
Adjustable Block Analysis:
Actor-based Creation of Block
Summaries for Scaling Formal

Verification

Master’s Thesis
in Computer Science

22.02.2022

Ludwig-Maximilians-Universität München

Matthias Kettl

Supervisor: Prof. Dr. Dirk Beyer
Mentor: Thomas Lemberger

Abstract

Software quality assurance becomes more and more popular in modern soft-
ware development. Fixing bugs early, reduces the cost and increases the
quality of the product. Since a great portion of time is needed for debugging,
assisting techniques are integrated. Many techniques use formal verification
as a basis. Although formal verification is applied with great success to many
software development pipelines, the scalability is still a big challenge. In this
work, we introduce the concept of distributed CPAs (configurable program
analyses). The core idea is to partition the control flow automaton (CFA)
of a given input program in coherent blocks with one entry and one exit
node. Workers analyze every block parallely and broadcast new information
to every other worker. If a block contains an error location, the block is ana-
lyzed backwards from the error location. Whenever the analysis reaches the
top of the block, we ask whether other blocks can prove the error location
(un)reachable. For this, we reuse the results of previous verification runs
on other blocks. Our approach is easily extensible to support any existing
configurable program analysis and additionally allows an easy integration
of other concepts, e.g., fault localization. This work shows and explains the
implementation of a framework for distributed CPAs in CPAchecker. Fur-
thermore, we perform a thorough evaluation of the approach, showing that
our implementation is sound and matches the results of the existing predicate
analysis. Distributing the work to many workers improves the speed of the
analysis compared to running the complete analysis on only one worker. How-
ever, the great amount of transferred data between workers and additional
SAT-checks slow down the verification process causing more out-of-memory
errors and timeouts compared to the predicate analysis. Nonetheless, the
evaluation reveals the current bottle-necks and points us to potentially use-
ful and effective improvements for the future.

Contents

1 Introduction 9

2 Related Work 11
2.1 BAM . 11
2.2 Infer . 12
2.3 SynergiSE . 12

3 Background 13
3.1 Control Flow Automaton (CFA) 13
3.2 Decomposition of CFAs . 14
3.3 Messages . 15
3.4 Configurable Program Analysis (CPA) 15
3.5 Static Single Assignment . 20
3.6 SMT Solvers and Models . 21
3.7 Distributed CPA (DCPA) . 22
3.8 Actor Model . 24

4 Actor-Based Block Summaries for Formal Verification 25
4.1 Distributed Framework . 25
4.2 Distributed Predicate CPA . 37
4.3 Distributed Fault Localization 44

5 Implementation 50
5.1 Distributed Framework . 50
5.2 Distributed CPAs . 54
5.3 Distributed Fault Localization 59
5.4 Configurations . 59
5.5 Message Prioritization . 62
5.6 Visualization . 62

3

6 Evaluation 64
6.1 Setup . 64
6.2 Experimental Results . 66
6.3 Discussion . 80
6.4 Future Work . 82

7 Conclusion 86

4

List of Algorithms

1 Cpa adapted from [6] . 17

2 LinearDecomposition . 28
3 GivenSizeDecomposition 30
4 DcpaAlgorithm . 32
5 WorkerRoutine . 34

5

List of Figures

1 Code blocks for a given program 10

2 CFA for a given program . 13

3 Definition of the combine operator over sets 23
4 An actor model with 4 actors and 42 connections 24
5 Abstract depiction of a worker 25

6 Simplified worker schema . 26
7 Linear decomposition of a CFA 29
8 Result of GivenSizeDecomposition with s = 3 31
9 Result of GivenSizeDecomposition with s = 2 31
10 A program represented as CFA and Block Graph 41
11 UML diagram of available decomposers 50

12 UML diagram of a message 51
13 UML diagram of the connection types 52
14 UML diagram of workers . 54
15 UML diagram of abstract DCPAs 55
16 Possible configuration to run the distributed predicate analysis 61
17 Second, penultimate and last row of the visualized log 63

18 Problem with the proceed operator 65
19 Distributed verification with and without optimizations 66
20 Error location at the end of a merged block 69
21 Comparison of the memory usage 70
22 Comparison of the CPU time 72
23 Comparison of the wall time 73
24 Distributed verification with more hardware resources 75
25 Distributed verification on one block 76
26 Distributed verification versus BMC 76
27 Verification with compression 78

6

28 In-memory connection vs. network connection 79
29 Parallel contribution of workers to a proof 81

7

List of Tables

1 Possible values for each part of a message 15
2 Calculation of SSA-indices for forward analysis 20
3 Calculation of SSA-indices for backward analysis 21

4 Overview of responses of workers to certain message types . . 33
5 Overview of message types a worker can broadcast 34
6 Initial messages of all workers 42
7 First updates to the preconditions 43
8 Simplified preconditions for every workers 43
9 Fault localization by example 46
10 Distributed fault localization by example 48
11 Run-time comparison with n = 12. 49

12 All configurations . 60
13 Message types and their desired precedence 62

14 All benchmark configurations 67
15 Occurrence of different statuses. 67
16 Soundness of DCPAs . 68
17 Average wall time for calling each operator once. 73
18 Average wall time to find a correct proof or counterexample . 74
19 Comparison of the network connection with and without com-

pression . 77
20 Error-prone lines according to fault localization. 79

8

1 Introduction

Reducing the number of bugs in a program is one of the biggest challenges
in modern software development as the programs grow in size and the time
restrictions are dense [14]. In recent years, many techniques to tackle the
problem developed. Verification tools prove programs on certain properties.
In case of a property violation, developers are alarmed and try to fix the
problem. On top of that, fault localization and automatic program repair
techniques are integrated in a rising number of projects to improve the soft-
ware quality. Although the computation power increased, many programs
are to complex to be examined in a reasonable amount of time, not to men-
tion the additional time needed for fault localization and other techniques
that rely on verification results. In this work, we introduce the concept of a
distributed configurable program analysis to reduce the wall time of program
verification. The goal is to formalize and implement a concept to verify pro-
grams distributed on many workers. In our approach, every worker verifies a
coherent subspace of a program, called code block and communicates new re-
sults to all other workers in the manner of an actor model [15]. We consider
every worker as an entity of the actor model, having a pre- and a post-
condition. With the help of the pre- and post-conditions, workers summarize
their knowledge of their code block to subsequently generate new informa-
tion, needed by other workers. The pre- and the post-condition summarize
the knowledge of directly dependent code blocks. Every worker analyzes its
code block in two directions. Updates to the precondition cause a forward
analysis of the current block. Successive code blocks use the result of the
forward analysis again to update their precondition. If a forward analysis
reaches an error location, it starts a backward analysis from that location
in the input program. The worker communicates the result of the backward
analysis and asks them whether the error location is actually reachable. In
case, no block responses with another backward analysis, the program is safe.
Otherwise, we trigger the backward analysis on this code block and repeat the
procedure. However, if a satisfiable error condition reaches the program entry
point, we have proven the program unsafe. Figure 1 shows the decomposi-

9

1 int x = 0 ;
2 x++;
3 i f (x == 1) {
4 x++;
5 } else {
6 x==;
7 }
8 a s s e r t (x==0) ;

(a) Program

x = 0
x = x+ 1

B0

[x 6= 1]
x = x− 1

B1

[x = 1]
x = x+ 1

B2

[x = 0]
safe

B3

[x 6= 0]
error

B4

(b) Code blocks

Figure 1: Code blocks for a given program

tion of the given program into 5 blocks. Every program statement maps to
exactly one code block. After the decomposition, we spawn a worker for every
block. The workers start to analyze the blocks parallely. Initially, they start
with a forward analysis and the precondition true. Whenever the worker for
B0 finishes, it broadcasts the message x〈0〉 = 0∧x〈1〉 = x〈0〉+1. Subsequently,
the workers for blocks B1 and B2 update their precondition and schedule a
new forward analysis resulting in a stronger precondition for their respective
successors. The worker analyzing B4 runs into an error. Hence, it starts a
backward analysis and broadcasts the error condition x〈0〉 6= 0. Now, the
workers for B1 and B2 update their post-condition to x〈0〉 6= 0 and schedule
a backward analysis themselves.

We implement the described concept in CPAchecker a framework for
formal verification. Moreover, CPAchecker [7] is an excellent tool [2]
for formal verification. The components of a configurable program analy-
sis (CPA) fit our approach perfectly and allow an easy extension of any CPA
to a distributed CPA (DCPA). The integration of BenchExec [21] allows
an in-depth evaluation of the efficiency of our approach.

The following work explains the background knowledge needed for this
work and defines the concept of a distributed CPA. Moreover, we share im-
plementation details, improvements and possible other adaptions to our con-
figurable approach. At the end, we compare the distributed approach to the
default approach and point out the advantages and disadvantages. Addi-
tionally, we showcase the expandability of our technique by distributing an
already implemented fault localization algorithm.

10

2 Related Work

2.1 BAM

Block-abstraction memoization (BAM) [22] decomposes the control flow au-
tomaton (Definition 1) in arbitrary blocks. The decomposition is given by
the user. There is only one restriction to the blocks: they have to be nested
or pairwise disjoint. In other words, blocks B′ and B′′ only share common
locations if all locations of B′ are contained in B′′ or vice versa. Usually,
blocks summarize, e.g., function calls. The analysis can now calculate the
abstract reachability tree (ART) of each block and reuse known results later.
For this, every block is considered as one entity. The transfer relation (Def-
inition 9) supports blocks as single entities next to the standard transfer
over edges of the CFA. The advantage of nested blocks lies in the abstrac-
tion. Inner blocks may depend on less variables and thus the precision of
abstract states of parent blocks can be reduced to a smaller set of predicates
to track. However, exiting the block requires a strengthening to restore the
lost information. The approach has proven to increase the performance of
the predicate analysis by caching results of nested blocks.

In our approach blocks only have one exit and one entry node. Our
concept can be extended to blocks with multiple in- and output nodes but
subsequently the workers need to deal with more complex cases. Pre- and
post-conditions have to be stored separately for all in- and output nodes.
Reusing results can still be done but we would have to query the correct
messages instead of just taking the latest messages. In the future, we could
expand our block structure to arbitrary coherent blocks but the complexity
of the workers increases.

11

2.2 Infer

Another tool aiming at scalable verification is Infer1 from Facebook. To-
day, Infer is also developed by the community. Infer is an incremental
static analyzer integrated in the continuous integration of projects. Static
analyzers try to prove programs (un)safe without executing them. The tool
is widely used across projects of prestigious companies. The state space of
a program grows with the complexity of the code. Still, developers need the
verification result within approximately 10 minutes to continue the natural
workflow2. To rapidly report verification results, Infer implements separa-
tion logic [19]. Separation logic allows to reason on small parts of a program
instead of having the complete source code under analysis. Additionally,
Infer stores results of previous runs and reuses them whenever it is possi-
ble. The incremental approach scales well with big projects. Infer will not
report bugs twice. In case the developers ignore a reported bug, the tool
will not display it again, minimizing repeated reports of false alarms, again
contributing to the scalable approach.

2.3 SynergiSE

SynergiSE [20] distributes symbolic execution [18] to workers. Symbolic
execution introduces symbolic values for variables and tracks path constraints
over these symbolic values. The path constraints can be passed to an SMT-
solver that performs a SAT-check. Depending on the result of the SAT-check,
the path is deemed (in)feasible. SynergiSE explores symbolic paths to a
given depth. In case, a path is feasible, it assigns explicit values to every
symbolic variable resulting in a set of test-inputs. Running the program
with the calculated values as initial variable assignment is guaranteed to
reach the explored path to the given depth. Thus, we obtain a one-to-one
mapping of test-inputs to paths. Deepening the feasible ranges can now be
distributed over different workers. Whenever a worker succeeds, the results
can be shared across the workers. If a worker receives a test-input t and a
given depth d then it knows by definition that the path, reached with the
initial assignment t is feasible up to depth d. The worker does not need to
perform any SAT-checks allowing efficient sharing of solved path constraints.

1https://fbinfer.com/
2https://engineering.fb.com/2015/06/11/developer-tools/

open-sourcing-facebook-infer-identify-bugs-before-you-ship/

12

https://fbinfer.com/
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/

1 int x = 0 ;
2 i f (x <= 0) {
3 x++;
4 } else {
5 x==;
6 }
7 x = 2 * x ;

(a) Program

l0start

l1

l2 l3

l4

l5

x = 0

[x ≤ 0] [x > 0]

x = x+ 1 x = x− 1

x = 2 · x

(b) CFA

Figure 2: CFA for a given program

3 Background

3.1 Control Flow Automaton (CFA)

The control flow automaton (CFA) is a directed, potentially circular graph,
representing a program.

