarios, allowing us to interpret the result in a way such that we can
conclude an improvement or worsening.

4.1.2.2 Ordinal

When adding a natural rank to nominal data, we have ordinal data, meaning
that we can compare different output elements. An example output domain
for our use case would be a set consisting of the outcomes: “no coverage”,
“partial coverage”, and “full coverage”, where the first mentioned case has the
lowest rank and the last one the highest rank. This level of measurement can
be useful as a verification coverage output domain but is limited when we want
to determine the degree of difference between two values.

21

4.1.2.3 Interval

Interval data builds upon ordinal data and adds quantification. Consequently,
we can calculate the difference between two values. This scale still has the
problem that we could not say that coverage value A is double the value of
coverage B. This is due to the freedom of having an arbitrary origin.

4.1.2.4 Ratio

In contrast to interval data, ratio scales have a natural non-arbitrarily chosen
origin. Therefore any linear transformation can be applied. This level of
measurement fits best to our measure definition Function (3.1) since it does
not contradict any of our mentioned measure properties. When using the
normalization property, we output numbers between 0 and 1, indicating how
much of the program was covered by the verifier. The number 0 is the origin
and stands for “the program was not covered”, and 1 for “the program was
fully covered”. Values in-between indicate a partial coverage where higher
numbers are interpreted as higher coverage, meaning that a coverage value of
0.6 indicates triple the coverage of 0.2.

4.1.3 Input Domains

We distinguish between two types of possible input data. The first category is
all data generated by the verifier but independently of the verification coverage
measure approach, like a CFA or an ARG. We call this category result-specific
data. Working with this kind of data has the advantage of allowing post-
processed verification coverage calculation since the data is already existing
and fully available at the end of the analysis. In the other case, we have input
data for the measurement calculation, which must first be generated during
the analysis. Those depend on the verification algorithm details. We call this
category coverage-specific data. To illustrate this categorization, we look at the
core algorithm of CPAchecker. For example, the transfer relation operator can
be interesting to consider. This is reasoned by the idea that we prefer growing
coverage data. Finding those data needs operators or algorithm fragments
that generate continuously states. When looking closer at the CPA algorithm
depicted in Algorithm 1 we see two phases where new data results and gets
potentially saved later in the waitlist or reached set. One at line 5, where we
get e′ with the transfer relation operator ⇝; the other on line 7, where we
get enew with the merge operator. An abstract approach for deducing growing
coverage data based on the mentioned data can be processing the occurrences
with other additional restrictions of the data. In this case, we would make
use of the count(C) function from the background chapter. Candidates as

22

input for the count(C) function could be a set of abstract states or a set of
CFA edges which we have gathered during the analysis with the help of the
transfer relation operator. Therefore count(C) gives us as output value some
real number representing, for example, the amount of different code lines, CFA
locations, abstract states, assume edges, or any other coverage data we have
specified in its implementation. Comparing both categories of possible input
data leads to the following conclusion. While the first type is, in most cases,
more accessible to implement, the second one has the potential to provide a
broader domain of data to use for calculation.

4.1.4 Analysis Dependencies

We differentiate our approaches between analysis-independent and analysis-
specific verification coverage. While analysis-independent verification coverage
can be applied to any model checking verification analysis which works with
data structures similar to CFAs and ARGs, we also narrow our scope on veri-
fication coverage measures for specific analysis. This allows us to use further
specific details to improve the coverage calculation. For the analysis-specific
category, we consider in this thesis predicate analysis with CEGAR.

4.1.4.1 Verification Coverage with Predicate Analysis

During predicate analysis, we use predicates over program variables from the
given precision π to determine the feasibility of paths. This precision set con-
tinuously grows throughout the verification analysis. When using predicate
analysis in combination with CEGAR, we have in the beginning an initial
precision, typically an empty set of predicates, which we refine whenever we
reach an error location. A refinement normally leads to an increased predi-
cate set size. Therefore it fulfills the growing coverage data definition. Both
mentioned sets are not only technically qualified to be used as the basis for
the measurement definition, they also semantically fulfill the idea of giving
an approximation about the coverage of the program. This is due to the fact
that adding new predicates is based on exploring new states or, in the case of
CEGAR, finding a counter-example path. Consequently, continuously adding
new predicates indicates progress in finding new interesting abstract states.
Therefore we can build up a connection between new predicates and cover-
age. Taking this concept one step further, we could also consider the specific
content of the predicates, which is mostly built from variables based on the
program code. Consequently, we could work with the logical formulas or the
occurring variables.

23

4.2 Approaches for Verification Coverage

Combining the theoretical knowledge about verifiers and measures with the
concepts of verification coverage, we can now propose new approaches. We also
implemented all the following verification coverage measures in CPAchecker

to test them in practice. The way how to implement in general measures is
described in the Implementation chapter. Later in the Evaluation chapter, we
also compare all of these realizations.

4.2.1 Completeness of Properties

4.2.1.1 Visited-Lines Coverage Measure

For completeness, we first start with the most basic idea, which already exists
in CPAchecker. Nevertheless, we want to explain this coverage measure here,
since some others are building up based on this approach. Visited-lines cover-
age can be implemented using result-specific data as well as coverage-specific
data, since it only depends on the ARG. The latter approach has the benefit
that we could calculate a temporal coverage value, since coverage-specific data
is available during the analysis. Tracking temporal coverage values has the
advantage that we can generate a time-dependent coverage (TDC) data series,
which we will discuss in the next section. Furthermore, visited-lines coverage is
an analysis-independent coverage approach. Lines in our context means code
lines from a given source file. We differentiate between lines which contains
statements and those which are blank or contain only syntactical elements like
a closing bracket. The first one we call statement lines the latter blank lines.
We consider a line visited if we have an ARG edge containing a statement line.
The set of visited lines represents our input set C for the count(C) function
(cf. Function (3.1)). As a normalization divisor, we take the total number
of statement lines and call it TotalLines. Taking all together we use Equa-
tion (4.1) for calculating the coverage, where VisitedLines is a set of code lines
considered as visited.

Coverage(V isitedLines) = count(V isitedLines)
TotalLines

∈ [0, 1] (4.1)

As the output domain, we use a ratio scale from 0 to 1. This is an appropriate
measurement level since we have a natural origin (no visited lines), and all
values represent a quantification. Double the coverage means we have visited
double the lines. Visited-lines coverage is suitable for simple analysis where we
do not use precision refinement techniques or restarts. Otherwise, for analyses
which use for example CEGAR, we could have the issue of over-approximation
of the VisitedLines set. Therefore our coverage number is higher than the true

24

value we are targeting to determine. On the other hand, we still can conclude
that the real coverage is at most that calculated number or less. Consequently,
our computed visited coverage represents, in this case, an upper limit.

Visited-lines coverage can be applied for the task completeness of proper-
ties. Suppose we have a method or code block for our analyzed program that
does not get considered by the verifier, but we actually want it to be checked,
in that case, a coverage value less than 1 should result since not all lines were
visited by the verifier. Especially combined with a visualization approach that
marks all visited lines of the source code, we should be able to quickly detect
parts of the code that were not covered.

It can also be used for completeness of verification procedure but has the
issue that, as already mentioned, it over-approximates fast, and therefore we
would have in most unknown cases a high coverage, which would not tell
us how far the verification procedure actually was. This approach should
deliver coverage values that can be interpreted in a helpful way in the context
of completeness of verification procedure for simple programs without loops
and analysis types that do not over-approximate the VisitedLines set. Since
these cases rarely occur, we classify visited-lines coverage to the category of
completeness of properties.

4.2.1.2 Visited-Variables Coverage Measure

Visited-variables coverage measure works similarly like the visited-lines cover-
age measure. It is also an analysis-independent approach and considers visited
lines. Instead of storing them in a set, we check if a new variable is declared
within the line. Suppose we have a new declaration, then we save the variable
name, including its function scope, to the VisitedVariables set. When the anal-
ysis is finished, we count all occurring variables within the given source code.
We call this number TotalVariables and use it as a normalization divisor.

Coverage(V isitedV ariables) = count(V isitedV ariables)
TotalV ariables

∈ [0, 1] (4.2)

We then use Equation (4.2) for calculating the coverage. For this measure
the same verification coverage categorization properties apply as for visited-
lines coverage. A potential advantage of this approach is that the resulting
coverage value is not influenced heavily by many not relevant source code
lines. Not relevant in this context means that when we remove a code line,
there would be no significant change in the program control flow. When we
already have, for example, a C-program with print statements, and we want to
add additional print statements for logging existing variables or just displaying
at which program location we are, then the visited-lines coverage can change
since we have potential new lines to cover, whereas visited-variable coverage

25

would stay stable since we did not declare new variables. We prefer for this
scenario a more stable behavior since no relevant change in a program should
not indicate a change in coverage. Otherwise, we could add so many print
statements that the visited-lines coverage could approximate 1. Consequently,
the coverage would hardly change if we add relevant lines.

Nevertheless, visited-variables coverage can have the same issue when we
would add many unused variables. We mean with unused, variables that are
declared but never used in the program. Therefore code lines that declare
unused variables are also no relevant code lines. Our following approach is
also based on variables and solves the issue of unused variables.