Definition 1 (Control Flow Automaton) Formally, the CFA is a triple
(L, l0, G) where L is the set of program locations, l0 ∈ L denotes the start
location and G contains all possible transition between the locations in L.
An edge g = (l, o, l′) ∈ G is an element of L × O × L, meaning that we can
reach l′ through l by executing o where o ∈ O resembles an operation, i.e.,
statements like x = x + 1; or assumes like [x < 2].

The following work uses CFA node synonym to a location l ∈ L and CFA
edge synonym to a transition g ∈ G. Figure 2 shows a CFA on the right-
hand side for the given program on the left-hand side. Every edge represents

13

one transition, e.g., the assignment x = 0 (first edge). The CFA branches,
whenever we reach conditional statements (if, for, while). The if-statement
in line 2 causes a branching because there are two possible paths, either
for x ≤ 0 or x > 0. For the construction of CFAs it does not matter
whether the path is actually feasible. In case our program contains functions
called multiple times, we inline the CFA of the function at the corresponding
positions to treat the program like no function calls exists.

3.2 Decomposition of CFAs

Code blocks are the unit we deal with in the further work. Every code block
is a coherent subgraph of the CFA. Hence, they are directed and perhaps
circular, too.

Definition 2 (Code Block) A code block B = (LB, lB0 , lBf
, GB) is a sub-

graph of the CFA (L, l0, G) where LB ⊆ L is the set of locations, lB0 ∈ LB
symbolizes the initial location and lBf

∈ LB symbolizes the final location of
that specific block. GB = {(l, ∗, l′)|(l, ∗, l′) ∈ G∧ l, l′ ∈ LB} contains all tran-
sitions of the block. Having exactly one start and one final location ensures
that every block has only one entry and one exit node by definition. A code
block is coherent, meaning all locations in LB are connected over transitions
in GB.

Definition 3 (Predecessor of a Code Block) Block B = (∗, ∗, lBf
, ∗) is

a predecessor of B′ = (∗, lB′
0
, ∗, ∗) if lBf

= lB′
0
. The function pred(B) returns

all predecessors of a block.

Definition 4 (Successor of a Code Block) Block B = (∗, lB0 , ∗, ∗) is a
successor of B′ = (∗, ∗, lB′

f
, ∗) if lB0 = lB′

f
. The function succ(B) returns all

successors of a block.

We can decompose the CFA in an arbitrary number of code blocks B. There
are two kinds of decompositions: strict and complete.

Definition 5 (Complete Decomposition of the CFA) We consider the
decomposition to be complete, if the union of the edges of all blocks B =
(LB, lB0 , lBe , GB) ∈ B contains all edges of the original CFA (L, l0, G). For-
mally, if

⋃
B∈BGB = G holds.

Definition 6 (Strict Decomposition of the CFA) We consider the de-
composition to be strict, if the intersection of the edges of all blocks B =
(LB, lB0 , lBe , GB) ∈ B is empty. Formally, if

∀B,B′ ∈ B : B 6= B′ ⇒ GB ∩GB′ = ∅

14

Table 1: Possible values for each part of a message

Message part possible values

τ
BlockPostcondition, ErrorCondition,
ErrorConditionUnreachable, Result, Error

id unique string identifying a block
lid CFA node ID as integer
ρ any JSON string

holds.

The following work assumes that every decomposition is both, complete and
strict, meaning that we can map every edge of the CFA to exactly one block.
Locations, on the other hand, will be part of multiple blocks.

Definition 7 (Real Decomposition of the CFA) We consider the decom-
position to be real if it is strict and complete.

3.3 Messages

In our actor model, the entities communicate over messages. Each message
consists of four parts: the message type τ , the ID of the sender id, the ID of
a target node lid and the payload ρ.

Definition 8 (Message) Formally, a message M can be written as a four-
tuple (τ, id, lid, ρ)

Table 1 lists all possible values for each part of the message. The id is a
unique string mapping to a code block. The message type τ has one of five
values indicating how the underlying analysis should process the message.
Code blocks react differently to every message type. Messages indicate the
location they originate from by providing the location ID stored in lid. We
assume that every location can be identified by an integer. The payload ρ
is an arbitrary JSON string varying in the structure based on the type τ .
Usually, ρ contains a key-value pair for each distributed CPA which brings
us to the following two sections, defining (distributed) CPAs.

3.4 Configurable Program Analysis (CPA)

Definition 9 (CPA) A configurable program analysis (CPA) [6] consists of
an abstract domain D, a transfer relation , a merge operator merge and a

15

stop operator stop. Formally, we write a CPA C as a four-tuple (D, , merge,
stop). A CPA operates on a CFA (L, l0, G). The following paragraphs explain
each of the four components in more detail.

3.4.1 Lattice

Before we continue with the definition of the components, we have to define
lattices. Lattices are based on a partial order v and operate on a set E. A
partial order is reflexive (∀e ∈ E : e v e), transitive (e v e′ ∧ e′ v e′′ ⇒
e v e′′) and antisymmetric (e v e′ ∧ e′ v e ⇒ e = e′). If we can find a
least upper bound in E for every possible subset of E, then (E,v,t,>) is a
semi-lattice. For two elements e, e′ ∈ E the operator t yields the least upper
bound of both elements. The top element > is an upper bound for every pair
of elements in E. Formally, we can define it as > =

⊔
E.

3.4.2 Abstract Domain

The abstract domain D = (C, E , J·K) is defined over a set of concrete states
C, a semi-lattice E = (E,v,t,>) and a concretization function J·K : E 7→ 2C

that maps an abstract state to a set of concrete states. The set E of our
semi-lattice represents the abstract states of the program under analysis.
Concrete states are states that our program can actually reach. Thus, an
abstract state may represent multiple concrete states since the abstraction
over-approximates.

3.4.3 Transfer Relation

The transfer relation
 ⊆ E ×G× E

computes all possible abstract successors of an abstract state when transi-
tioning over an edge g ∈ G.

3.4.4 Merge Operator

The merge operator
merge : E × E 7→ E

combines two abstract states to one abstract state without loosing any in-
formation. In fact, the new abstract state is an over-approximation of both
input states if the first abstract state is not subsumed by the second abstract
state. The merge operator is based on t. If we do not want to merge at all,
we can define mergesep(e1, e2) = e2.

16

Algorithm 1: Cpa adapted from [6]

Input: (D, ,merge, stop): CPA
Input: e0: with e0 ∈ E and E the lattice of D
Input: cfa: CFA, needed for
Output: R: reached set
Result: all reachable abstract states

1 waitlist = {e0};
2 reached = {e0};
3 while waitlist 6= {} do
4 choose e from waitlist;
5 waitlist = waitlist \{e};
6 for each e′ with e e′ do
7 for each e′′ ∈ reached do
8 enew = merge(e′, e′′);
9 if enew 6= e′′ then

10 waitlist = (waitlist ∪{enew} \ {e′′});
11 reached = (reached ∪{enew} \ {e′′});

12 if ¬stop(e′, reached) then
13 waitlist = waitlist ∪{e′};
14 reached = reached ∪{e′};

15 return R;

3.4.5 Stop Operator

The stop operator
stop : E × 2E 7→ B

decides whether a newly computed abstract state should be put in the wait-
list. The decisions is made with the help of a set of already reached states.
One possible implementation of a stop operator does not put new abstract
states in the waitlist if one of the contained states subsumes the current state.

3.4.6 CPA Algorithm

For completeness, we briefly present the CPA algorithm (from [6]). We start
with the waitlist and the reached set containing the inital element e0. As
long as the waitlist is not empty, we remove an element of it and compute the
abstract successors of it with the help of our transfer relation. Afterwards,
we merge every successor e′ with every existing element in the reached set.

17

We replace the existing element if the merge operator returns a new element.
The stop operator decides whether the current successor should be enqueued
in the waitlist.

3.4.7 Location CPA

We briefly cover the most important aspects of the location CPA (L). L
transfers from one location li to another location lj if there exists an edge
(li, ∗, lj) ∈ G in the CFA. With its help, we can track the current location of
abstract states. From now on, we assume that we know the exact location
of every abstract state produced by, e.g., the predicate analysis.

3.4.8 Predicate Analysis

In this work we focus on the predicate analysis with adjustable-block encod-
ing (ABE) although the presented work can easily be adapted to every kind
of CPA by extending it to a distributed CPA described in Section 3.7. We
will now elaborate the definition of the predicate analysis as an own CPA by
defining all the components of a CPA. We take the definition from [8].

Abstract Domain

The predicate abstract state (l, ψ, lψ, φ) ∈ (L∪{l>})×P×(L∪{l>})×P is a
four-tuple, where l represents the current location, lψ the location of the last
abstraction, ψ a Boolean combination of predicates in our precision π and φ
a (disjunctive) path formula. P denotes the set of predicates. The location
l> is the top element of a semi-lattice over the program locations. Hence,
the least upper bound for any two distinct locations equals l>. The reflexive
property implies that the least upper bound location of equal locations is
again that location. The top element of predicate abstract states equals
(l>, true, l>, true). We order the abstract states e′ = (l1, ψ1, l

ψ
1 , φ1) and e′′ =

(l2, ψ2, l
ψ
2 , φ2) as follows:

e′ v e′′ ⇔ (e′′ = >) ∨ ((l1 = l2) ∧ (ψ1 ∧ φ1 ⇒ ψ2 ∧ φ2)).

The concretization function maps an abstract state to concrete states that
fulfill φ. The precision π is a finite set of predicates that is implied by actual
executions of the program at the current location.

18

Transfer Relation

The transfer relation contains all triples (e, g, e′) for g = (l1, o, l2) ∈ G,
e = (l1, ψ1, l

ψ
1 , φ1) and e′ = (l2, ψ2, l

ψ
2 , φ2) such that the the following holds:{

φ2 = true ∧ (ψ2 = (SPo(φ1 ∧ ψ1))
π(l2)) ∧ lψ2 = l2 if blk(e, g) ∨ (l′ = lE)

(ψ2 = SPo(φ)) ∧ (ψ2 = ψ1) ∧ (lψ2 = lψ1) otherwise
.

The strongest post operator SP returns the strongest Boolean combination
of predicates in π at a specific location when transferring with the operation
o. The user decides when the block operator blk returns true. Either, blk
returns true after a given number of operations or on certain locations, e.g.,
locations right before function calls or loop heads.

Merge Operator

The merge operator for e′ = (l1, ψ1, l
ψ
1 , φ1) and e′′ = (l2, ψ2, l

ψ
2 , φ2) is defined

as follows:

merge(e′, e′′) =

{
(l2, ψ2, l

ψ
2 , φ1 ∨ φ2) if (l1 = l2) ∧ (ψ1 = ψ2) ∧ (lψ1 = lψ2)

e′′ otherwise
.

Two states are combined if they are on the same location and equal abstrac-
tions were computed on the same location.

Stop Operator

The stop operator checks if any state in the reached set already covers the
current state. In case, one of the abstract states in the reached set does, the
stop operator does not add the current state to the waitlist.

3.4.9 Analysis Direction

Since the CPA runs on the CFA (L, l0, G), we can simply flip all edges and
construct a new CFAT (L,LF , G

′) with G′ = {(l′, ∗, l)|(l, ∗, l′) ∈ G}. LF
marks the former last location as the new initial location. CFAT allows the
execution of a backwards analysis. In reality, there are more adaptions to
make to enable a backwards analysis. For the sake of simplicity, we omit
these adaptions and assume that any CPA can run backwards if we flip the
edges of a CFA. Analogously, code blocks can be flipped, too. We denote the
reversal of a block B with BT .

19

Table 2: Calculation of SSA-indices for forward analysis

SSA-map code path formula updated SSA-map

{x : 0} x = x + c; x〈1〉 = x〈0〉 + c {x : 1}
{x : 0, y : 0} x = x + y; x〈1〉 = x〈0〉 + y〈0〉 {x : 1, y : 0}
{x : 0, . . . } x = v; x〈1〉 = v {x : 1, . . . }
{x : 0, . . . } [x == x + v] x〈0〉 = x〈0〉 + v {x : 0, . . . }

Definition 10 (Reversed Block) Formally, BT = (LB, lBf
, lB0 , G

′
B) for a

block B = (LB, lB0 , lBf
, GB), where G′B = {(l′, ∗, l)|(l, ∗, l′) ∈ GB}.

Nevertheless, one distinction has to be made. The path formulas have to
be built differently, when traversing the block backwards. The next section
explains what path formulas are and how they are adapted.