4.2.1.3 Predicate-Abstraction-Variables Coverage Measure

Another measure approach that belongs to completeness of properties category
is predicate-abstraction variables coverage. It is an analysis-specific approach
and therefore depends on predicate analysis. We use the coverage-specific data
set PredicateAbstractionVariables as the input domain. This set can be gener-
ated during the analysis. The idea here is to gather all variables which occur
in the abstraction formula of the current predicate abstract state, which is vis-
ited by the transfer relation. In addition, we count at the end of the analysis
all program variables of the source code which we then use as normalization
divisor (TotalVariables) for the coverage calculation (cf. Equation (4.3)). We
could also look at the end of the analysis at the ARG states, but we prefer
the first approach since it facilitates the time-dependent coverage (TDC) data
series generation which we will discuss in the next section.

Coverage(PredicateAbstractionV ariables) = count(PredicateAbstractionV ariables)
TotalV ariables

(4.3)

When we have a finished analysis, we expect a relatively high coverage value
since we assume that most of the variables should be considered during the
analysis. If not, we have an indication that some program parts were not
processed by the verifier since some variables were missing in the abstrac-
tion formula. We then would check if our used specification was suitable for
our verification task. Combined with a visualization approach which we dis-
cuss later, we could depict all missing variables and where they are located.
Consequently, we could check the plausibility of the result, meaning if it was
legitimate that the verifier did not process some variables. The output domain
is of type ratio data. This is suitable since we have a natural origin (no visited
variables), and all values represent a quantification.

26

4.2.2 Completeness of Verification Procedure

4.2.2.1 Predicates-Considered-Locations Coverage Measure

As we already mentioned for visited-lines coverage, the problem for using it in
case of completeness of verification procedure is that it over-approximates too
fast. Therefore our motivation is to find an approach that reduces the over-
approximation of coverage, leading to more meaningful results in unknown
cases. We consider a setting where we use predicate analysis with CEGAR.
Consequently, we have a wider choice regarding the selection of a suitable
coverage data as a basis for the count(C) function compared to an analysis-
independent approach. More precisely, we now take the predicate set into
account. After each refinement during the analysis, we potentially add new
predicates into this set. Since we do not remove any of these predicates, it
fulfills the growing coverage data criteria.

As the input domain for the coverage calculation, we choose a coverage-
specific data called PredicateConsideredLocation. As the name of the set al-
ready implies, we now do not consider code lines, instead we work with CFA
locations. The advantage of this consideration is that we can later deduce help-
ful visualizations of the CFA from this coverage-specific data set. This also has
the side-effect of reducing the implementation complexity since we do not have
to deduce corresponding code lines from the CFA edges. Similar to visited-lines
coverage, we use visited CFA edges but instead considering the referencing
code lines, we look at its successor CFA node and add them to the Predi-
cateConsideredLocation set if the predicate-considered requirement is fulfilled.
This restriction is the additional component of the algorithm that is missing
in visited-lines coverage and tries to compensate for over-approximation re-
garding the computation of the verification coverage measure to minimize this
disadvantage.

The predicate-considered requirement is only applied on CFA edges holding
an assume-statement. The idea is that we want to sort out over-approximated
CFA path choices. If we have an assumption consisting of variables that are
not contained in any of the formulas of the set of predicates from the given
precision, we have a high chance of over-approximating since we would visit
locations along the CFA path without safely knowing if they are reachable.
Therefore we only add CFA locations within the PredicateConsideredLocation
set if either they have no incoming CFA assume edge or if all assume variable
names are contained within the set of all predicate variable names we con-
struct from the mentioned predicate set. In addition, we require that every
existing direct predecessor CFA location is also element of the PredicateCon-
sideredLocation set. Ideally, we then should have, as a result, a subset of the
VisitedLocations set.

27

Algorithm 2 Predicate-Considered

Input: predicateV ariables, cfaEdge
Output: {true, false}

1: if cfaEdge has type AssumeEdge then
2: assumeV ariables := convertAssumeToV ariables(cfaEdge);
3: if assumeV ariables ⊂ predicateV ariables then
4: return true;
5: end if
6: return false;
7: end if
8: return true;

As normalization divisor we take the total number of CFA locations and call
it TotalLocations. The calculation of the measure is defined in Equation (4.4).

Coverage(PredicateConsideredLocations) = count(PredicateConsideredLocations)
TotalLocations

(4.4)

This approach is a fast approximation of ruling out potentially unfeasible
paths, which nevertheless leads to over-approximation regarding the cover-
age value but in contrast to visited-lines coverage at a decreased factor. If we
would further improve this approach regarding the approximation, we would
need to calculate if the current visited path is feasible. This is not reason-
able since it would decrease the performance significantly. When looking at
Algorithm 2 we see the that the performance of the algorithm depends on the
subset check in line 4. Checking for a subset takes on average linear time when
using a hashtable for the implementation of the sets.

The output domain of the coverage is between 0 and 1 on a ratio scale
since our basis of calculation has a natural origin (no locations considered)
and supports quantification.

4.2.2.2 Predicates-Relevant-Variables Coverage Measure

The predicates-relevant-variables coverage measure is an enhancement of the
predicates-considered coverage measure. It is based on the same premises. This
means it is also based on predicate analysis and uses coverage-specific input
data for the coverage calculation, the PredicateConsideredLocations set.

In contrast to the measure before, the idea behind this approach is to
maintain a set of relevant variables called RelevantVariableNames. Relevant
variable in this context means that it is helpful for us regarding the deci-
sion if we over-approximate a program path. The set is built by retrieving

28

all predicates from the current program location and then applying a filter to
this set. The filter can be realized as a heuristic that removes potentially not
relevant variables. Our approach uses a frequency heuristic, where relatively
rarely occurring variables are excluded. Suppose we have a CFA edge holding
an assume-statement, and we have, like in predicate-considered location cover-
age, also a predicate formula containing all variables of the assume-statement.
We then still could over-approximate since the formulas holding those vari-
ables could not be strong enough. Therefore the idea of our heuristic is that
the more predicate formulas we have for one variable, the higher the chance
that we do not over-approximate since we then would have more information.
Therefore we consider only variables as relevant if they occur relatively often
within our set of predicate formulas.

We define the frequency threshold parameter, which determines if we con-
sider a variable as relevant, as a number between 0 and 1, indicating the
percentage of how much of all variables we want to keep depending on their
relative frequency. Finding an appropriate threshold to apply the variable
exclusion is open and needs to be determined, e.g., by experiments. When
removing the filter or setting the parameter value to 1, this measure behaves
like the predicates-considered coverage measure.

4.3 Time-Dependent Coverage (TDC)

Until now, we had considered verification coverage as a resulting number when
the analysis was over. There are cases, especially in the context of completeness
of verification procedure, where it could be interesting to know how the actual
development of this coverage was during the analysis.

4.3.1 Basic Idea

Knowing at which interval the verification coverage had a high growth or was
staggering allows to understand the whole analysis process better and makes it
easier to compare coverage measures. The first question is which dimension is
suitable for making the coverage data dependent. Basic ideas are verifier steps
or time. Verifier steps, in this context, is an abstract term. We could define it,
for example, as one step representing one call of the transfer relation operator.
In our approach, we consider the time dimension, in detail, the wall clock
time. Therefore our idea can be implemented for any verifier since measuring
the wall clock time should always be possible. From now on, we are talking
about time-dependent coverage (TDC).

29

4.3.2 Implementation

Implementing TDC needs a data collection that consists of tuples. These tuples
contain a timestamp and the corresponding verification coverage value at that
time. This implies that it is not sufficient to calculate the coverage at the end
of the analysis, instead we need to do it whenever we add a new tuple. Adding
a new tuple should be considered at that point where we potentially can have
a change in calculating the verification coverage. For our proposed measures
it is sufficient to add new tuples after each transfer relation operation.

4.3.3 Requirements

The mentioned implementation approach, therefore, requires measures that
are based on coverage-specific data. Measures based on result-specific data
are for TDCs not suitable since we cannot deduce at the end of the analysis
from the given data at which timestamp they were added. We could potentially
construct it in chronological order, but without time data we do not know the
time span between two data elements. Therefore, it is required to collect the
time data during the analysis, combined with the coverage-specific data.

4.3.4 Visualization

Working with a visualization facilitates the comparison of different measures
and detection of structures for the human eye. When the analysis is over, we
can use our generated TDC data series to render a graph, which we call a time-
dependent coverage graph (TDCG). The horizontal axis represents the wall-
clock time. It starts from zero and ends at the time representing the duration
of the analysis. On the other hand, the vertical axis stands for the verification
coverage, ranging from 0 to 1. Since all of our proposed coverage measures
are based on growing coverage data, we expect to see a monotonic graph
development beginning from zero and ending at the data point representing
the tuple, consisting of the analysis duration and the final coverage value.
We depict later in the implementation and evaluation chapter some example
TDCGs.

30

5
Verification-Coverage
Visualization

So far, we have described verification coverage as a single number or TDC.
Often it is preferable for the verification engineer to work with a visualization
of coverage. This helps better understand more complex cases in a single view.
Therefore we propose visualization approaches for different components rele-
vant to the analysis itself. In addition, we discuss already existing techniques
for comparing purposes.