3.5 Static Single Assignment

3.5.1 Forward Analysis

The predicate analysis computes path formulas for all possible paths in a
CFA. These formulas can be constructed rooted on the operation o of an
edge (l, o, l′) ∈ G. To keep it simple, we limit the set of operations O to as-
sumes (e.g., [x == 5]) and arithmetic statements (e.g., x = x + y;). The static
single assignment map (SSA-map) maps the current static single assignment
index (SSA-index) to the corresponding variable. Initially, all variables are
indexed with 0. After a new value is assigned to a variable, the index in-
creases by 1. We denote a constant value with c and a constant value or a
variable with the letter v. We need the SSA-indices to let SMT-solvers prove
formulas (un)satisfiable. Without SSA-indices, the path formula x = x + 1
already becomes unsatisfiable because there exists no number that equals its
successor. With SSA-indices the path formula equals x〈1〉 = x〈0〉 + 1 and we
can provide a satisfying assignment, e.g., x〈1〉 = 1 ∧ x〈0〉 = 0. Table 2 gives
four examples. Assume statements (fourth row in Table 2) do not change
SSA-indices. Whenever we assign new values to a variable, we increase the
index by 1. The right-hand side remains unchanged (c.f., third row in Ta-
ble 2).

20

Table 3: Calculation of SSA-indices for backward analysis

SSA-map code path formula updated SSA-map

{x : 0} x = x + c; x〈0〉 = x〈1〉 + c {x : 1}
{x : 0, y : 0} x = x + y; x〈0〉 = x〈1〉 + y〈0〉 {x : 1, y : 0}
{x : 0, . . . } x = v; x〈0〉 = v {x : 1, . . . }
{x : 0, . . . } [x == x + v] x〈0〉 = x〈0〉 + v {x : 0, . . . }

3.5.2 Backward Analysis

For the backward analysis, the construction of the SSA-indices is slightly
different. While assume edges are handled in exactly the same way as shown
in Table 2, arithmetic statements now assign the increased index on the right-
hand side instead of the left-hand side. Contrary to the forward analysis,
assignments where the variable does not occur on the right-hand side of the
assignment stay unchanged regarding the SSA-indices. However, we increase
the SSA-index of the variable afterwards (c.f., third row in Table 3, the index
is 1 but the formula is instantiated with 0).

3.6 SMT Solvers and Models

SMT solvers (like MathSat5 [11] or Z3 [13]) check formulas for satisfiabil-
ity. A formula is satisfiable if there exists a value for every variable in the
formula without provoking a contradiction. There may be infinite possibil-
ities. Contrary, if the SMT solver does not find a solution, the formula is
considered unsatisfiable. A model of a formula is one concrete example of
a valid variable assignment. The formula false is unsatisfiable by definition.
Hence, true is satisfiable by definition. We continue with an example for an
non-trivial unsatisfiable formula:

x〈0〉 < 5 ∧ x〈1〉 = x〈0〉 + 1 ∧ x〈1〉 = 6.

There are no values for x〈0〉 and x〈1〉 that satisfy the formula since the addition
of 1 to a number less than 5 never equals 6. One small change makes the
formula satisfiable:

x〈0〉 ≤ 5 ∧ x〈1〉 = x〈0〉 + 1 ∧ x〈1〉 = 6.

The variable assignment x〈0〉 = 5, x〈1〉 = 6 does not provoke a contradiction
and thus is a model of the formula. In fact, it is the only model for the given
formula.

21

3.7 Distributed CPA (DCPA)

Definition 11 (DCPA) A DCPA (distributed configurable program anal-
ysis) is a five-tuple (C, serialize, deserialize, proceed, combine) operating
on one code block in B. C denotes an arbitrary CPA with the semi-lattice
EC = (E,v,t,>) as defined in Definition 9. In addition, we define M as
the set of all possible messages (Definition 8). We extend C to a distributed
CPA with the implementation of the four above-mentioned operators.

To avoid misunderstandings, we always use the term CPA to address the
classic CPA defined in Definition 9 and the term distributed CPA or DCPA
to address the distributed CPA as defined in Definition 11.

3.7.1 Serialize Operator

The serialize operator
serialize : E 7→ M

takes an abstract state and transforms it into a message m.

3.7.2 Deserialize Operator

The deserialize operator

deserialize :M 7→ E

takes a message and transforms it into an abstract state e ∈ E.

3.7.3 Combine Operator

The combine operator
combine : E × E 7→ E

takes two abstract states and computes one abstract state representing both
states if possible. For some CPAs the merge operator of C suffices to combine
states. The combine operator can be extended to accept sets of abstract
states as input. The definition of combineE is as follows (E ⊆ E):

22

combineE(∅) = > (1)

combineE({e1}) = e1 (2)

combineE({e1, e2}) = combine(e1, e2) (3)

combineE({e1, e2} ∪ E) = combineE({combine(e1, e2)} ∪ E) (4)

Figure 3: Definition of the combine operator over sets

Lines (1) and (2) show the base cases. The operator combineE returns > if
the given set is empty. For sets of size one, the operator just returns the one
element. If a set consists of exactly two elements, we combine them using
the default combine operator discussed above (3). For sets with at least 3
elements, we call combineE recursively. The recursive call reduces the size
of the input set by one as two of its states are combined with the default
combine operator. The new state is re-added to the input set (4).

Changing the combine operator to return and accept sets of abstract
states (combine: 2E 7→ 2E) instead of only combining two abstract states to
one, is also possible. Our analysis will then consider multiple initial abstract
states and compute successors for all of them.

3.7.4 Proceed Operator

The proceed operator
proceed :M 7→ B× 2M

takes a message and decides whether the distributed analysis should go on.
It returns a Boolean value v ∈ B = {true, false} together with a set of
messages with which the block analysis should continue or stop. The proceed
operator can be based on the stop operator of C if we deserialize the message
first. The proceed operator has to return (false, *) if the given message
represents an abstract state that cannot be reached via this block. This is,
for example, the case if a message contains a predicate abstract state with
the path formula false. Additionally, the proceed operator returns (false, *)
whenever the target location lid does not match the respective block entry
point.

3.7.5 Loops

In some cases, DCPAs operate on blocks where the initial location equals the
final location. This happens, for example, if the block contains a full loop

23

Figure 4: An actor model with 4 actors and 42 connections

of the CFA. DCPAs on loops trigger an endless forward analysis initially
because they do not know the necessary information of the predecessors that
satisfies the abort condition of the loop. To overcome this problem, DCPAs
have the characteristic to stop whenever they reach the final location after the
initial location has already been visited. Afterwards, they broadcast the new
information. Since such blocks are their own predecessors and successors,
they receive their own message. By deserializing their own message, they
continue with one more iteration of the loop. This guarantees to unroll the
loop as far as necessary. At some point, the precondition of the block is strong
enough to exit the loop eventually, i.e., stop calculating new messages. Thus,
neither the forward nor the backward analysis can ever enter an endless loop.
In the worst case, a worker produces infinite messages but it will never be
stuck in an endless loop.

3.8 Actor Model

In an actor model [15], every entity is an actor that broadcasts new informa-
tion with a message to all other actors including itself. Thus, n actors have
a total of n2 connections. The messages are the unit of the actor model. If
an actor receives a message it decides on its own whether the information
is valuable. Respectively, the information is kept or discarded. Each actor
works separately and independently on kept messages. Figure 4 shows an
example with 4 actors and 16 connections.

24

DCPAF

DCPAB

ignore

W1

. . .

Wn−1 Wn

τ = BP

τ = EC

else

m
1

. . .

mn−1

{m
BP/EC}

{mEC(U)}

∅

Figure 5: Abstract depiction of a worker. The worker receives n−1 messages
from other actors and triggers different analyses based on the message type.

4 Actor-Based Block Summa-
ries for Formal Verification

4.1 Distributed Framework

4.1.1 Basic Idea

The basic idea is that every worker verifies one block B, i.e., a subgraph of the
CFA with a distributed CPA. All results of the analyses, i.e., abstract states
are transmitted to all other workers that consequently adapt their pre- and
post-conditions. First, we describe the structure of a worker with the help of
Figure 5. On the left hand side, we see workers W0 to Wn−1 sending messages
to worker Wn. Wn collects the messages at the entry point (�). Afterwards,
the worker processes every message one by one. Depending on the type τ of a
message, the worker schedules different tasks. A message with type τ = BP
(for BlockPostcondition) is followed by a distributed forward analysis,
resulting in either a new message of type BlockPostcondition or in a
message of type ErrorCondition in case the forward analysis reaches an
error location. For τ = EC (for ErrorCondition) the worker runs a back-

25

ψP

φp

ψS

φS

DCPAF

DCPAB

trigger inform

Figure 6: Simplified worker schema

ward analysis either resulting in a message telling the other blocks that the
previous error condition is not reachable via this block or a new stronger error
condition. Other messages are ignored or cause the worker to shutdown. To
put it in another way, messages with the type τ = BlockPostcondition
update the precondition ψ of a worker. Their combination via the combine
operator implies what has to be valid at the initial location of a block. With
that in mind, we can simplify the schema in Figure 5 to the schema depicted
in Figure 6. Our worker has a precondition ψP that holds at the initial lo-
cation of its block. The combination of the received messages of type τ =
BlockPostcondition of all predecessor blocks form our precondition ψP .
We only need the messages from our predecessor blocks since they contain the
information for our initial location. Whenever our precondition is updated,
we run a new forward analysis. Eventually, we get new abstract states at the
final location of our block. The worker combines these states, serializes them
and broadcasts them. The successors update their preconditions and run a
forward analysis by themselves based on that message. Additionally, the for-
ward analysis informs the backward analysis about its recent results. Later,
we will see why. If the forward analysis reaches an error location, it triggers
a backward analysis, starting from the error location and trying to reach the
initial block location. The resulting message updates the post-conditions φP
of all predecessors.

If a successor updates the post-condition of a worker, the worker runs
a backward analysis. But first, it uses the already computed results from
own forward analyses if they are already available (depicted by the arrow
“inform” from DCPAF to the post-condition). Since the forward analysis
already reached the final location of the block the worker is able to check if
the latest message of the forward analysis satisfies the current post-condition.
The distributed predicate analysis would check, whether u(φS)∧u(ψ) is satis-
fiable. For this check, the uninstantiate function u described in Section 4.2.1
comes in handy, as the most recent state of a variable is given by the variable
instantiated with index 0. If this is not the case, we can abort the calcu-

26

lation as the error condition is proven unreachable via this block. We can
decline error conditions in this case since the latest computed precondition
for successors suffices to provoke a contradiction and so will any preciser pre-
condition in the future. Since the post-condition of a successor ends on the
final location of the current block, we can simply conjunct both formulas and
perform a SAT-check. In general, the proceed operator should return false
if the two conditions are not compatible. The defined proceed operator in
Section 4.2.2 for the distributed predicate analysis satisfies this requirement
with Case 2.2.

4.1.2 Decomposition of CFAs

Before we describe one possible approach to decompose a CFA, we have to
define merging locations and branching locations.

Definition 12 (Merging Locations) A location lM ∈ L of a CFA (L, l0, G)
is called merging location if it has at least two entering edges, i.e., |{(l, ∗, l′) ∈
G | l′ = lM}| ≥ 2

Definition 13 (Branching Location) A location lD ∈ L of a CFA (L, l0, G)
is called branching location if it has at least two outgoing edges, i.e., |{(l, ∗, l′) ∈
G | l = lD}| ≥ 2

Definition 14 (X-Location) A location l is called X-node or X-location if
it is either a branching location or a merging location.

Note, that a node can be both, a branching and a merging location. We can
get a real decomposition of a CFA if every block B ∈ B starts with a branch-
ing/merging node and ends with the next reachable branching/merging node
if one follows the outgoing edge(s) from the start node.

Linear Decomposition

Algorithm 2 shows the procedure to obtain the desired decomposition. In
line 1 we create our setR of known merging/branching nodes, called X-nodes
from now on. The set C contains all covered X-nodes and B will store all
found blocks. The following while-loop in line 4 calculates all code blocks.
First, we remove the already covered X-nodes from R as a cyclic subgraph of
the CFA may end on an already processed X-location. Afterwards, we add
all remaining elements to C because they get covered in the upcoming for-
loop. We now compute all paths to every directly reachable X-node starting
at l0. This means that a path does contain exactly two X-nodes, namely l0

27

Algorithm 2: LinearDecomposition

Input: (L, l0, G): CFA
Output: B: Set of blocks
Result: Decomposes the CFA to code blocks and stores them in a set

1 R = {l0}; // merging/branching nodes

2 C = {}; // covered merging/branching nodes

3 B = {}; // found code blocks

4 while |R| 6= 0 do
5 R = R \ C;
6 C = C ∪ R;
7 for l0 ∈ R do
8 for p = (l0, . . . , ln) ∈ allPathsToFollowingXNodes(l0) do
9 LB =

⋃
l∈p{l};

10 GB =
⋃

0≤i<n{(li, ∗, li+1)};
11 B = B ∪ {(LB, l0, ln, GB)};
12 R = R∪ {ln};

13 return B;

and ln. In programs with loops ln may equal l0. Subsequently, we transform
every found path to a block node. The block node consists of the locations
LB (all locations that are part of path p), the edges GB (all edges between
consecutive locations in path p), the start location l0 and the final location
ln. All ln are X-nodes and thus we add them to the set R. Eventually, there
are no X-nodes left in R and the calculation finishes by returning all block
nodes. Sometimes, our approach benefits from less blocks as this reduces the
number of messages sent between our actors. The decomposition presented in
Algorithm 2 usually produces many code blocks resulting in many actors. The
name LinearDecomposition is derived from the fact that no code block
contains a branching (linear blocks). Figure 7 demonstrates how the linear
decomposition works on an example CFA known from Section 3.1. We start
at the entry node l0. Now, we compute all direct paths to successive X-nodes.
In this case, our only path p consists of one transition (l0, x = 0, l1) ∈ G. We
add this path as a new block B = ({l0, l1}, l0, l1, {(l0, x = 0, l1)}) to B and l1
is added to R. Next, we calculate all paths from l1 to successive X-nodes.
This time we get two paths, p1 = ((l1, [x ≤ 0], l2), (l2, x = x + 1, l4)) and
p2 = ((l1, [x > 0], l3), (l3, x = x − 1, l4)). We add both paths as blocks to B
and l4 to R. We repeat this until we cannot find paths anymore. Eventually,
we reach location l5 and stop. Finally, we obtain the four linear blocks B0,

28

l0start

l1

l2 l3

l4

l5

x = 0

[x ≤ 0] [x > 0]

x = x+ 1 x = x− 1

x = 2 · x

(a) CFA

x = 0

B0

[x ≤ 0]
x = x+ 1

B1

[x > 0]
x = x− 1

B2

x = 2 · x
B3

(b) Block nodes according to Lin-
earDecompistion

Figure 7: Linear decomposition of a CFA

B1, B2 and B3. For the sake of simplicity, we do not draw the subgraph
within a code block if it is linear (c.f. Figure 7 b)). The algorithm matches
Definition 7 of a real decomposition.

Given Size Decomposition

As mentioned above, the LinearDecomposition algorithm produces many
blocks. Later, we will see that every block needs one worker and thus an extra
thread. Many blocks, i.e., workers need more resources. To encounter this
issue, we introduce the GivenSizeDecomposition.

Algorithm 3 shows the procedure for the reduction of blocks B over a CFA
(L, l0, G) converging against the given number s. First, we run LinearDe-
composition on the given CFA to get linear blocks. Afterwards, we store
the initial location (l0) and the final location (lf) of each node in a separate
set H. This enables us to create an entryPointMap in line 3 that maps every
tuple of initial and final location in H to all blocks matching (∗, l0, lf , ∗),
i.e., having the exact same entry points. Then, we enter the first for-loop.
We iterate over all tuples containing the entry points and the corresponding
set of blocks B. We combine all blocks in B to one block by merging the
locations and the edges. We exit the for-loop as soon as we reach the desired
number of blocks s or there are no mergeable blocks left. If s is still less

29

Algorithm 3: GivenSizeDecomposition

Input: (L, l0, G): CFA
Input: s: desired number of code blocks
Output: B: Set of blocks
Result: Decomposes the CFA to code blocks and stores them in a

Block Tree
1 B = LinearDecomposition((L, l0, G));
2 H = {(lB0 , lBf

)|B ∈ B};
3 entryPointMap = {((lB0 , lBf

), {B|B = (LB, l
′
B0
, l′Bf

, GB) ∈
B ∧ (lB0 , lBf

) = (l′B0
, l′Bf

)})|h ∈ H};
4 for ((l′B0

, l′Bf
),B) ∈ entryPointMap ∧ s < |B| ∧ |B| > 1 do

5 B = B \ B;
6 LB =

⋃
(LB′ ,∗,∗,∗)∈B LB′ ;

7 GB =
⋃

(∗,∗,∗,GB′)∈BGB′ ;

8 B′ = (LB, l
′
B0
, l′Bf

, GB);

9 B = B ∪ {B′}
10 for B = (LB, ∗, lBf

, GB) ∈ B ∧ s < |B| do
11 B = succ(B); // c.f. Definitions 3 and 4

12 if |B| = 1 then
/* Assume B = {BS} */

13 if |pred(BS)| = 1 then
14 B = B \ (B ∪ {B});
15 B = B ∪ {(LB ∪ L′B, lB0 , lBf

, LG ∪ L′G)|(L′B, ∗, ∗, L′G) ∈ B};

16 return B;

than the number of blocks in B we apply another merge strategy, starting
at line 10. For every block with the final location lf , we count the number
of blocks with the initial location lf . In case, there is exactly one block with
the initial location lf , we can merge both blocks if the second block has only
one predecessor as they are direct successors (c.f. Figure 9b).

We let the GivenSizeDecomposition run on the CFA from before and
set s = 3. As described above, blocks B1 and B2 have the same initial and
final location and thus can be merged. Since, we found a decomposition hav-
ing exactly 3 blocks the algorithm stops. The result can be seen in Figure 8.
However, if we set s = 2 initially, the algorithm would still exit the first
for-loop because there are no nodes left to merge horizontally, but it would
enter the second for-loop as there are nodes that potentially can be merged

30

x = 0

B0

[x ≤ 0]
x = x+ 1

B1

[x > 0]
x = x− 1

B2

x = 2 · x
B3

(a) Code blocks according to
LinearDecomposition

l1

B1’

l2 l3

l4

x = 0

B0

x = 2 · x
B3

x ≤ 0 x > 0

x++ x--

(b) Merging former blocks B1 and B2
into B1’

Figure 8: Result of GivenSizeDecomposition with s = 3

l1

B1’

l2 l3

l4

x = 0

B0

x = 2 · x
B3

x ≤ 0 x > 0

x++ x--

(a) Decomposition in 3 blocks

l1

B1”

l2 l3

l4

l5

x = 0

B0

x ≤ 0 x > 0

x++ x--

x = 2 · x

(b) Decomposition in 2 blocks

Figure 9: Result of GivenSizeDecomposition with s = 2

vertically. Consider block B1’ as the current block in the for-loop in line 10.
The final location of B1’ equals l4 and there is only one block, namely B3,

31

Algorithm 4: DcpaAlgorithm

Global: B = (LB, lB0 , lBf
, GB): code block

Global: (C, serialize, deserialize, proceed, combine): DCPA
Input: msg: Message
Output: Set of messages

1 shouldProceed, M = proceed(msg);
2 if ¬shouldProceed then
3 return M;

4 e0 = combineE({deserialize(m) |m ∈M}); // get initial state

5 R = Cpa(C, e0, B); // run CPA

6 response = combineE({e| e ∈ R \ {e0} ∧ location(e) = lBf
});

7 return {serialize(response)}; // serialize knows type τ
Result: The answer to msg

with the initial location l4. Hence, we can merge them vertically. The result
is depicted in Figure 9. Again, this algorithm satisfies our Definition 7 of
a real decomposition. In some cases, Algorithm 3 fails to reach the desired
number of blocks. It will merge all possible blocks and returns them instead.

If we cannot reach the desired number of blocks after the first run, we can
repeatedly apply the GivenSizeDecomposition. We stop if the number
of blocks does not change anymore.

4.1.3 Algorithm for Distributed Analysis

Algorithm 4 shows the basic concept of every distributed CPA. At the be-
ginning, we check whether the DCPA lets us proceed by calling its proceed
operator. It returns a Boolean value shouldProceed and a set of messages M
(line 1). Now, we check whether shouldProceed equals false and return M if it
is the case (lines 2 and 3). Otherwise, we deserialize all messages in M and
combine them to one abstract state e with the help of the combine operator
(line 4). Next, we run the normal CPA C on our block B with the initial
abstract state e0. The CPA returns the set of reached abstract states R.
We extract all abstract states at the final location lBf

of our block B. Since
there is the chance that the final location equals the initial location, we have
to remove e0 from this set. Finally, we combine valid abstract states to one
abstract state and return the serialized version of it as a singleton set. The
initial messages of type BlockPostcondition comply with the concept of
large block encoding [4] as either a sequence of statements or a choice of paths
is generated. The latter is only possible with the GivenSizeDecomposi-

32

Table 4: Overview of responses of workers to certain message types

Worker BP EC ECU R E

Analysis Worker DCPAF DCPAB - E E
Fast Analysis Worker DCPAF DCPAB - E E
Fault Loc. Worker DCPAF DCPAB + FL - E E
Root Worker - DCPAB - E E
Result Worker - adapt counter adapt counter E E
Timeout Worker - - - E E
Visualization Worker log log log E E

tion. Instead of rescheduling a new forward analysis, we could also conjunct
the precondition of a worker with the results of the initial forward analysis.

4.1.4 Distributed Verification on Merged Blocks

In Section 4.1.2, we show an algorithm to merge blocks (GivenSizeDecom-
position). This leads to blocks containing both, an error location and a
reachable location at the block end. Blocks with this property send multiple
messages. One message of type BlockPostCondition and one message
of type ErrorCondition, originating from different locations in the block.
It is also possible for such blocks to contain multiple unmergeable abstract
states at the initial location of a block after a backward analysis. In such
cases, we send one message of type ErrorCondition for each state instead
of combining them. This ensures that we consider each possible error path
separately.

4.1.5 Overview

Workers are entities of our actor model that process one message at a time.
The response consists of a (potentially empty) set of messages. Table 4
shows a summary of how different types of workers react to certain mes-
sage types (Result, Error, BlockPostcondition, ErrorCondition,
ErrorConditionUnreachable). We use the E-symbol to show that a
worker shuts down. Table 5 lists all worker types and depicts which message
types can be broadcasted by a specific worker. Every worker is able to send
messages of type Error. The verification result can only be determined by
the result and root worker. The timeout worker schedules a result message
(result: unknown) after a user-defined amount of time expires. All kinds of
analysis worker (described in Section 4.1.6) can tell whether an error con-

33

Table 5: Overview of message types a worker can broadcast

Worker BP EC ECU R E

Analysis Worker 3 3 3 7 3

Fast Analysis Worker 3 3 3 7 3

Fault Loc. Worker 3 3 3 7 3

Root Worker 3 7 3 3 3

Result Worker 7 7 7 3 3

Timeout Worker 7 7 7 3 3

Visualization Worker 7 7 7 7 3

Algorithm 5: WorkerRoutine

1 while ¬finished do
2 broadcast(processMessage(awaitNextMessage()))

dition is unreachable. Additionally, they, as well as the root worker, issue
a first BlockPostcondition message after the first forward analysis and
react to messages of that type. Root workers will never receive a message of
type BlockPostcondition as they do not have predecessors. Addition-
ally, analysis workers are able to send messages of type ErrorCondition
whenever they finish a backward analysis.

4.1.6 Worker Architecture

So far, we have discussed how to decompose a CFA and how actors can com-
municate over messages. Moreover, we know how distributed CPAs work.
Now, we have all pieces to describe how our actors are functioning. Con-
ceptually, the task of a worker is to transform a received message to a po-
tentially empty set of answers that are messages, too. Hence, our actors
are resembled by workers that execute an arbitrary algorithm triggered by
a newly received message. Whenever a worker produces information worth
broadcasting it sends a message as defined in Definition 8 to every other sub-
scribed actor. Formally, each worker executes the code shown in Algorithm 5
and only implements processMessage separately. All workers run parallel. The
method processMessage calculates a set of messages as answer to the message
returned by awaitNextMessage. The method awaitNextMessage blocks the worker
until a new message arrives. Eventually, the Boolean variable finished is set
to true and the worker exits the loop. This section lists all available workers
and explains how they transform received messages to new information for

34

other workers. If any worker runs into an unexpected error, it broadcasts a
message with the type tω = Error causing all other workers to shutdown.
The verification result equals Unknown in this case.

Analysis Worker

Every analysis worker maintains two distinct analyses. A forward analysis
DCPAF and a backward analysis DCPAB. They are called, depending on the
type of the message returned from awaitNextMessage. Analysis worker operate
on a block B = (LB, lB0 , lBf

, G′) and manage the communication with other
workers. Since workers do not start analyzing until they receive a message, we
have to manually trigger the first forward analysis for every analysis worker
directly after their creation. Afterwards, no manual interaction is required.