5.1 Source Code Lines Visualization

One category of visualization approaches is source code coloring. This tech-
nique is already known in software testing, where we run test coverage tools
that show us which line of code was executed by certain tests and which were
not. In verification coverage, this idea is similarly realized. The difference
is that it is not apparent what kind of criteria to use when deciding to color
a line. Therefore we start with an algorithm for source code coloring, which
is already known and implemented in some verification coverage frameworks.
We try to optimize the workflow and discuss the idea of working with this
visualization technique.

31

5.1.1 Visited-Lines Heat-Map Coloring

The approach of coloring source code lines depending on visits is already a
known concept used for test coverage tools and verification frameworks like
CPAchecker. Visit in our context means that the verifier has considered a
code line from a CFA edge during the transfer relation operation. Counting the
total number of visits per code line allows generating a heat map by coloring
the relative frequency of each line. In CPAchecker, there is the option of
generating a coverage.info file after the analysis is done. This file holds the
data of visits per line and complies with the LCOV coverage data file structure
specification. For better readability, we can use the command genhtml, which
is capable of generating an HTML view from our coverage.info file.

5.1.1.1 Improvement

As an alternative, we have implemented a similar visualization approach based
on the same input data but integrated into the Source tab of the Report.html.
This HTML file can be generated by CPAchecker after the analysis is done
and does not need further post-processing. The goal here is to facilitate the
use of coverage visualization for the verification engineer who inspects the final
report. Therefore, it is no longer necessary to consider other tools for generat-
ing a proper visualization. If the coloring is not needed, a selector for enabling
the default colors exists. Visited-lines heat-map coloring is automatically in-
tegrated if the CoverageCPA is specified in the CPAchecker configuration and
the option -setprop ’shouldCollectCoverageDuringAnalysis = true’ is
set within the run command. An example of how the source code gets colored
when enabled is depicted in Fig. 5.1. The darker the green, the higher the rel-
ative visit frequency. On the other hand, the red color means that the verifier
did not visit any CFA edges containing the red colored line but it would have
been possible, since we have an edge within the CFA which contains that line.
A white background color is interpreted as “the code line was not considered
by the verifier”. This typically happens with lines that only have some syntax
meaning but no semantic meanings, like lines only consisting of the symbol
“}” in the case of a C-program. We call this kind of lines blank lines.

32

5.1.1.2 Discussion

Visited-lines heat map coloring uses the concepts of the visited-lines coverage
measure and instead of calculating a single number, it visualizes all covered
lines. This has the advantage of allowing the verification engineer to detect
parts of the programs which were not visited by the verifier. This information
can help check the plausibility of the result at the end of a finished analysis.

5.2 CFA Visualization

In contrast to source code coloring, visualizing the locations of a CFA better
facilitates gaining information regarding the internal processing of the verifier.
Two reasons cause this. First, we can better follow program execution paths.
Looking closer at the CFA definition, this circumstance is evident since it is
designed to show syntactically correct program execution paths. Therefore it is
for the verification engineer more convenient to look at a CFA with verification
coverage visualization to check which paths lead to program termination and
are also covered by some criteria. Second, we have a better view of verifier
internal automaton states. Therefore considering using a colored CFA can be
beneficial for verification framework developers to debug issues better since
they have more detailed internal verifier information. Nevertheless, using the
source code visualization can be preferable if we solely want to focus on the
code lines without considering internal verification details.

To illustrate the differences in visualizing the source code versus the CFA
for the same code, we depict an example comparison in Fig. 5.1. We consider
any green-colored line or node covered and every red-colored one not covered
by the verifier. When looking at the CFA, we see two incoming edges leading
to program termination at location N0. We can briefly detect that paths that
end with the statement return -1 are not covered by the verifier, whereas all
other ones ending with return 0 are covered. The verification engineer is now
capable of spotting the beginning of the uncovered path fragment at N14 and
the end at N20. Therefore we can conclude that this kind of analysis (in our
example: value analysis) does not consider taking the branch i==20 from N12.
We can also see how verifier-specific statements like CPAchecker TMP 0 which
are contained within CFA edges between two covered locations are indirectly
considered in the coverage visualization. In the following, we propose different
new criteria for considering a CFA location covered by the verifier.

33

Figure 5.1: Left: CFA for the right code snippet; Right: Example C-code.
Both visualizations were generated by CPAchecker with default value analysis.

34

5.2.1 Visited-Locations Heat-Map Coloring

5.2.1.1 Idea

The first and straightforward approach to considering a CFA location covered
is when its incoming CFA edge was considered by the transfer relation operator
during the analysis. If this happens, we call this CFA location visited. Like
visited-lines heat-map coloring, we assume the verifier may need to visit the
same CFA locations multiple times. Therefore we can raise the question of how
often are the CFA location visited by the verifier during the analysis. Visiting
a new location depends on the transfer relation operator determining the next
abstract successors. Since the total number of visits for a specific location can
heavily vary between different programs, we prefer to calculate the relative
number of visits. This is done by finding the maximum number of visits for a
CFA location and then normalizing all other total visit numbers per location.
From this relative number which is within the range of 0 to 1, we then can
color each location, where 0 means no coloring and 1 fully colored. For all
locations with values in between this range, we apply a color gradient from no
color to full color. When looking again at Fig. 5.1, we have used dark-green
for locations that were relatively visited often and light-green for rarely visited
locations. This kind of visualization allows us to briefly identify a dark-green
path fragment, starting from CFA location N4 and then having the following
path: N4 → N5 → N7 → N10 → N11 → N12 → N13 → N4. This path
indicates a loop since it starts and ends with the same location. Since this
part of the CFA has locations colored in a darker tone than the others, we can
conclude that the verifier indeed unrolled the complete loop during its analysis.
This behavior is, in this case, typical for value analysis. When using predicate
analysis with CEGAR, the resulting colored CFA would not have a darker
green tone for the mentioned loop fragment. The reason for that is the initial
low predicate precision which leads to an over-approximation. Therefore, all
syntactically correct program paths are considered initially, leading to similar
visit rates for each CFA location.

5.2.1.2 Discussion

Visited-locations heat-map coloring can be easily realized for most verifiers,
which use a CFA and a transfer relation within their analysis. This approach
benefits in detecting CFA locations that were visited often, for example, due
to a loop. The developer of a verification framework could use this kind of
visualization to compare potential optimizations on an analysis, whether some
paths will be visited more often or not. On the other hand, we do not know
if some of the visited locations were, in the end, reachable. This is due to the

35

fact that we could use an approach with over-approximation so that we visit
some paths within the CFA which are not feasible. Consequently, it could
happen, depending on the analysis, that we color most of the locations within
the CFA. Therefore our next approach separates between visited and reached
locations.

5.2.2 Considered-Locations Heat-Map Coloring

5.2.2.1 Idea

This approach is building up on visited-locations heat-map coloring. We now
consider two different sets of CFA locations. The first is the set of visited
CFA locations called VisitedLocations which results from the previous visited-
locations heat-map coloring approach. The second one, called ReachedLoca-
tions, is filled with all locations which are reached. We construct this set by
using the resulting ARG at the end of the analysis. We deduce all correspond-
ing CFA locations from the ARG states and add them to the reached locations
set. As the next step, we build a new set called ConsideredLocations which
consists of the CFA locations which result when we take the VisitedLocations
set and remove all elements which are also contained in ReachedLocations (cf.
Equation (5.1)).

ConsideredLocations = V isitedLocations \ReachedLocations (5.1)

Now we apply the same visualization rules like visited-locations heat-map col-
oring, but with the exception that all CFA locations contained in the Con-
sideredLocations set are marked in another color, i.e., red. To illustrate this
approach, we can look at Fig. 5.2. Here we use CPAchecker to construct a
CFA from a bubble sort C-program (cf. Appendix A.1) and then apply our
coverage visualization. In this example, we use predicate analysis with CE-
GAR. Note that this kind of analysis adds and removes states from the ARG.
When the analysis has started, we manually terminate the verification process
after a few seconds to have an incomplete analysis with the result “unknown”.
The dark green regions (i.e., N5-N10) within the CFA show that these loca-
tions are visited relatively often during the analysis. This is due to a loop that
repeats for 100000 iterations. Apart from the reached green CFA locations,
we also have a branch beginning from N27 and ending at N0, which is colored
red. This part of the CFA was visited by the verifier but not reached during
the analysis, meaning that there is no abstract state within the resulting ARG
which has a corresponding CFA location. Consequently, we can deduce from
this verification run that the verifier was processing locations somewhere in
the red region before we interrupted the analysis. In addition, we also can

36

Figure 5.2: CFA with considered-locations heat-map coloring for a bubble sort
C-program.

37

say that the CFA locations N46 to N51 were not visited or reached, indicating
that we could have dead code fragments. Dead code in this context means
that we have fragments of code lines, like an unused method, which are never
considered during analysis since it is not called in the main code. For our
example, this is indeed the case since we have created a helper method for the
swap operation, which is actually not used.

5.2.2.2 Discussion

Considered-locations heat-map coloring is an approach that can be used in the
context of completeness of properties or completeness of verification procedure.
The first mentioned application purpose is supported by the visualization style
regarding the unreached CFA locations. We expect that for most programs,
all CFA locations should be at least visited. If this is not the case, we can
detect the white marked locations within the CFA and check if they should
indeed not be visited. If not, this indicates that our used specification was
probably not appropriate for the verification task. Regarding completeness of
verification procedure, we can detect CFA locations that were visited relatively
often or not. For an unknown case where we have locations that are relatively
rarely visited or marked as considered but not reached, we have an indication
that the verifier was starting to focus on those locations. When we have, for
example, two for loops with the same amount of iterations which we unroll
sequentially one by one, and the analysis terminates at the beginning of the
second one, we would be able to detect the verification progress with the
help of the heat-map coloring within the CFA. Nevertheless, it is important
to note that this interpretation always depends on the source code context
and cannot be generalized. In addition, considered-locations heat-map coloring
can also lose its expressiveness if we use an analysis that works with high
over-approximation. This can lead to high visit rates as long as the analysis
does not precise in its abstraction. One example would be predicate analysis
with CEGAR. Here we have in the beginning a low precision which increases
during the analysis. Therefore we have visited locations that we would later not
visit due to the generation of suitable predicates, which narrows the program
path choices. Since we collect all visited locations from the beginning of the
analysis, our result regarding the count of visits per location is greater as if we
would have started initially with a high precision. One idea to fix this issue for
predicate analysis with CEGAR is our next proposed visualization approach.

38

5.2.3 Predicate-Considered-Locations Coloring

5.2.3.1 Idea

Predicate-considered-locations coloring uses the same PredicateConsideredLo-
cation set as the one used for the predicates-considered-locations coverage mea-
sure. Therefore if a location is predicate considered depends on Algorithm 2.
Instead of calculating a single coverage value, we now only color all locations
within the CFA which are contained in the PredicateConsideredLocation set.

5.2.3.2 Discussion

Predicate-considered-locations coloring has the advantage of reducing, in many
cases, over-approximation regarding the consideration of covered locations. For
illustration, we look at Fig. 5.3, where we use predicate analysis with CEGAR
for the program from Appendix A.2. We see on the left side of the figure
a CFA with predicate-considered-locations coloring, and on the right side a
CFA with visited-locations coloring. Note that considered-locations heat-map
coloring would have marked the same locations as covered, with the difference
that we would have a color gradient for each covered location. We nevertheless
use visited-locations coloring for this example since it uses the same green
coloring tone, which therefore simplifies this comparison. The main difference
here is that all locations beginning from N13 are not covered with predicate-
considered-locations coloring. This is due to the reason that we have from N13
leaving CFA assume edges where the corresponding code contains variables
which are not contained in any predicate formula of our predicate set at this
location. In this case, we have no information regarding the variable j, since
we declare it at the beginning of the program, but we do not initialize it with
any value. Therefore we cannot safely decide which of the if-branches could
be feasible. On the other hand, the analysis visits both branches due to over-
approximation. For the analysis, this behavior is expedient, but regarding
the coverage, this leads to a high location coverage where in this case, every
location is considered as covered. The interpretation of this visualization is
almost meaningless because the only information we can deduce is that we have
visited all locations at least once, meaning that every location is syntactically
reachable.

The visualization approach for predicate-considered-locations coloring can
similarly be applied for the predicates-relevant-variables coverage measure.
The difference would be that we have fewer locations colored due to the addi-
tional variable filtering.

39

Figure 5.3: Uncompleted predicate analysis with CEGAR for the program
from Appendix A.2. CFA with predicate-considered-locations coloring (left)
and visited-locations coloring (right).

40

5.3 Program Variable Visualization

In this section, we look at visualization approaches that focus on program
variables. This kind of visualization can be applied to variables occurring in
code statements. Depending on our coverage criteria, we mark all variable
names within a code statement with a color different from the rest of the
statement text. Statements typically occur within the source code or at CFA
edges. In this thesis, we limit our scope to statements of a given source code.
Coloring covered variables could help the verification engineer check at the
end of a finished analysis if the given specification was appropriate. This is
due to the reason that having variables that were not covered indicate that
we did not consider every part of the program code. In the following, we
look at coverage approaches based on coloring variables. Moreover, we discuss
potential benefits compared to the previous coverage visualization techniques.

5.3.1 Visited-Variables Coloring

5.3.1.1 Idea

Visited-variables coloring is based on the visited-variables measure approach.
The difference here is that we use the VisitedVariables set as coverage crite-
ria, meaning we check for each variable occurrence within the source code if
the variable is contained within the VisitedVariables set. If the condition is
fulfilled, we highlight the variable in a different color. For this kind of visual-
ization, it is also important to consider the variable scope. This means that
we also need to check if the variable we want to color matches the scope of the
variable contained in the VisitedVariables set. Variables not contained within
the set or out of scope keep their default color.

5.3.1.2 Discussion

Coloring covered variables within the source code instead of source code lines
has the advantage that the outcome for different analyses varies in most cases
less. This is caused by the having typically more statements than variables
within source code, since every variable declaration is also a statement, and
we additionally could have statements without any variables.

To illustrate our idea, we look at a C-program which we verify with the
verification framework CPAchecker, one time with predicate analysis with
CEGAR and the other time with the default value analysis Fig. 5.4. For the
source code line visualization, we take the approach visited-lines heat map col-
oring, meaning that we mark visited lines green. We then can see for the same
program and specification, two different coverage coloring results. While we

41

Figure 5.4: Coverage visualization comparison of the same C-program
for different analyses. Note, that we have used CPAchecker as verifi-
cation framework and for all predicate analysis cases we have used also
CEGAR. The column in the middle is valid for predicate analysis as
well as for value analysis. C-program taken from doc/examples/example.c
in the CPAchecker repository (https://gitlab.com/sosy-lab/software/
cpachecker/-/blob/trunk/doc/examples/example.c)

42

https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/examples/example.c
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/examples/example.c

consider line 21 visited with predicate analysis, we consider it with value anal-
ysis as not visited. This behavior is reasoned by the initial over-approximation
of the predicate analysis due to CEGAR. On the other hand, when we look at
the middle column of Fig. 5.4, we see that for both analyses, the same coverage
visualization results, showing us that all occurring variables were visited. This
outcome facilitates the interpretation of the coverage visualization regarding
the question if our used specification was suitable for our verification task since
we do not need to consider each analysis case separately.

5.3.2 Predicate-Abstraction-Variables Coloring

5.3.2.1 Idea

Predicate-abstraction coloring is based on the predicate-abstraction-variables
measure approach. This visualization approach works similar to visited-variables
coloring, except that we use the PredicateAbstractionVariables set as basis for
our coverage coloring. The idea of this approach is to only look at variables
that are used by the verification analysis. Since PredicateAbstractionVariables
set depends on abstraction formulas, this visualization is only applicable when
we use predicate analysis.

5.3.2.2 Discussion

Compared to visited-variables coloring, the advantage of predicate-abstraction-
variables coloring is that we do not color unused variables. When we now
consider Fig. 5.5, we see that in line 4, in the case of visited-variable coloring, we
highlighted the variable b red, meaning that this variable is covered, whereas,
in the case of predicate-abstraction-variables, we do not color the variableb
red. This is due to the reason that b is, after its declaration, not used anymore
and therefore not occurring in any abstraction formula. Having this coloring
behavior is preferable because the verification engineer can better interpret the
verification result. For our example case (cf. Fig. 5.5), we would detect b as
uncolored, concluding regarding the context of the whole program that b was
unused, meaning either our program code contains unnecessarily the variable b
or our specification was not suitable for our problem case. On the other hand,
the advantage of visited-variables coloring is that it is analysis-independent
usable. This has as consequence that we can compare the visualization for
different analyses.

43

Figure 5.5: Comparison between visited-variables coloring (left) and
predicate-abstraction-variables coloring (right) for the same program
and analysis (predicate analysis with CEGAR). C-program, except line
4, taken from doc/examples/example.c in the CPAchecker repository
(https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/
doc/examples/example.c)

44

https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/examples/example.c
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/examples/example.c

6
Implementation

In this chapter, we want to look at the implementation details of our verifica-
tion coverage approaches and visualization methods. We use the verification
framework CPAchecker1 [6], a framework for formal program verification, to
implement our work. Most of the ideas are implemented in Java. For the visu-
alization part, we also use JavaScript as programming language. We structure
this chapter regarding the dataflow. Therefore we begin discussing the imple-
mentation of the measures, going over to the collectors, and then looking at
the visualization.

6.1 Verification Measures

At first, we want to look at our newly created util.coverage.measures pack-
age. The corresponding class diagram is depicted in Fig. 6.1. We start with
a Java interface definition called CoverageMeasure. It consists of three basic
methods which every verification coverage measure should implement. The
method getNormalizedValue() returns a double representing the actual nor-
malized coverage value. In addition, we want to have a getValue() method
which returns the coverage value without normalization, representing just the
count of some specific verification coverage data analyzed. This definition is
similar to the Function (3.1). The difference is that we take the coverage
data from the class field where this interface is implemented instead of taking
a method parameter. The third interface method is getMaxValue() which

1https://cpachecker.sosy-lab.org

45

https://cpachecker.sosy-lab.org

Figure 6.1: Class diagram of the measures package.

should be the theoretically maximum possible measure value, typically used
for normalization of the measurement.