Forward Analysis Messages of the type tω = BlockPostcondition
trigger a forward analysis DCPAF if lB0 = lid, i.e., if the initial location
of the block of the worker equals the target node of the message. As we
already know, this is the task of the proceed operator. A forward analysis
can either result in a new message of type tω = BlockPostcondition or
in a new message of type tω = ErrorCondition. The latter is caused
by finding a reachable error location in block B. If no error location is
reachable, we broadcast the latest combination of abstract states at lBf

such
that other analysis can update their assumptions about what is valid at their
initial location of their code block. As mentioned before, workers operating
on merged blocks may send multiple messages.

Backward Analysis Messages of the type tω = BlockPostcondition
trigger a backward analysis DCPAB if lBf

= lid, i.e., if the final location of
the block of the worker equals the target node of the message. The backward
analysis operates on BT , the flipped version of B as described in Defini-
tion 10. If the proceed operator signals to continue, the worker broadcasts
a new message of type tω = ErrorCondition. Therefore, we broadcast a
message for every abstract state at lB0 since lB0 is the final location of BT . In
case the proceed operator stops the backward analysis, the worker confirms
the unreachability of the error condition by broadcasting a message of type
ErrorConditionUnreachable.

Fast Analysis Worker

The number of messages grows with the number of workers and there is the
chance that the queue of pending messages is large. To tackle the problem,

35

fast analysis workers immediately discard all uninteresting messages instead
of processing them one by one and additionally, all messages of type τ =
BlockPostcondition are processed as one abstract state instead of many
different abstract states by using the deserialize and combine operators. Imag-
ine, our queue contains n messagesM =

⋃
0≤i<n {(BlockPostcondition,

*, *, {IDC : φi})} then we issue a new analysis with the abstract state
combineE({deserialize(m)|m ∈ M}) instead of issuing n analyses with the
respective abstract state representing any φi. The payload ρ maps an identi-
fier IDC for a CPA to the information ψi needed to deserialize a message to
an abstract state of the abstract domain of C. Other than that, this worker
does not differ from the analysis worker described above.

Root Worker

The root worker only serves one purpose: to detect violations of the specifica-
tion. Whenever the root worker receives a message m matching the pattern
(ErrorCondition, *, 0, *) it checks whether proceed(deserialize (m)) returns
true. In case, proceed wants to proceed, the root worker broadcasts the mes-
sage Mr = (Result, root, 0, {result: False}), telling the other workers that
the input program is proven unsafe and that they can stop working. In other
words, the current abstract state represents a feasible abstract state. Since
it summarizes the path from the error location to the root, an error location
is reachable. Hence, we can finish the analysis. Directly after its creation,
the root worker sends a BlockPostcondition message representing > at
location l0 once.

Fault Localization Worker

The fault localization worker extends the analysis worker. Whenever the
analysis worker wants to broadcast a message of type τw = ErrorCon-
dition, it additionally triggers the fault localization (FL). Currently, fault
localization workers execute the MaxSat algorithm [16, 17]. More details
about the fault localization worker are covered in Section 4.3.

Result Worker

The result worker keeps track of all messages of type ErrorCondition and
ErrorConditionUnreachable. Whenever the number of processed mes-
sages of type ErrorConditionUnreachble equals the number of workers
that received a message of type ErrorCondition, this worker broadcasts
MR = (Result, result, 0, {result: True}). All workers will shutdown as
the program has been proven save. In case, a worker answers with a stronger

36

error condition, the result worker does not wait for an message of type Er-
rorConditionUnreachable anymore.

Timeout Worker

The timeout worker ignores every received message. Instead, directly after
its creation, it starts a timer scheduling the message Mt = (Result, timeout,
0, {result: UNKNOWN}). After the timer expires all workers will shutdown
whenever they process Mt.

Visualization Worker

The visualization worker logs every message to a file. An external Python
program parses the file and transforms it into a HTML report including the
block graph. Additionally, the report contains a table listing all messages
from analysis workers sorted by their timestamp (time of creation).

4.2 Distributed Predicate CPA

4.2.1 Uninstantiating Path Formulas

Before we continue with the definition of the distributed predicate CPA, we
have to define a useful function u(φ) that allows us to broadcast path formulas
without additionally providing the SSA-map. This safes time whenever we
deserialize a message and it reduces the size of messages. We explain the
function with the help of an example. Consider the path formula

φ⇔

x = 5︷ ︸︸ ︷
x〈0〉 = 5∧

x++︷ ︸︸ ︷
x〈1〉 = x〈0〉 + 1∧

x = 2︷ ︸︸ ︷
x〈2〉 = 2∧

y = 0︷ ︸︸ ︷
y〈0〉 = 0∧

y<=0︷ ︸︸ ︷
y〈0〉 ≤ 0 .

with the SSA-map
s = {x : 2, y : 0}.

We can query the highest SSA-index of a variable v by calling s(v), e.g.,
s(x) = 2. First, u extracts all distinct variables. Variables with different
SSA-indices are considered to be distinct. From the example above u extracts
the following variables V where

V = {x〈0〉, x〈1〉, x〈2〉, y〈0〉}.

For every variable v ∈ V we call the function

f(v〈n〉) =

{
v〈0〉 if n = s(v)

v .uid else

37

where uid is an unique identifier that never repeats. In the simplest case, we
can define the uid over the set of natural numbers N. Whenever we need a
uid, we remove one element id ∈ N from N such that the next call cannot
give us the same number again. In our example f(x〈0〉) = x.0, f(x〈1〉) =
x.1, f(x〈2〉) = x〈0〉 and f(y〈0〉) = y〈0〉 holds. In the last step, we replace every
variable v ∈ V in φ with f(v). We obtain

u(φ)⇔ x.0 = 5 ∧ x.1 = x.0 + 1 ∧ x〈0〉 = 2 ∧ y〈0〉 = 0 ∧ y〈0〉 ≤ 0.

Note, that the renaming does not change the semantics of the formula. We
still express the exact same formula. We achieved that the most recent
variable has the SSA-index 0. The formula u(φ) is ready to be broadcasted.
The function u works for the forward as well as for the backward analysis.
The example above showcased the transformation of a formula produced by a
forward analysis. Imagine the backward analysis traverses the same sequence
of statements in reversed order, then

φ⇔

y<=0︷ ︸︸ ︷
y〈0〉 ≤ 0∧

y = 0︷ ︸︸ ︷
y〈0〉 = 0∧

x = 2︷ ︸︸ ︷
x〈0〉 = 2∧

x++︷ ︸︸ ︷
x〈1〉 = x〈2〉 + 1∧

x = 5︷ ︸︸ ︷
x〈2〉 = 5 .

Remember that the backward analysis increases the SSA-index of variables
after it assigned the value to it. Thus, our SSA-map s has the following
values:

s = {x : 3, y : 1}.

Our set of variables V = {x〈0〉, x〈1〉, x〈2〉, y〈0〉} stays unchanged but the SSA-
map is different. If we now call the function f for every variable we get
f(x〈0〉) = x.2, f(x〈1〉) = x.3, f(x〈2〉) = x.4 and f(y〈0〉) = y.5. Recall, that f
does not return any uid twice. Our uninstantiated path formula equals

u(φ)⇔ y.5 ≤ 0 ∧ y.5 = 0 ∧ x.2 = 2 ∧ x.1 = x.2 + 1 ∧ x.2 = 5.

The uninstantiated formula does not contain any information about the most
recent variable (x〈0〉 or y〈0〉) because we do not need that information. It
does not matter what the values of x and y were in other blocks since this
blocks overrides both values with new ones. Note, that u is idempotent, i.e.,
u(u(. . . (φ))) = u(φ). We call the formula uninstantiated since the variables
either have no SSA-index or the minimal SSA-index of 0. We use a “.” to
separate the variables from the SSA-index since no variable in the program-
ming language C can have a dot in its name. Thus, the same variable name
cannot exist elsewhere.

38

4.2.2 Definition of Distributed Predicate Analysis

Currently, only one distributed CPA is implemented. In this section, we give
an implementation for every operator to extend the predicate analysis to a
distributed predicate analysis running on the code block B = (LB, lB0 , lBf

, GB).
For now, the distributed predicate analysis does not support pointer arith-
metic, abstraction and CEGAR. We solely use the predicate analysis to build
the path formulas. However, the mentioned features can be integrated.

Serialize Operator

To serialize an abstract state e = (∗, ∗, ∗, φ), we simply put the string rep-
resentation ϕ of φ as value, together with the keyword predicateCPA into
ρ.

serialize (e) = (τω, B, lBf
, {predicateCPA : ϕ, . . . })

The type τω is set differently based on the context we are in. A backwards
analysis sets τω = ErrorCondition while a forward analysis puts τω =
BlockPostcondition instead.

Deserialize Operator

The deserialize operator deserializes the payload ρ of a given message m =
(∗, ∗, ∗, {. . . }) containing the key-value pair {predicateCPA: ϕ} where ϕ re-
sembles a Boolean formula in string representation. We parse ϕ to an instance
of a Boolean formula and calculate the SSA-indices. The Boolean formula
and the SSA-map are put together to a path formula φ. This path formula
is used to restore the abstract state.

deserialize ((∗, ∗, ∗, {predicateCPA : ϕ, . . . })) = (lB0 , true, lB0 , parse(ϕ)) = e

In case, there is no such key-value pair, we return >.

Combine Operator

Let φ1 and φ2 be two path formulas of the abstract states e1 and e2, then
u(φ1) ∨ u(φ2) = φ3 is the path formula of the combined abstract predicate
state e3.

combine(e1, e2) = combine((l, ∗, ∗, φ1,), (l, ∗, ∗, φ2)) = (l, ∗, ∗, φ3) = e3

Note, that this weakens the abstract states as the formula now represents
two paths but only one has to be crucial for proving a program incorrect.
Since we uninstantiate the formulas in advance, the SSA-indices are aligned.
The most recent variables have the SSA-index 0.

39

Proceed Operator

Let fm = (BlockPostcondition, ∗, lBf
, {predicateAnalysis: ϕf , . . . }) be

the last message with τ = BlockPostcondition that the serialize oper-
ator produced and F the set of all received messages of type BlockPost-
condition, then the proceed operator for a new message m = (τ, id, lid, ρ) is
defined as follows:

Case 1: τ = BlockPostcondition

Case 1.1: lid = lB0 F is complete if the proceed operator contains one
BlockPostcondition message from each predecessor. New messages from
a predecessors that already have sent a message are replaced as they are
stronger. Hence, our new F = {n|n = (∗, nid, ∗, ∗) ∈ F ∧ nid 6= id} ∪ {m}.

Case 1.1.1: F complete The proceed operator returns

proceed(m) = (true,F).

.

Case 1.1.2: F incomplete The proceed operator returns

proceed(m) = (true, {}).

Case 1.2: lid 6= lB0 The proceed operator returns

proceed(m) = (false, {}).

Case 2: τ = ErrorCondition If m has type τ = BlockPostcondi-
tion, then check whether φ = u(φ1)∧u(ψf) is satisfiable where φ1 is defined
over the abstract state e1 = (∗, ∗, ∗, φ1) = deserialize (m) encoded in the
message m. The formula ψf represents the latest path formula computed by
the forward analysis.

Case 2.1: φ is satisfiable The proceed operator returns

proceed(m) = (true, {m}).

Case 2.2: φ is unsatisfiable The proceed operator returns

proceed(m) = (false, {(ErrorConditionUnreachable, B, *, *)}).

40

1 int x = 0 ;
2 x++;
3 i f (x == 1) {
4 x++;
5 } else {
6 x==;
7 }
8 a s s e r t (x==0) ;

(a) Example Program

l0start

l1

l2

l3 l4

l5

l6 l7

x = 0

x = x+ 1

[x 6= 1] [x = 1]

x = x− 1 x = x+ 1

[x 6= 0] [x = 0]

(b) CFA

x = 0
x = x+ 1

B0

[x 6= 1]
x = x− 1

B1

[x = 1]
x = x+ 1

B2

[x = 0]
safe

B3

[x 6= 0]
error

B4

(c) Block Graph

Figure 10: A program represented as CFA and Block Graph

Case 3: Remaining types The proceed operator returns

proceed(m) = (false, {}).