We cluster our measurement approaches into categories, defined in the
enum CoverageMeasureCategory. We can have different realizations like
LocationBased or LineBased, representing a category of similar coverage
approaches. The idea here is to save redundant implementation work and
allow an easy way to add more coverage categories in the future. Therefore
we also have a CoverageMeasureHandler class, which holds a map where
the keys are instances of CoverageMeasureType and the values are classes
which implements the CoverageMeasure interface. The already mentioned
CoverageMeasureType is an enum consisting of all of our discussed verifica-
tion coverage measure approaches. This enum also defines for each entry a
CoverageMeasureCategory. With this information, we can deduce the appro-
priate coverage measure implementation for each case.

46

6.1.1 Coverage Measure Implementations

We have implemented four different classes for the CoverageMeasure interface.

6.1.1.1 LocationCoverageMeasure

The LocationCoverageMeasure class holds a multiset of CFA locations that
were covered during the analysis. The coverage criterium depends on the
used CoverageMeasureType and is decoupled from this measure class. The
coverage calculation is implemented as the quotient of the getValue() and
getMaxValue() methods, where getValue() returns the duplicate-free set of
CFA locations and the getMaxValue() the number of all possible locations.
For later visualization purposes, a getColor(CFANode location) method is
defined to return the coverage status, encoded as a color representation, for a
given location identification number in the CFA.

6.1.1.2 LineCoverageMeasure

This implementation is similar to the LocationCoverageMeasure class. The
main difference is that we have as coverage data a multiset of covered source
code lines for each source file and a set of all source code lines considered
for each file. Consequently, the previous color method getColor(Integer

location) is now defined as getColor(String file, int line), returning
the coverage color for a given source file at a given source line.

6.1.1.3 MultiLineCoverageMeasure

MultiLineCoverageMeasure inherits from LocationCoverageMeasure. This
class has an additional multiset of considered locations. Therefore it is possible
to look at the combination of multiple coverage criteria and build, for example,
an intersection of multiple coverage multisets.

6.1.1.4 VariableCoverageMeasure

As last interface implementation we discuss VariableCoverageMeasure. This
class also has two class fields representing the coverage data. One is a multiset
of all variables, the other of all relevant variables. Both use variables encoded
as Strings. The coverage is defined as the quotient of the element set sizes of
the multisets.

47

Figure 6.2: Class diagram of the collectors package.

6.2 Coverage Data Collectors

The coverage data collection is handled by the util.coverage.collectors

package. It consists of a CoverageCollectorHandler which hold all different
collector classes (cf. Fig. 6.2). Each collector class inherits basic collector
capabilities from the abstract class CoverageCollector and combines it with
collector-specific methods.

6.2.1 Coverage Collector Implementations

We have implemented two new classes and refactored two already existing
classes to accomplish the coverage data collection.

6.2.1.1 AnalysisIndependentCoverageCollector

The AnalysisIndependentCoverageCollector can be used during any kind
of verification analysis. It has methods for adding new visited locations or
lines. This class also holds references to a TimeDependentCoverageHandler

instance. The collector needs this instance to start the proper initialization of
the TDC. We have implemented a collect() method, which is called at the
end of the analysis. It is used to populate the coverage data for all initialized
measures.

48

6.2.1.2 PredicateAnalysisCoverageCollector

The PredicateAnalysisCoverageCollector class is designed similar like the
AnalysisIndependentCoverageCollector. The difference is that it is used
only for predicate analysis. Therefore this collector has many methods which
adds predicate analysis related coverage data to the set of CoverageStatistics.

6.2.1.3 ReachedSetCoverageCollector

In contrast to the two mentioned collectors, ReachedSetCoverageCollector
already existed in CPAchecker. It was slightly redesigned and renamed to fit
better into the collector structure. Hence, we remove the old coverage data
reference and add all relevant coverage data to local class fields, which are
later used for all initialized measures. This new design benefits from a smaller
coupling between the package components. We use at the end of the analysis
the ReachedSetCoverageCollector when we have a reached set as the basis
for the coverage collection.

6.2.1.4 CounterexampleCoverageCollector

In analogy to the ReachedSetCoverageCollector the same refactoring ap-
plies for the CounterexampleCoverageCollector class. The difference here
is that we use a counter example path instead of a reached set for cover-
age data collection. This more modular design has the advantage that if
we want to use an alternative implementation of this kind of coverage col-
lector, we do not need to change every occurrence of this collector in code,
instead we only need to switch the returned coverage collector instance within
the getCounterexampleCoverageCollector() method which is defined in
CoverageCollectorHandler.

6.2.2 Adding New Measures

When we want to add new measures in the future which belong to one of
the already discussed coverage categories, we need to define a new enum case
in CoverageMeasureType and extend the getCoverageMeasure() method by
the new case. This is needed to specify which coverage data we want to con-
sider for this measure. In addition, we need to locate the right child class
of CoverageCollector and add methods for coverage data gathering and re-
trieving. Everything else regarding the visualization and data processing is
automatically handled by the package.

49

6.3 Coverage CPAs

Next, we want to look at the cpa.coverage package. We redesign this pack-
age to adapt to the already proposed structure. To start with we have a
CoverageCPA class which is responsible for the coverage collection. It has a
method which is called getCoverageCollectorHandler(), which returns an
instance of the already discussed CoverageCollectorHandler. This handler
instance is initialized at the beginning of the analysis and is passed to the
CoverageCPA via reflection.

6.3.1 Analysis-Independent

This class implements the ConfigurableProgramAnalysis interface, which is
used for all CPAs in CPAchecker. It is the realization of the discussed four-
tuple CPA from Chapter 3.3.1. We also have a CoverageTransferRelation

class which implements the TransferRelation interface. Consequently, we
can customize the implementation of the getAbstractSuccessorsForEdge

method, which gets called by the CPA core algorithm. Within this method, we
use the proper coverage collector instance from CoverageCollectorHandler

instance to gather suitable coverage data during the transfer relation step. In
addition, we can track the elapsed time between the last data collection, which
is later used by the time-dependent coverage graph (TDCG).

6.3.2 Predicate Analysis

In contrast to the CoverageCPA class approach we do not need an analo-
gous implementation, since we can use the PredicateCPA and extend it by
a CoverageCollectorHandler instance which is passed from the beginning
of the analysis. If we specify in the configuration that we want to collect
predicate-analysis-related coverage data we return within the existing method
getTransferRelation() an instance PredicateCoverageTransferRelation
instead of PredicateTransferRelation. We define this new transfer relation
class analogously to the CoverageTransferRelation class. The difference
here is that we have specific processing methods to extract coverage-related
data, which the PredicateAnalysisCoverageCollector instance can then
collect. For example we have defined a processPredicates() method in
the PredicateAnalysisCoverageTransferRelation class which extracts all
predicates for a certain location and passes it a suitable collector.

50

6.4 Time-Dependent Coverage Graph (TDCG)

The TDCG data processing is handled by the util.coverage.tdcg pack-
age. Here we have TimeDependentCoverageData class which holds the ac-
tual data as a map. Since we can have different coverage criteria, we have
multiple TDCGs we need to distinguish from each other. To accomplish
this we have a TimeDependentCoverageType enum listing all types of TD-
CGs. The TimeDependentCoverageHandler class builds a connection between
each TimeDependentCoverageType entry to a TimeDependentCoverageData

instance. It is responsible for initializing data and works from outside as access
point to retrieve the appropriate TimeDependentCoverageData instance.

6.5 Statistics Report

We can specify in CPAchecker the option to generate a Report.html file when
the analysis is done. This can be useful for evaluating the analysis process.
We have adapted the already existing CoverageReportStdoutSummary class to
our new package structure. Its main purpose is to print all coverage data to the
standard output. It is also used to print for each of our coverage measures some
statistics. Those are displayed in the Code Coverage section in the Statistics
tab. Therefore it is possible to read with the help of an internet browser the
overall coverage value for each measure or the count value of its coverage data.

6.6 Visualization

The visualization of our approaches is realized, similar to the statistics report.
When the analysis is done, the collected data is processed in the already ex-
isting ReportGenerator to a JSON object which is used as part of the input
data for the report.js JavaScript file. The HTML report, which depends
on report.js has an additional menu tab item if TDC data exists and de-
picts the TDCG with the help of the D3 JavaScript library. D3.js is used for
manipulating documents based on data2. In addition, we have implemented
a selector within the TDCG tab view to allow the user to choose between
different coverage measures as the basis for the TDCG. We have created the
whole TDCG tab as part of this thesis. An example of how it looks is de-
picted in Fig. 6.3. We also implemented a coverage HTML selector for the
Source tab. Every coverage measure based on the LineCoverageMeasure is

2https://d3js.org

51

https://d3js.org

Figure 6.3: Screenshot of the report.html where the TDG tab is displayed with
an applied coverage visualization.

automatically shown as a visualization option within that selector. Depend-
ing on the implemented coverage criteria, the background of the source code
lines is colored when an option is selected. As an alternative approach, we
can also use coverage measures based on the VariableCoverageMeasure class
to color relevant variables occurring in the source code text. This kind of
visualization can also be selected within the Source tab in the same selector.
As third visualization approach we have implemented a selector for the CFA
tab (cf. Fig. 6.4). Depending on the selected coverage option, the nodes of
the CFA graph are colored depending on their coverage status, which is de-
fined in the LocationCoverageMeasure class. Since we use multisets for the
covered locations or source code lines, there is also support for coverage heat
maps. To accomplish this, we deduce the relative frequency of each location
or line by counting all the same occurrences and dividing it by the count of
the element with the highest occurrence. Therefore we can use this relative
frequency, which is a number between 0 and 1, and build a gradient of two
colors. When we look at Fig. 6.5, we see how this would look like for the
Source tab. All mentioned selector options are automatically filled with en-
tries that were relevant for the analysis. This means that if we do predicate
analysis, there are only visualization options for analysis-independent coverage
approaches and predicate analysis-specific coverage approaches but none for
any other analysis category.

52

Figure 6.4: Screenshot of the report.html where the CFA tab is displayed with
an applied coverage visualization.

Figure 6.5: Screenshot of the report.html where the Source tab is displayed
with an applied coverage visualization.

53

7
Evaluation

We want to compare the proposed verification coverage approaches to each
other on different programs and for different verification analyses. We also
show how time-dependent coverage graphs (TDCGs) look like for different pro-
gram scenarios. Moreover, we benchmark the additional time it needs to cal-
culate the coverage.

7.1 Setup

As verification framework we use CPAchecker revision r40819. The execution
system has a Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz CPU with 16GB
of RAM. The installed operating system is Ubuntu 20.04.4 LTS.

We select C-programs from SV-COMP 20221 [2]. The used specification
is given as a property file and consists of one line that includes the entry
function and a linear temporal logic (LTL) property. We take regarding LTL
the basic definitions from the literature [7]. More precisely, our specification
uses a main() function as entry point and checks if never a reach error occurs:

CHECK(init(main()), LTL(G ! call(reach error()))) (7.1)

A reach error only happens if a feasible path in the CFA contains a CFA edge
with reach error() as corresponding code. This reach error() function call
is contained at locations which should never be reached during program exe-
cution. We make use of this function in all of our programs for evaluating our

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

54

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

verification coverage measures. In the following, we list all of these programs
regarding their category:

• ReachSafety-Arrays

– array doub access init const.c (arra)

– brs1f.c (brs1)

– zero sum const1.c (zero)

• ReachSafety-BitVectors

– diamond 2-1.c (diam)

– jain 5-2 .c (jain)

– num conversion 2.c (num)

• ReachSafety-ControlFlow

– kbfiltr simpl1.cil.c (kbfi)

– s3 srvr 1b.cil.c (s3 s)

– test locks 7.c (test)

• ReachSafety-Loops

– multivar 1-1.c (mult)

– nested 1b.c (nest)

– simple vardep 1.c (simp)

• SoftwareSystems-DeviceDriversLinux64-ReachSafety

– 32 1 cilled ok nondet linux-3.4-32 1-drivers–acpi–bgrt.ko-
ldv main0 sequence infinite withcheck stateful.cil.out.i (32 1)

• SoftwareSystems-BusyBox-ReachSafety

– dirname-1.i (dirn)

Note that we will use in the following an abbreviation for each program which
consists of the first four characters and acts as an identifier. Regarding the
program choice, we limit our scope to ones which are suitable for reachsafety
analyses. We select programs depending on different statistics, like some with
relatively many conditions or some with many code lines (cf. Table 7.1). The
idea is to show the resulting coverage values for different common scenarios.

55

Table 7.1 Overview of C-programs for our evaluation. In the expected verdict
column we also put the result of our evaluation in parentheses if it differs.

Programs Total
Lines

Total
Func-
tions

Total
Condi-
tions

Total
Vari-
ables

Total
Loca-
tions

Expected
Verdict

arra 13 4 8 3 47 true (unknown)
brs1 28 4 14 4 63 false
zero 24 4 14 5 62 true (unknown)

diam 28 3 24 2 83 false
jain 11 3 2 2 32 true (unknown)
num 17 3 6 5 40 true

kbfi 380 12 82 56 399 true
s3 s 53 2 30 4 87 true
test 65 2 44 15 126 true

mult 10 3 4 2 37 true
nest 8 2 4 1 8 false
simp 12 3 4 3 33 true
32 1 2960 35 48 222 1024 true
dirn 585 17 68 186 832 true

7.2 Coverage Measure Overview

Before we show our results, we briefly want to give an overview of the measures
which we want to evaluate in Table 7.2. Note that we have shortened the
terms completeness of properties to property and completeness of verification
procedure to verification procedure. The column “Input Type” describes for
each coverage measure the kind of data the given input set is based on. Line-
based means we use covered source code lines as input, variable-based means
we look for covered program variables, and location-based analogously stands
for covered CFA locations.

56

Table 7.2 Overview of all mentioned verification coverage measures.

Measure Analysis
Type

Application
Purpose

Input Type Output
Domain

Visited-
Lines

independent property line-based ratio

Visited-
Variables

independent property variable-based ratio

Predicate-
Abstraction-
Variables

predicate
analysis

property variable-based ratio

Predicate-
Considered-
Locations

predicate
analysis

verification
procedure

location-based ratio

Predicate-
Relevant-
Variables

predicate
analysis

verification
procedure

location-based ratio

7.3 Program-Comparison of Measures

When comparing all proposed coverage measures for all mentioned programs,
we see in Table 7.3 that visited-variables coverage has, in most cases, the high-
est value. It is often 100%, meaning that we have considered every variable
within the program as covered. For the two programs of the category Soft-
wareSystems, we see that visited-variables coverage is less than 100%. In case
of the program dirname-1.i we have a coverage value of 96%. Since it is not
100%, this is an indication that possibly the program is not completely consid-
ered by the verifier. Consequently, we check in addition the visited-variables
coverage coloring for this program. Here we can indeed spot variables that
are not marked covered. For example some within the method vasprintf().
Further investigations lead to the discovery that this method is never called,
wherefore we can conclude that the verifier indeed did not verify the whole code
for reachsafety errors. Suppose we would add as the first statement within this
method a reach error() function call so that if one uses this method, it would
always fail, then the verifier will not detect this property violation since it was
never called during the main routine. With this information, the verification
engineer can now optimize this case.

When we compare visited-variables coverage to predicate-abstraction vari-
ables coverage we see that its value is always greater or equal. This behavior
is expected since we now also check if the variables were used within predicate
abstraction formulas to rule out potentially unused variables. This approach,

57

Table 7.3 Coverage values for all proposed measures for each mentioned pro-
gram from Table 7.1.

Programs Visited-
Lines

Visited-
Variables

Predicate-
Abstraction-
Variables

Predicate-
Considered-
Locations

Predicate-
Relevant-
Variables

arra 85% 100% 67% 45% 45%
brs1 96% 100% 50% 21% 21%
zero 67% 100% 60% 23% 23%

diam 96% 100% 50% 28% 28%
jain 91% 100% 100% 75% 75%
num 88% 100% 60% 70% 70%

kbfi 99% 100% 0% 25% 22%
s3 s 94% 100% 75% 22% 22%
test 97% 100% 0% 26% 26%

mult 80% 100% 100% 78% 78%
nest 100% 100% 100% 86% 86%
simp 83% 100% 100% 76% 76%

32 1 96% 81% 0% 58% 58%
dirn 90% 96% 0% 66% 66%

Figure 7.1: Fragment of the CFA from the C-program test locks 7.c which
shows the issue with predicate-considered locations coverage.

58

nevertheless, has some outliers where the actual value is 0%. This is due to
the reason that for some programs, we have no variables which we can ex-
tract from the predicate abstraction formula. These cases show that here the
predicate-abstraction variables coverage measure is not suitable since it does
not deliver helpful information.

We also can see that the coverage values of predicate-considered locations
are in most cases less than for the previously mentioned measures. To bet-
ter understand the reason behind this, we compare the program categories
Reachsafety-Loops and Reachsafety-ControlFlow for this measure. We can
detect for this comparison a general problem of predicate-considered locations
coverage. The values for our programs in Reachsafety-ControlFlow are much
lower than those for Reachsafety-Loops. This is due to the reason that when
we reach during the program analysis a branch within the CFA, there is the
possibility that we do not consider the following nodes as covered as we see, for
example, in Fig. 7.1. In detail, we see in this CFA that we do not mark any lo-
cations as covered after N32, since we have no predicate formula containing the
variable cond. This leads to the behavior that we do not consider all following
locations as covered, since their previous location was not considered covered.
On the other hand, we have many conditions in the Reachsafety-ControlFlow
category, wherefore we have a higher chance that we early reach a branch
where we do not have the variables of the condition contained in any pred-
icate formula and therefore exclude the following program paths. This path
exclusion leads to a generally lower coverage value. We want to note, that this
issue applies not for all programs, ideally we get throughout the analysis new
predicates so that we can reconsider uncovered locations as covered.

For predicate-relevant variables coverage, we have used a frequency thresh-
old of 75%, meaning that when we sort our set of variables depending on
their occurrence count in predicate formulas, we only consider the top 75%.
Nevertheless, we have for almost all program cases similar coverage values like
for predicate-considered locations coverage. This means that the lowest 25%
of variables did not make a significant difference regarding the coverage of
program locations.

59

Table 7.4 Coverage values for predicate analysis and value analysis for all
analysis-independent measures for each mentioned program from Table 7.1.