4.2.3 Distributed Predicate Analysis by Example

We already illustrated the conversion of programs to a CFA and subsequently
to code blocks. Figure 10 shows this for the given program in Figure 10a. Now
we create a worker for every block. As discussed earlier, every block has its
own precondition and its own postcondition. Initially all of them equal >.
To simplify the illustration, we assume that all workers take the exact same

41

Table 6: Initial messages of all workers

W0 W1 W2 W3 W4

ψ > > > > >
φ > > > > >

τ BP BP BP BP EC
id W0 W1 W2 W3 W4

lid 2 5 5 6 5

ρ
x.0 = 0 ∧
x〈0〉 = x.0 + 1

x.1 6= 1 ∧
x〈0〉 = x.1− 1

x.2 = 1 ∧
x〈0〉 = x.2 + 1

x〈0〉 = 0 x〈0〉 6= 0

time to process one message, no matter what message they process. Irrele-
vant messages take no time at all. All workers run the distributed predicate
analysis for the forward and backward analysis. Right after the creation, ev-
ery worker runs a forward analysis first. We assume that Wi operates on Bi.
Since blocks 0, 1, 2 and 3 do not have error locations in them, the workers
broadcast a message to update the precondition of successive workers. How-
ever, block 4 contains an error location and thus starts a backward analysis
broadcasting an error condition message targeting location node 5. At this
point, every worker has five messages to process (Table 6). Worker W0 dis-
cards all messages and is done for now as no message contains the location 0
with type BP and no message contains the location id 2 with the type EC.
With the same reasoning, worker W1 only processes the messages from W0

and W4. The precondition updates to ψ1 ⇔ x.0 = 0 ∧ x〈0〉 = x.0 + 1 and
with that update the worker schedules a new forward analysis. Afterwards,
the worker updates its post-condition because of the message from W4 and
runs a backward analysis as we will see later. The same applies to worker
W2 because it has the same initial and final location as W1. W3 receives two
valuable messages. First, the message from W1 updates the precondition of
W3 to ψ3 ⇔ x.1 6= 1 ∧ x〈0〉 = x.1 − 1 but it does not schedule a new for-
ward analysis because it did not receive updates from all predecessors. If we
would start the forward analysis now we would under approximate as we only
cover one path. We have to wait until the message from W2 arrives. Luckily,
this is the next message in the queue. W3 now updates its precondition to
ψ3 ⇔ (x.1 6= 1∧x〈0〉 = x.1−1)∨(x.2 = 1∧x〈0〉 = x.2+1) and runs a forward
analysis. To reduce the size of the formula, we simplify it to the equivalent
formula ψ3 ⇔ x〈0〉 6= 0 ∨ x〈0〉 = 2. In reality, the worker will not simplify the
formulas. We once again benefit from the uninstantiation with u as the left
and the right hand side of the disjunction correctly talk about the same x〈0〉

42

Table 7: First updates to the preconditions

W1 W2 W3 W4

ψ x〈0〉 = 1 x〈0〉 = 1
x〈0〉 = 2 ∨
x〈0〉 6= 0

x〈0〉 = 2 ∨
x〈0〉 6= 0

φ > > > >

τ BP BP BP EC
id W1 W2 W3 W4

lid 5 5 6 5

ρ false
x.3 = 1 ∧
x.3 = 1 ∧
x〈0〉 = x.3 + 1

(x〈0〉 = 2 ∨
x〈0〉 6= 0) ∧
x〈0〉 = 0

x 6= 0

Table 8: Simplified preconditions for every workers

W0 W1 W2 W3 W4

ψ > x〈0〉 = 1 x〈0〉 = 1 x〈0〉 = 2 x〈0〉 = 2
ψW x〈0〉 = 1 false x〈0〉 = 2 false none
φ > > > > >

without further adaptions. At this location, x either equals 2 or is unequal to
0 and thus we need to talk about the same variable. Since W4 has the same
initial location as W3, W4 has the same precondition and also schedules a
forward analysis. Table 7 shows the result of the forward analyses triggered
by the above mentioned messages of type BP. Since W0 discarded all mes-
sages, it does not appear in Table 7. W1 calculates a new precondition for its
successors with the value false meaning that this path is not reachable at all.
From now on, the distributed analysis concentrates on paths without W1.
No error will ever contain edges from GB1 . All other workers calculate the
new updates as before. W4 can still reach the error and thus broadcasts the
exact same message as before again. W3 and W4 update their preconditions
to false ∨ x.3 = 1 ∧ x.3 = 1 ∧ x〈0〉 = x.3 + 1 ⇔ x〈0〉 = 2 and automatically
do not consider paths over W1 anymore. The current state is depicted in
Table 8. We add the row ψW denoting the already simplified path formula of
the latest message of type τ = BP sent by the respective worker. W1 and W3

cannot reach their block end and thus send false. Messages of type τ = BP
of worker W3 are ignored by all other workers. We will now talk about all
pending ErrorCondition-messages with the current state of Table 8. The
first message of this type was sent by W4. Hence, workers W1 and W2 have to

43

handle it now. They use the proceed operator for that. The proceed operator
of the distributed predicate analysis has access to both, the latest result of
the own forward analysis ψWi

and the error condition φ sent by the succes-
sor. For block W1 the proceed operator enters case 2.2 (c.f., Section 4.2.2) and
checks whether ψW1∧φ is satisfiable. If we put in the known values for them,
we get the formula false ∧ x 6= 0 ⇔ false which is unsatisfiable. Thus, the
proceed operator returns (false, {(ErrorConditionUnreachable, . . .)})
and the backwards analysis will not be triggered. Worker W2 on the other
hand, checks if x〈0〉 = 2∧x〈0〉 6= 0 is satisfiable and its proceed operator returns
(true, {m}) where m is the message from W4 (case 2.1 in Section 4.2.2). W2

has to enter the backward analysis and computes the following post-condition
for its predecessors φW2 ⇔ x〈0〉 6= 0∧x〈0〉 = x〈1〉+1∧x〈1〉 = 1. W2 broadcasts
the uninstantiated version u(φW2) ⇔ x.4 6= 0 ∧ x.4 = x〈0〉 + 1 ∧ x〈0〉 = 1.
As the only predecessors of W2, W0 picks up the message. Since x.4 6=
0 ∧ x.4 = x〈0〉 + 1 ∧ x〈0〉 = 1 ∧ x〈0〉 = 1 is satisfiable, W0 enters the back-
ward analysis and broadcasts an error condition message with the payload
x.4 6= 0 ∧ x.4 = x.5 + 1 ∧ x.5 = 1 ∧ x.5 = x.6 + 1 ∧ x.6 = 0. There is
no instantiated x left, as the block would overwrite any results for x from
predecessor blocks immediately with the statement x = 0.

Until now, we completely ignored the result worker and the root worker.
The result worker tracks whether workers deny messages of type τ =Error-
Condition. If no worker has a ErrorCondition message left to process
and the root worker does not report a violation, the result worker proves
the program safe by broadcasting the corresponding message. However, in
our example here, the root worker does report a violation. Remember, that
the root worker only processes ErrorCondition messages with lid = 0
which is the case in the latest message from W0. The root worker calls its
proceed operator with its precondition (always>). In this example the proceed
operator checks true∧x.4 6= 0∧x.4 = x.5+1∧x.5 = 1∧x.5 = x.6+1∧x.6 =
0⇔ x.4 6= 0 ∧ x.4 = x.5 + 1 ∧ x.5 = 1⇔ x.4 6= 0 ∧ x.4 = 2⇔ true which is
satisfiable. Whenever the root worker receives a satisfiable error condition,
the program is proven unsafe.

4.3 Distributed Fault Localization

To show that our approach is easily extendable to other concepts, we im-
plement a distributed fault localization algorithm with the help of the dis-
tributed predicate analysis. In general, fault localization tries to find edges
in the CFA that are especially error-prone and are most likely to cause the
program to fail. In this section, we explain the MaxSat [16, 17] algorithm

44

and describe how it profits from the distributed approach.

4.3.1 Maximum Satisfiability Algorithm

The maximum satisfiability algorithm [16] (MaxSat) takes three inputs. A
precondition ψ, a post-condition φ and a trace θ. In our case, ψ always equals
the initial variable assignment and φ equals the condition leading to the error.
The trace resembles a feasible path of the CFA that satisfies φ if ψ holds at
the initial location of path θ. Consider Figure 10a once again. The initial
variable assignment for the only variable x equals 0. Hence, our precondition
can be written as ψ ⇔ x = 0. The negation of the assert statement in line 8
will be our post-condition φ⇔ x 6= 0 as we do not want x to equal any other
value than 0. In the previous section, we have proven the program unsafe.
Thus, we find a feasible path from line 1 to line 8 violating the assertion.
The path θ = ((l1, x = x + 1, l2), (l2, [x = 1], l4), (l4, x = x + 1, l5)) satisfies
our post-condition if x = 0 initially. MaxSat operates on a so-called trace
formula (TF).

Definition 15 (Trace Formula) The trace formula TF(θ) equals the path
formula of path θ in conjunction with the precondition and the negation of
the post-condition.

In our case, the trace formula of θ equals

TF(θ)⇔ ψ〈0〉 ∧ x〈1〉 = x〈0〉 + 1 ∧ x〈1〉 = 1 ∧ x〈2〉 = x〈1〉 + 1 ∧ ¬φ〈s〉.

For the fault localization algorithm to work properly, TF(θ) has to be un-
satisfiable. With ψ〈0〉, we instantiate every variable in ψ with the SSA-index
0. Analogously, we instantiate every variable of φ〈s〉 with the current max-
imal SSA-index of every variable in the SSA-map s. The trace formula for
Figure 10a reads

TF(θ)⇔ x〈0〉 = 0 ∧ x〈1〉 = x〈0〉 + 1 ∧ x〈1〉 = 1 ∧ x〈2〉 = x〈1〉 + 1 ∧ ¬(x〈2〉 6= 0).

The core idea of this fault localization technique is to find a subset θ⊆
of the path θ such that TF(θ⊆) is satisfiable again. The complement of
that set resembles the set of error-prone statements. For the program in
Figure 10a, we start with an empty set S. The function pf computes the
path formula of θ. We keep adding edges to the set until ψ〈0〉 ∧ pf (S)∧¬φ〈s〉
turns unsatisfiable again. In this case, we remove the previously added edge
and try the remaining edges. Naively speaking, we check every possible
subset of the path θ and check whether the formula is satisfiable. The result
of the algorithm is the complement of the biggest satisfying set. Without

45

Table 9: The fault localization algorithm checks every subset for satsifiability.

subsets TF satisfiable?

{} x〈0〉 = 0 ∧ x〈2〉 = 0 3

{x〈1〉 = x〈0〉 + 1}
x〈0〉 = 0 ∧
x〈1〉 = x〈0〉 + 1 ∧
x〈2〉 = 0

3

{x〈1〉 = 1}
x〈0〉 = 0 ∧
x〈1〉 = 1 ∧
x〈2〉 = 0

3

{x〈2〉 = x〈1〉 + 1}
x〈0〉 = 0 ∧
x〈2〉 = x〈1〉 + 1 ∧
x〈2〉 = 0

3

{x〈1〉 = x〈0〉 + 1,
x〈1〉 = 1}

x〈0〉 = 0 ∧
x〈1〉 = x〈0〉 + 1 ∧
x〈1〉 = 1 ∧
x〈2〉 = 0

3

{x〈1〉 = x〈0〉 + 1,
x〈2〉 = x〈1〉 + 1}

x〈0〉 = 0 ∧
x〈1〉 = x〈0〉 + 1 ∧
x〈2〉 = x〈1〉 + 1 ∧
x〈2〉 = 0

7

{x〈1〉 = 1,
x〈2〉 = x〈1〉 + 1}

x〈0〉 = 0 ∧
x〈1〉 = 1 ∧
x〈2〉 = x〈1〉 + 1∧
x〈2〉 = 0

7

any optimizations, we have to make 2|θ| satisfiability checks (in our case
8). In prior work [17], we show that we can find significant improvements
to reduce the number of SAT-checks. However, in the worst-case, we still
have to check all subsets. Table 9 shows all subsets and indicates whether
the resulting trace formula together with the pre- and post-conditions is
satisfiable. We do not have to check the complete set as we already know
that it would remain unsatisfiable by construction. The algorithm takes
the subset of maximal size where the trace formula is still satisfiable and
computes the complement. Here, we obtain {x〈2〉 = x〈1〉 + 1} as complement

46

of {x〈1〉 = x〈0〉 + 1, x〈1〉 = 1}. Hence, the algorithm suggest to modify the
statement x〈2〉 = x〈1〉 + 1 to fix the bug. In this synthetic task, we can fix
the bug by replacing +1 with −2. We will now show the distributed fault
localization algorithm.

4.3.2 Distributed MaxSat Algorithm

The distributed MaxSat algorithm (DMaxSat) uses the exact same al-
gorithm as explained above for every block. We do not need to make any
adaptions. The only thing remaining is to compute ψ, φ and lastly TF(θ).
Currently, there is only one limitation: we have to use the LinearDecompo-
sition algorithm to decompose the CFA. The advantage lies in the linearity
of the blocks. Within the blocks no branchings exist and thus there is al-
ways only one path that can directly be used as θ. Fault localization workers
trigger the MaxSat algorithm after every backward analysis. We can set
θ to the path starting at the final location of the block of the worker and
ending at the initial location of the block (backward analysis). The linearity
ensures that there is only one such path. The post-condition φ for the fault
localization equals the received error condition. To work properly, we have
to make a small adaption to the post-condition. We describe the adaption
later. Since the blocks might not know about the initial variable assignment
yet, we have to compute a possible assignment by querying a model of the
formula u(φ) ∧ pf (θ). A model of a path formula assigns a possible concrete
value to every variable in the formula such that replacing the variables with
the respective value simplifies it to true. If no model is available, the error
cannot be reached via the current block and the fault localization is not re-
quired. At the end, we only print the faulty locations of blocks that operate
on the actual error path. The model does not require to find the true variable
assignment because if the error is indeed reachable, the model automatically
equals one concrete example a valid abstract state on this location would
cover.

To illustrate the distributed fault localization, we run it exemplary on W2

(c.f. Figure 10). W2 receives the error condition x〈0〉 6= 0 from W4. The back-
ward analysis computes the new error condition (before the uninstantiation)
x〈0〉 6= 0 ∧ x〈0〉 = x〈1〉 + 1 ∧ x〈1〉 = 1 which exactly equals the desired formula
φ ∧ pf (θ) were θ = ((l5, x = x + 1, l4), (l4, [x = 1], l2)). We ask a solver to
compute the model {x〈1〉 : 1, x〈0〉 : 2}. Because of the backward analysis,
the initial variable assignment ψ ⇔ x〈1〉 = 1 consists of the values of the
variables with the highest SSA-index. We feed ψ, θ and t(φ) to the MaxSat
algorithm. The function t returns the error condition φ but negates the ini-
tial post-condition found by the first fault localization. We assume that the

47

Table 10: W2 operates on a block with two statements. We check all subsets
together with the pre- and postcondition for satisfiability and return the
complement of the biggest unsatisfiable subset (second row).

subsets TF satisfiable?

{} x〈1〉 = 1 ∧ x〈0〉 = 0 3

{x〈0〉 = x〈1〉 + 1} x〈1〉 = 1 ∧ x〈0〉 = x〈1〉 + 1 ∧ x〈0〉 = 0 7

{x〈1〉 = 1} x〈1〉 = 1 ∧ x〈1〉 = 1 ∧ x〈0〉 = 0 3

initial post-condition for fault localization always equals the path formula of
the assume edge closest to the actual error location.

Definition 16 Let φ ⇔
∧n
i=0 φi be a formula with n conjunctions, then

t(φ)⇔
∧n
i=0m(φi) and m(φ) =

{
¬φ if φ equals the first post-condition

φ else

Table 10 shows the result. The complement of the maximum satisfiable set
equals {x〈0〉 = x〈1〉+1} and that is the exact same location as computed before
without the distributed approach. We need function t because our results
turn invalid if the error condition contains non-assume edges. Suppose, we
would just take the normal negation x〈0〉 6= x〈1〉 + 1 ∨ x〈0〉 > 1 of an error
condition x〈0〉 = x〈1〉+1∧x〈0〉 ≤ 1 where the first statement is an assignment.
Then, our post-condition becomes weaker and the actual reason of the bug
disappears. The statement x〈0〉 = x〈1〉 + 1 is an integral element of the error
trace. We would lose the information that x〈0〉 depends on x〈1〉 if we just
apply normal negation. In our implementation, workers do not know what
kind of statements are assumes as the path formula gives no hints about
that fact (x = 0 and [x = 0] both become x〈0〉 = 0). To keep track of the
initial post-condition, the first worker adds it to the payload of a message.
Subsequently, other workers copy it into their messages.

4.3.3 Run-Time Comparison

As already mentioned, the worst case runtime in terms of number of satisfia-
bility checks of MaxSat is 2n where n resembles the length of the error path
θ. However, we have not covered the run-time of the distributed approach.
For the sake of simplicity, we assume that our decomposition algorithm di-
vides our program in m equally sized blocks. Every block now covers n/m
locations of the error path and executes DMaxSat on that part leaving us
with a total of m·2n/m satisfiability checks in the worst case. The total follows

48

Table 11: Run-time comparison with n = 12.

Algorithm m = 3 m = 4 m = 6

MaxSat (2n) 4096 4096 4096
DMaxSat (m2n/m) 48 32 24

from the fact that m workers run fault localization on a path with approx-
imately n/m transitions. If we now compare the two numbers, we see that
there is a massive difference. With the assumptions that 2 ≤ m ≤ n, i.e.,
the error path consists of at least two statements, we can prove our point.

2n ≥ m2n/m
∣∣∣ log2(∗)

n ≥ log2(m) + n/m
∣∣∣ ·m

mn ≥ m log2(m) + n
∣∣∣− n

(m− 1)n ≥ m log2(m)
∣∣∣ : m

(m−1)n/m ≥ log2(m)

After the simplification we are left with three cases.

Case 1: Both variables have the value 2. We put the values in the above
equation and get:

m = n = 2⇒ 1 ≥ log2(2) = 1

Case 2: Both variables have the same value and they cancel from the
fraction (m−1)n/m = (m− 1).

m = n 6= 2⇒ m− 1 ≥ log2(m)

The statement is true as linear functions grow faster than logarithmic func-
tions.

Case 3: In case of m ≤ n, we know that c = n/m ≥ 1. Thus, we can write

m ≤ n⇒ (m−1)n/m = c · (m− 1) ≥ (m− 1) ≥ log2(m)

�
Table 11 shows the significant reduction of solver calls by approximately 99%
in the worst case for n = 12 and m ∈ {3, 4, 6}. Once again, n is the length
of θ and m the number of workers.

49

Figure 11: UML diagram of available decomposers

5 Implementation

This chapter covers the implementation details for our approach. We imple-
ment our work in CPAchecker1 [7], a framework for formal verification.
CPAchecker is implemented in Java.

5.1 Distributed Framework

5.1.1 Decomposition

In Section 4.1.2, we showcase two algorithms for the decomposition of CFAs.
We implement the exact algorithm in CPAchecker. We use the interface
CFADecomposer promising a BlockTree when we input a CFA (Figure 11). In
our case, a BlockTree knows the root BlockNode and returns all available blocks
if requested. A BlockNode represents a subgraph of the CFA as defined in Def-
inition 2 (code block). For implementation purposes, every CodeBlock knows
its predecessors (Definition 3) and successors (Definition 4).

1https://cpachecker.sosy-lab.org/

50

https://cpachecker.sosy-lab.org/

Figure 12: UML diagram of a message

5.1.2 Actor Model

Messages

Figure 12 shows the UML diagram of messages. They have the exact same
attributes as discussed in Definition 8. Additionally, we store the time point
of creation in the variable timestamp. An instance of the class Message is
immutable and all attributes can only be accessed via getters. To keep the
diagram simple, we omit the getter methods for the other variables although
they are present. In addition to the messages, we implement a message
serializer and a message deserializer. The serializer converts every message
to a String using the JACKSON JSON library2. The deserializer implements
the inverse function, also with the help of JACKSON. We need to be able
to (de)serialize messages to send them over the network. Since messages use
only primitive types like int, long and string, this is not difficult to do with
JACKSON. The real work is done by the deserialize operator afterwards.
The attribute payload imitates a dictionary that converts easily to JSON as
demanded in Definition 8 (message). The attribute type is a member of
the enum MessageType (one of BlockPostcondition, ErrorCondition,
ErrorConditionUnreachable, Result, Error) and indicates the type
of the message. The analysis processes messages depending on their types.

Connection

To make the communication with messages work, we need some sort of con-
nection for the communication between our actors. We introduce the inter-
face Connection for this purpose. A connection reads and writes messages,
i.e., broadcasts it to all other connections. Furthermore, it knows the num-
ber of pending messages (size ()). For convenience, we implement a default

2https://github.com/FasterXML/jackson

51

https://github.com/FasterXML/jackson

Figure 13: UML diagram of the connection types

routine for isEmpty(), namely isEmpty(){return size() == 0;}. Since every con-
nection needs to know all other connections, we implement a connection
provider. Connection providers return a specified number of connections
where the write method of each connection, broadcasts the message to all of
the other connections including itself. Since every actor is treated equally,
the creation of connections must not know anything about the environment.
Consequently, its sufficient to supplement the connection provider solely with
the number of required connections. Figure 13 shows the UML diagram of
the connections and the connection providers. There are two different types
of connections: the network connection and the in-memory connection. For
every existing worker, the network connection spawns a thread running a
socket. The socket is responsible for receiving and storing messages in a
blocking queue to which our actor has access via read(). Additionally, a net-
work connection maintains n clients, each of which connects to one worker.
Calling write lets every client send the deserialized message to the sockets. To
receive messages at any time, the sockets run parallel. We use objects of the
class ServerSocket as receiver and objects of the class Socket as sender. Both
classes are part of the Java’s standard net library. We encode messages to
a byte-arrays as there already exist implementations for sending byte-arrays
over sockets. After the server socket decodes the byte-array, the messages
are put to the blocking queue. Whenever an actor calls nextMessage() we
call take(), a method of Java’s blocking queues. In case, the actor has no
messages to process, take() blocks the actor and only releases it when a new
message is present. Otherwise, the actor directly gets one of the pending
messages. To reduce the size of the message we use Java’s built-in GZIP in-
and outputstreams for compression. Luckily, they operate on byte-arrays,
too.

The in-memory connection creates one blocking queue for every actor.
Afterwards, it collects every blocking queue in a list and copies the list to
every connection as outgoing connections. By default, Java passes objects by

52

reference, i.e., we copy the reference and point to the same queue resulting
in n queues for n workers. The method write adds a reference of the cur-
rent message to every created queue. A major advantage of the in-memory
connection is that we only need to allocate the space for one message once.
Contrary, the network connection parses the byte-array and creates a new
instance of the class Message to create a copy for each received message. The
method size () returns the number of pending messages in the blocking queue.

We also provide an implementation using the class SocketChannel of Java’s
non-blocking IO package (nio3). However, message buffers of the non-blocking
IO package do not guarantee to receive complete message at once. In our
case, messages with over 200,000 bytes cannot be restored completely. To
get rid of this problem, we have to manually manage the complete process
of sending and receiving. As long as no reliable solution is available, we use
server sockets instead.

Message Observer

The main thread maintains a list of message observers. In an endless loop,
all observers match newly received messages against a pattern and collect
information. The process method of an observer returns true if the endless
loop should be exited, otherwise false. Whenever we break out of the loop,
we print the collected results of all observers to the user. One observer, for
example, tracks messages with type τ = Error and exits as soon as one
message matches that pattern. Afterwards, all observers print their status.

Worker

Our workers inherit from the abstract class AbstractWorker. The class provides
default implementations for all but the processMessage method. We briefly ex-
plain the implementation of the methods. Workers process messages one by
one. The method nextMessage provides the workers with the next enqueued
message. By default, it simply calls the (blocking) method read of connection.
The connection can be changed with the setter because all workers have to be
created without a connection before we can ask the connection provider for all
connections. New workers are created with the help of the ComponentBuilder

ensuring workers with a valid connection. For this reason, workers cannot
be created manually and their classes are package-private. To implement a
new worker, one has to extend the ComponentsBuilder with a corresponding
method for creating this worker. The builder then takes care of the connec-
tions without further adaptions. The method broadcast loops through every

3https://openjdk.java.net/projects/nio/

53

https://openjdk.java.net/projects/nio/

Figure 14: UML diagram of workers

message in the list and calls connection.write(m) with the message as param-
eter. The AbstractWorker realizes the interface Runnable (Java standard) and
implements its method run. In the run method we implement the parallel
tasks. In our case, we run Algorithm 5 for every worker by default. While
we are not finished, we wait for the next message, then process it and after-
wards broadcast our responses. Workers shutdown, whenever they receive a
message of type Error or Result (c.f., Table 4). To shutdown a worker,
we have to close the connection and set the flag finished to true. The method
processMessage generally is implemented as a switch-case statement over the
type of the input message m. Depending on the type, we start a backward
or forward analysis or shutdown the worker. Analysis worker create com-
pletely independent forward and backward CPAs. In our case, that always is
a composite CPA running the LocationCPA, BlockCPA, Predicate-
CPA and CallstackCPA. CPAchecker runs additional CPAs capable
of identifying target locations. Target locations are either error locations or
the initial or final locations of code blocks. Usually, CPAchecker abstracts
predicate abstract states at target locations. Here, we prevent the abstrac-
tion of predicate abstract states as the abstraction equals true for most small
blocks and we loose valuable information. Imagine a block B1 with the code
code x = 0; error ;. The backward analysis reaches the initial location of the
block and abstracts it to true, losing the information that x is required to
equal 0 to reach the error.