Programs Visited-
Lines
(predicate)

Visited-
Lines
(value)

Visited-
Variables
(predicate)

Visited-
Variables
(value)

kbfi 99% 94% 100% 100%
s3 s 94% 91% 100% 100%
nest 100% 88% 100% 100%
test 97% 97% 100% 100%
32 1 96% 96% 81% 81%
dirn 90% 90% 96% 96%

7.4 Analysis-Comparison of Measures

In this section, we want to compare our analysis-independent coverage mea-
sure approaches, when we vary the analysis type. Therefore, we compare the
visited-lines coverage measure and visited-variables coverage measure applied
to programs that were analyzed with predicate analysis and value analysis.
Note that for this comparison, we have excluded the cases where we had an
unknown result with value analysis so that we have for both cases the same
outcome and therefore we can better compare it.

We see in Table 7.4 that for visited-lines coverage we have slight variations.
On the other hand, visited-variables coverage is more stable between the two
analyses, which is preferable for an analysis-independent approach. In detail,
we see that for all of our programs in Table 7.4, we have the same coverage
values. Consequently, visited-variables coverage facilitates the comparison of
coverage values between different programs independently from the used anal-
ysis type.

7.5 Comparison of TDCGs

We want to compare the resulting time-dependent coverage graphs (TDCGs)
for three of the already mentioned programs. The goal of this section is to give
an overview how different verification coverage measures develop over time.

60

Figure 7.2: Comparison of resulting TDCGs for the programm test.

7.5.1 TDCGs for test locks 7.c

When comparing the top left and top right TDCG (cf. Fig. 7.2), we see
that for the first 200ms both coverage values have a relatively fast growth.
Afterward, the coverage for the predicate analysis stagnates for a long time
until the analysis finishes. On the other hand, the visited-lines coverage for
value analysis increases continuously until the end. This indicates that in the
case of value analysis, we progress slower regarding the visits of new code lines.
As expected, the predicate-considered locations TDCG is giving us a lower
coverage value since this approach tries to compensate the over-approximation
of considered locations. We also see that this coverage stagnates early, meaning
that we get no new location that we consider covered. For the bottom right
TDCG, we see a flat line where the coverage is at 0% throughout the analysis.
This is due to the reason that we always have true as predicate abstraction
formula, which does not contain any variable. Therefore, this TDCG gives us
almost no information except that we did not have any predicate-abstraction
variables at all.

61

Figure 7.3: Comparison of resulting TDCGs for the program s3 s

7.5.2 TDCGs for s3 srvr 1b.cil.c

We start again by comparing both top-located TDCGs in Fig. 7.3. This
time both graphs have a similar development. The only remarkable difference
here is that the first coverage stagnation level starts for predicate analysis at
about 40%, whereas for value analysis at about 20%. Again for the predicate-
considered locations TDCG, we have, in comparison, a lower coverage value,
which also stagnates early beginning after 60ms. The predicate-abstraction
variables TDCG shows clearly at which point a new single predicate-abstraction
variable was considered as covered. It behaves like a step function, where each
step represents a new variable.

7.5.3 TDCGs for nested 1b.c

For this program, we can see a fast growth of coverage for the visited-lines
coverage (for predicate analysis). This is due to the low initial precision,
which leads to an over-approximation of the visited states leading to many
visited lines. When we compare this to predicate-considered locations TDCG,
we see that with this approach we have a slower growth of coverage. Both
coverage measures start stagnating after 170ms. The predicate-abstraction

62

Figure 7.4: Comparison of resulting TDCGs for the program nest.

variables TDCG delivers in this example not much information since we only
have one variable for this program, and at that point where we have visited this
variable, we see no change in coverage. This is a good example that shows that
for programs with a relatively low amount of variables the predicate-abstraction
variable TDCG is not helpful.

7.5.4 Critical Reflection

We have seen that there is no universal TDCG solution that is useful for all pro-
gram cases. Visited-lines TDCG has the problem of fast over-approximation.
This issue is in the case of value analysis decreased, as we have seen. Predicate-
considered locations TDCG starts stagnating in its value relatively early. There-
fore, this approach has the potential to be optimized by finding a solution so
that it reconsiders program paths within the CFA, which were excluded in the
beginning. We did not show predicate-relevant-variables TDCG for our ex-
amples since it behaves similar to predicate-considered locations TDCG with
the difference that it covers fewer locations. Predicate-abstraction variables
TDCG can be helpful if our program does not have too few variables. There-
fore we can say that the choice regarding appropriate TDCGs depends on the
program. For example, visited-lines TDCG is a suitable choice for programs

63

belonging to the ControlFlow category where we use an analysis type that
does not lead to an over-approximation regarding the visits of new lines. For
programs that consist of many loops with a high iteration count, all TDCGs
have issues since we then cover the same lines, variables, or locations multiple
times but do not progress regarding covering new lines, variables, or locations.
In this case, a visualization approach like visited-lines heat map coloring or
considered-locations heat map coloring is more helpful since they would color
lines or locations which were relatively often visited.

7.6 Performance Costs

We want to clarify the additional performance costs of all proposed coverage
measures. Therefore, we benchmark the total CPU time of a set of C-programs
that belong to the SV-COMP 2022 Reachsafety category. In detail, we have
considered all programs from the following subcategories:

• ReachSafety-Arrays

• ReachSafety-BitVectors

• ReachSafety-ControlFlow

• ReachSafety-ECA

• ReachSafety-Floats

• ReachSafety-Heap

• ReachSafety-Loops

• ReachSafety-ProductLines

• ReachSafety-Recursive

• ReachSafety-Sequentialized

• ReachSafety-XCSP

• ReachSafety-Combinations

In total, we have 5400 programs. For determining the additional time, we use
the benchmarking framework BenchExec2 and for distributing the workload

2https://github.com/sosy-lab/benchexec

64

https://github.com/sosy-lab/benchexec

on multiple computers, we use the VerifierCloud3. CPAchecker contains a
benchmark.py script where we can set as input an XML file which specifies
which programs we want to verify. We set within this run definition also
further options like the time limit of 900 seconds, CPU core count of 2, and
a memory limit of 15GB. We then can run the verification tasks with the
specified options on a cluster consisting of 168 nodes. Each node has an Intel
Xeon E3-1230 v5 processor with 8 CPU cores at 3.40 GHz each and 32 GB
RAM. For the reference run, we specify to use predicate analysis with CEGAR
and turn any coverage collection mechanics off, whereas we turn all options on
for the run where we collect coverage data. The corresponding options, which
are triggers coverage collection and processing, are the following:

• -setprop shouldCollectCoverageAfterAnalysis=<boolean>

• -setprop shouldCollectCoverageDuringAnalysis=<boolean>

Note that for coverage collection, we also need to specify the CoverageCPA

which we have discussed in the Implementation chapter.

7.6.1 Results

The reference run needed a total CPU time of 2310000 seconds. The run
with active coverage collection needed a total CPU time of 2390000 seconds.
Therefore the additional time of coverage collection is 80000 seconds (needs
3.5% more time). The increase of runtime is not significant, wherefore it is
suitable to be turned on per default for reachsafety analyses.

3https://gitlab.com/sosy-lab/software/verifiercloud

65

https://gitlab.com/sosy-lab/software/verifiercloud

8
Conclusion and Future Work

We have shown multiple verification coverage measure approaches and classi-
fied them in our literature overview alongside the broad spectrum of verifica-
tion coverage definitions. Our goal was to help the verification engineer better
understand how much of the given program was already processed and covered
by the verifier. We have seen that there is no only solution to this, instead it
depends on the use case, for example, which analysis we use. We also separated
our ideas depending on the application purpose. Regarding completeness of
properties, we have shown that it can help to detect program analyses that
potentially have used an unsuitable specification for the problem case. For
completeness of verification procedure, we have seen that it is difficult to work
with just a single coverage number. Therefore we have focused our work on
appropriate visualizations like heat maps or time-dependent coverage graphs
(TDCG). Especially the last approach helps to show the verification engineer
at which point the growth of the used coverage data stopped or was highest.
Furthermore, the implemented TDG visualization offers not only the capabil-
ity to depict coverage-related graphs, it is also suitable for other potentially
interesting verifier-related data to be visualized.

The newly implemented coverage package in CPAchecker allows conve-
niently adding further measures, which can be printed to the stdout or visu-
alized within an HTML report. Future research could go in the direction of
further improving the proposed measures. For example, finding better heuris-
tics to consider variables as relevant for the measure predicate relevant vari-
ables coverage. There is also room for research for further coverage measures
belonging to other analysis types, like value analysis, which could give more
helpful coverage information than an analysis-independent approach.

66

A
Implementations

All project relevant code snippets are listed here chronologically in the order
I have used them.

A.1 Bubble Sort C-Program

C-program which shows a bubble sort implementation1. The code snippet basis
is taken from https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

-/blob/main/c/array-examples/sorting_bubblesort_ground-2.i.
We added two additional goto calls to indicate if the algorithm was suc-

cessful or not. We also have an additional unused swap helper method. In the
beginning we fill an array with integer values. Then the array elements should
be sorted in ascending order. In the end there is a check if the next element
within the array which should be sorted is greater then the previous element.

// SPDX−Fi leCopyr igh tText : The SV−Benchmarks Community
//
// SPDX−License−I d e n t i f i e r : Apache−2.0
int main () {

int a [1 0 0 0 0 0] ;

for (int j = 0 ; j < 100000; j++) {
a [j] = j ;

}

int swapped = 1 ;
while (swapped) {

swapped = 0 ;

1https://gitlab.com/sosy-lab/software/cpachecker/-/blob/

verification-coverage/test/programs/simple/arrays/bubblesort.c

68

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/array-examples/sorting_bubblesort_ground-2.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/array-examples/sorting_bubblesort_ground-2.i
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/verification-coverage/test/programs/simple/arrays/bubblesort.c
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/verification-coverage/test/programs/simple/arrays/bubblesort.c

int i = 1 ;
while (i < 100000) {

i f (a [i − 1] > a [i]) {
int t = a [i] ;
a [i] = a [i − 1] ;
a [i −1] = t ;
swapped = 1 ;

}
i = i + 1 ;

}
}

for (int x = 0 ; x < 100000; x++) {
for (int y = x + 1 ; y < 100000; y++) {

i f (a [x] < a [y]) {
goto ERROR;

}
}

}
goto SUCCESS;

SUCCESS:
return 0 ;

ERROR:
return −1;

}

int swap (int a [] , int i) {
int t = a [i] ;
a [i] = a [i − 1] ;
a [i −1] = t ;
return 0 ;

}

69

A.2 C-Program for Predicate-Considered-Locations

Coloring Comparison

C-program to show an use case for predicate-considered locations coloring.

int main () {
int i = 0 ;
int j ;

for (int k = 0 ; k < 100 ; k++) {
i++;

}

i f (i == 100) {
i = 0 ;

}

i f (i == j) {
goto SUCCESS;

}

for (; i <= 100 ; i++) {
i f (i == 100) {

goto ERROR;
} else {

j = 10 ;
}

}

SUCCESS: return 0 ;
ERROR: return −1;

}

70

Bibliography

[1] Dejanira Araiza-Illan, David Western, Anthony Pipe, and Kerstin Eder.
Coverage-driven verification —. In Nir Piterman, editor, Hardware and
Software: Verification and Testing, pages 69–84, Cham, 2015. Springer
International Publishing.

[2] Dirk Beyer. Progress on software verification: Sv-comp 2022. In Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 375–402. Springer, 2022.

[3] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker blast. International Journal on Software Tools
for Technology Transfer, 9(5):505–525, 2007.

[4] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp
Wendler. Conditional model checking: a technique to pass information
between verifiers. In Will Tracz, Martin P. Robillard, and Tevfik Bultan,
editors, 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November
11 - 16, 2012, page 57. ACM, 2012.

[5] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
software verification: Concretizing the convergence of model checking
and program analysis. In Werner Damm and Holger Hermanns, editors,
Computer Aided Verification, pages 504–518, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

71

[6] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for config-
urable software verification. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification, pages 184–190, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[7] Thomas Bunk. LTL software model checking in CPAchecker, 2019.

[8] Rodrigo Castaño, Vı́ctor A. Braberman, Diego Garbervetsky, and Se-
bastián Uchitel. Verification coverage. CoRR, abs/1706.03796, 2017.

[9] Ivan Chajda, Radomı́r Halaš, and Jan Kühr. Semilattice structures, vol-
ume 30. Heldermann Lemgo, 2007.

[10] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics
for formal verification. In Daniel Geist and Enrico Tronci, editors, Cor-
rect Hardware Design and Verification Methods, pages 111–125, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, sep 2003.

[12] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with pvs. In International Conference on Computer Aided Verification,
pages 72–83. Springer, 1997.

[13] Daniel Große, Ulrich Kühne, and Rolf Drechsler. Estimating functional
coverage in bounded model checking. In Rudy Lauwereins and Jan Mad-
sen, editors, 2007 Design, Automation and Test in Europe Conference and
Exposition, DATE 2007, Nice, France, April 16-20, 2007, pages 1176–
1181. EDA Consortium, San Jose, CA, USA, 2007.

[14] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. SIGPLAN Not., 37(1):58–70, jan 2002.

[15] M. A. Horowitz and R. C. Ho. Validation coverage analysis for complex
digital designs. In Computer-Aided Design, International Conference on,
page 146, Los Alamitos, CA, USA, nov 1996. IEEE Computer Society.

[16] K.A. Semendjajew I. N. Bronstein. Taschenbuch der Mathematik. Europa-
Lehrmittel, 10 edition, 2016.

[17] Charalambos Ioannides and Kerstin I. Eder. Coverage-directed test gen-
eration automated by machine learning – a review. ACM Trans. Des.
Autom. Electron. Syst., 17(1), jan 2012.

72

[18] Michael Katrowitz and Lisa M. Noack. I’m done simulating; now what?
verification coverage analysis and correctness checking of the dec chip
21164 alpha microprocessor. In Proceedings of the 33rd Annual Design
Automation Conference, DAC ’96, pages 325–330, New York, NY, USA,
1996. Association for Computing Machinery.

[19] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware
design: A survey. ACM Trans. Des. Autom. Electron. Syst., 4(2):123–193,
apr 1999.

[20] William KC Lam. Hardware design verification: simulation and formal
method-based approaches. Prentice Hall Professional Technical Reference,
2005.

[21] Te-Chang Lee and Pao-Ann Hsiung. Mutation coverage estimation for
model checking. In Farn Wang, editor, Automated Technology for Veri-
fication and Analysis, pages 354–368, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[22] Andrew Piziali. Functional verification coverage measurement and analy-
sis. Kluwer, 2004.

[23] Warren S Sarle. Measurement theory: Frequently asked questions.
Disseminations of the International Statistical Applications Institute,
1(4):61–66, 1995.

[24] Shuo Yang, Robert Wille, and Rolf Drechsler. Improving coverage of
simulation-based verification by dedicated stimuli generation. In 2014
17th Euromicro Conference on Digital System Design, pages 599–606,
2014.

73

	Introduction
	Motivation
	Formal Verification
	Comparison to Software Testing
	Contribution

	Literature Overview
	Verification Coverage in Hardware-Design Verification
	Verification Coverage in Formal Method-based Verification
	Verification Coverage in Simulation-based Verification

	Verification Coverage in Software Model Checking
	Completeness of Properties
	Completeness of Verification Procedure

	Classification of this Thesis

	Background
	Abstract Measure Definition
	-Algebra
	Measure Properties
	Normalization
	Verification Coverage Measure
	Growing Coverage Data

	Control Flow Automaton (CFA)
	Configurable Program Analysis
	CPA
	Abstract Domain
	Transfer Relation Operator
	Merge Operator
	Stop Operator
	CPA Algorithm
	Abstract Reachability Graph (ARG)
	Predicate Abstraction
	CEGAR
	Lazy Abstraction

	CPAchecker
	Predicate CPA
	HTML Report

	Verification-Coverage Measures
	Categorization of Verification Coverage
	Application Purposes
	Output Domains
	Nominal
	Ordinal
	Interval
	Ratio

	Input Domains
	Analysis Dependencies
	Verification Coverage with Predicate Analysis

	Approaches for Verification Coverage
	Completeness of Properties
	Visited-Lines Coverage Measure
	Visited-Variables Coverage Measure
	Predicate-Abstraction-Variables Coverage Measure

	Completeness of Verification Procedure
	Predicates-Considered-Locations Coverage Measure
	Predicates-Relevant-Variables Coverage Measure

	Time-Dependent Coverage (TDC)
	Basic Idea
	Implementation
	Requirements
	Visualization

	Verification Coverage Visualization
	Source Code Lines Visualization
	Visited-Lines Heat-Map Coloring
	Improvement
	Discussion

	CFA Visualization
	Visited-Locations Heat-Map Coloring
	Idea
	Discussion

	Considered-Locations Heat-Map Coloring
	Idea
	Discussion

	Predicate-Considered-Locations Coloring
	Idea
	Discussion

	Program Variable Visualization
	Visited-Variables Coloring
	Idea
	Discussion

	Predicate-Abstraction-Variables Coloring
	Idea
	Discussion

	Implementation
	Verification Measures
	Coverage Measure Implementations
	LocationCoverageMeasure
	LineCoverageMeasure
	MultiLineCoverageMeasure
	VariableCoverageMeasure

	Coverage Data Collectors
	Coverage Collector Implementations
	AnalysisIndependentCoverageCollector
	PredicateAnalysisCoverageCollector
	ReachedSetCoverageCollector
	CounterexampleCoverageCollector

	Adding New Measures

	Coverage CPAs
	Analysis-Independent
	Predicate Analysis

	Time-Dependent Coverage Graph (TDCG)
	Statistics Report
	Visualization

	Evaluation
	Setup
	Coverage Measure Overview
	Program-Comparison of Measures
	Analysis-Comparison of Measures
	Comparison of TDCGs
	TDCGs for test_locks_7.c
	TDCGs for s3_srvr_1b.cil.c
	TDCGs for nested_1b.c
	Critical Reflection

	Performance Costs
	Results

	Conclusion and Future Work
	Implementations
	Bubble Sort C-Program
	C-Program for Predicate-Considered-Locations Coloring Comparison

	Bibliography