5.2 Distributed CPAs

The AbstractDistributedCPA (Figure 15) is an abstract class that describes the
behavior a distributed analysis should have. Distributed CPAs are initial-

54

Figure 15: UML diagram of abstract DCPAs

ized with a block (code block) and the direction (forward or backward). The
underlying CPA C is stored in parentCPA and can be set over the setter at
the bottom of the diagram. We cannot create the CPA within the con-
structor of distributed analysis since CPAchecker builds the underlying
CPAs in advance using reflection. The abstract distributed CPA implements
the interface ConfigurableProgramAnalysis of CPAchecker. The interface de-
fines a CPA. By composition, one member of the AbstractDistributedCPA is
the parentCPA and thus it can forward its implementations of the meth-
ods of the interface directly. In other words, the methods of the interface
ConfigurableProgramAnalysis for every AbstractDistributedCPA are implemented by
calling the exact same method on the parent CPA. The method getInitialState

returns the >-element of the CPA. Additionally, every worker stores the re-
sult of the latest forward analysis in latestMessage needed for proceedBackward to
check whether the current error condition can be reached through this block.
Now, we describe the implementation of the characteristic operations of DC-
PAs. The method serialize takes an abstract state, realizing the interface
AbstractState and translates it to a Payload representing a hash map. Generally
speaking, serialize returns {parentCPA.getClass().getName(), toDeseralizableString(

s)} where toDeseralizableString converts an abstract state to a string and the
key equals an unique string identifying the underlying CPA. In our formal
definition of distributed CPAs serialize produces messages instead. We could
easily refactor the AbstractDistributedCPA to do this as well but that causes
us to dissemble and re-assemble lots of messages in a composite distributed
CPA. We would have to extract every immutable payload from every message

55

of one of the composite DCPAs and put it together to one payload and then
again into a new message. The method deserialize takes the payload of a mes-
sage and looks for the value mapped to the key parentCPA.getClass().getName()

to deserialize it. In case, no such value is present, deserialize returns >. In
the implementation, we differ between proceedForward and proceedBackward to
increase the readability of the code. As Java does not allow multiple return
types, we combine the Boolean value and the collection of messages, promised
by the proceed operator, in the class MessageProcessing. The class forwards a
collection. Thus, we can iterate over instances of that class and we can ask
whether we should stop the analysis. For this, instances of MessageProcessing

store a Boolean value end, either set to true or false. The default imple-
mentation of proceed equals return direction == FORWARD ? proceedForward(m

): proceedBackward(m);. The combine operator over sets exactly implements
Figure 3. Child classes only have to implement the combine operator for two
abstract states. Additionally, every abstract CPA knows, on which types of
abstract states it operates. We can call the method doesOperateOn with the
class of an abstract state to check this. We will see, why this is necessary in
Section 5.2.2.

5.2.1 Distributed Predicate CPA

We continue with the description of the implementation of the distributed
predicate CPA. The FormulaManagerView of CPAchecker already provides
a parser of Boolean formulas (path formulas without SSA map) keeping the
(de)serialization simple. The serialization reads the current path formula
of the abstract state, uninstantiates it with u, and dumps the formula to a
StringBuilder. We then put the key PredicateCPA.class.getName() together with
the value of the string builder in a new Payload (representing a hash map)
and return it. The deserialization reads the string mapping to the same
key and parses it with the help of the FormulaManagerView and creates the
SSA map by mapping every variable that does not contain a “.” to the
index 0. The method proceed works exactly as defined in Section 4.2 but
it is composed of two functions each handling one case (forward/backward
analysis). Case 3 (ignored message types) needs no implementation as we
can just return (false, {}). The combination of two predicate abstract states
works by making a disjunction of the path formulas of both inputted abstract
states. The distributed predicate CPA operates on predicate abstract states
and all child classes. For this, we just check whether the inputted abstract
state is assignable to a predicate abstract state using reflection.

56

5.2.2 Distributed Composite CPA

A composite CPA simultaneously runs different CPAs on the same CFA.
Whenever we want to use a DCPA in a distributed composite CPA, we have
to register the new DCPA first. We implement it in a lazy way. The hash
map lookup maps the class of an existing CPA to the class of the correspond-
ing DCPA. In case, a CPA is part of the parent composite CPA and happens
to be a key in lookup, we create the distributed CPA with the reflection API
of Java. In other words, we only create instances of distributed CPAs when
we really need them. If no distributed CPA is implemented for a given CPA,
the information will not be serialized. We implement the serialization of a
composite abstract state by serializing each contained abstract state with
the help of known DCPAs operating on this abstract state. That is the rea-
son why we need the function doesOperateOn. Information of unimplemented
DCPAs is lost and cannot be restored on other workers. The deserialization
of a composite state works analogously. Since we at least know the poten-
tial parent CPA of unimplemented DCPAs we can simply use the respective
>-element by calling getInitialState (...) on it.

A distributed composite CPA proceeds the calculation if all contained
DCPAs proceed. Unimplemented DCPAs proceed with the empty set of
messages by default. One DCPA suffices to stop the calculation if it cannot
proceed. However, we respond with the union of all messages returned by
the proceed operator of every single DCPA.

The combination of two composite abstract states works by combining
the abstract states of all contained DCPAs with their combine operator. In
case, no such DCPA exists, we return the respective >-element as in the
deserialization.

The distributed composite CPA exclusively operates on abstract states
that are an instance of the class CompositeState.

5.2.3 Distributed Callstack CPA

Instead of inlining every function call in the CFA, CPAchecker creates an
own CFA for each function and maps a function call edge from the caller-
statement to the function and a function return edge form the function to the
caller-statement. The callstack CPA tracks from which location a function
is called and only transitions a function return edge if it maps back to the
correct caller-statement. To mimic this behavior, we have to implement
a distributed callstack CPA. We exclusively use the callstack CPA for the
backward analysis because it is the most precise analysis running. Assume, a
block represents a complete function. Then, the precondition for the forward

57

analysis equals true as long as an existent function call has not been made yet.
If all function calls have been made by the forward analysis, its precondition
equals the disjunction of the inputs of all function calls which does not lead
to an under-approximation and thus is valid. The abstract states of the
callstack CPA are stacks, storing all function calls and the location from
which the function call originated. Hence, we serialize the abstract states
by separating all tuples of the location and the function name with commas,
e.g., main 16, function1 20. The given state tells us that we called the function
function1 on location 20 after we entered the main-function on location 16.

5.2.4 Block CPA

Instead of creating a new CFA for every block, we simply run the Block-
CPA in a composite CPA with the predicate CPA on the original CFA. The
BlockCPA works identical to the location CPA with the restriction that it
will not allow a transfer if we would leave our block. There is one minor adap-
tion: if a block starts and ends with the exact same location, i.e., the block
is circular, we only transfer once from the loop head. Hence, every iteration
issues one message. This is necessary to 1) prevent an infinite analysis and
2) to keep other actors up-to-date because we gain information after every
iteration that we do not want to hold back. The BlockCPA realizes the in-
terface ConfigurableProgramAnalysis of CPAchecker and thus implements the
two operators and the transfer relation discussed in Definition 9, primarily
reusing the operators of the location CPA L.

5.2.5 Determining the Verification Result

As mentioned above, workers implement the interface Runnable and thus can
be run within a thread. Our main thread spawns all threads for the workers
and connects via an extra connection to the workers to listen for result mes-
sages. As soon as a worker broadcasts a verification result, the main thread
prints it to the user. In case of active fault localization the main thread addi-
tionally collects and eventually prints all error-prone edges. CPAchecker
prints True as verification result if no unfinished abstract states are con-
tained in the reached set and none of the abstract states reaches an error
location. Currently, we do not collect the great amount of computed ab-
stract states across the workers and put them together in the reached set of
the main thread. We simply empty the reached set of the main thread caus-
ing CPAchecker to print True. For violations, we empty the reached set
and manually put a dummy target state in the reached set. Otherwise, we
do not modify the reached set, leaving the - in the main thread unprocessed

58

- initial state in it. Since it is unprocessed, CPAchecker prints Unknown
as verification result.

5.3 Distributed Fault Localization

To execute the distributed fault localization, we extend the analysis worker
by one simple addition. Before we broadcast a new error condition, we ex-
ecute the existing MaxSat algorithm in CPAchecker [17] on the block.
The pre-condition equals the model of the error-condition in conjunction with
the path formula representing the current block as described in Section 4.3.
Whenever the first backward analysis transitions an assume edge, we create
a new instance of the MaxSat algorithm and run it on that block. The
post-condition equals the path formula of the assume edge closest to the
block end. Then, we can run the fault localization. Afterwards, we store
the post-condition and all error-prone edges in ρ and broadcast the message.
Predecessor blocks use this information in ρ to search for the exact statement
in the error condition and substitute it by its negation to ensure the desired
behavior. Our main thread monitors all messages. To print the fault local-
ization result to the user, we register the fault localization message observer
that collects all found faults. At the end, it prints the error prone locations
to the user.

5.4 Configurations

Our implementation is highly configurable. Table 12 lists all possible configu-
rations and their default values. The decomposition type decides whether we
use the LinearDecomposition (BLOCK OPERATOR) or the GivenSizeDe-
composition (GIVEN SIZE). The desired number of blocks is only relevant
if the decomposition type is set to GIVEN SIZE. The decomposition can be
disabled with SINGLE BLOCK, resulting in only two workers: the root worker
and one analysis worker for the whole CFA. The worker type decides what
type of workers run on the code blocks. DEFAULT, SMART and MONITORED run
the distributed CPA on a given program. The option SMART lets the work-
ers discard unimportant messages immediately and it combines all received
BlockPostcondition messages to one, i.e., it uses fast analysis worker
(Section 4.1.6). The monitored worker should not be used in practice but
comes in handy for debugging purposes. A global monitor watches all work-
ers and lets only work a given number of workers at the same time. Other
workers are blocked by the monitor. The worker type FAULT LOCALIZATION

59

Table 12: All configurations

configuration possible values default

decompositionType
SINGLE BLOCK,
BLOCK OPERATOR,
GIVEN SIZE

BLOCK OPERATOR

workerType
DEFAULT, SMART,

FAULT LOCALIZATION,

MONITORED

DEFAULT

connectionType IN MEMORY, NETWORK NETWORK

desiredNumberOfBlocks any integer number 10
maxWallTime time span (e.g., 15min) 900 s
daemon true, false true
spawnUtilWorkers true, false true

flPreconditionAlwaysTrue true, false false
abstractAtTargetState true, false false
checkEveryErrorCondition true, false true
sendEveryErrorMessage true, false false

runs an analysis worker with additional fault localization. With the connec-
tion type, we either activate the communication over the network or we use
the in-memory communication. Finally, users can set the desired number of
blocks s for the GivenSizeDecomposition with the option desiredNum-
berOfBlocks.

The timeout worker and the visualization worker can be disabled by de-
activating the option spawnUtilWorkers. The wall time limit for the timeout
worker can be set via the option maxWallTime. As already mentioned before,
our workers run in their own threads. Threads can be marked as daemons
causing the threads to shut down whenever the main thread terminates. Al-
though our implementation should not leave threads running, we provide
this option to make sure that all resources are freed and all threads are shut
down.

The option flPreconditionAlwaysTrue lets fault localization workers skip
the computation of a model to create the precondition. Every precondition is
set to true initially. Calculating a model can also be expensive and in some
cases it is not necessary. Generally, the precondition only prevents initial
assignments to be part of the faulty statements.

The option abstractAtTargetState runs the user-defined abstraction when

60

-predicateAnalysis

-setprop analysis.algorithm.configurableComponents=true

-setprop cpa.predicate.blk.useLoopStructure=true

-setprop cpa.predicate.blk.alwaysAtJoin=true

-setprop cpa.predicate.blk.alwaysAtBranch=true

-setprop cpa.predicate.blk.alwaysAtProgramExit=true

-setprop limits.time.cpu=1h

-setprop components.decompositionType=GIVEN SIZE

-setprop components.connectionType=IN MEMORY

-setprop components.workerType=DEFAULT

<path to program>

Figure 16: Possible configuration to run the distributed predicate analysis

reaching an error location or the final or initial location of a block. In the fu-
ture, this is meant to decrease the size of the formulas, as only to the error im-
portant parts of the formula are kept. Currently, the solver of CPAchecker
has problems dealing with the abstraction type Elimination such that we
currently use the boolean abstraction. However, the Boolean abstraction al-
ways returns true as abstraction formula and we loose all information. As
soon as elimination is supported, we can activate this option by default.

The option checkEveryErrorCondition forces the proceed operators to
check every error condition for satisfiability. In the following chapter, we
will see that this is not always desirable as the SAT-checks are very time-
consuming. Setting this option to false allows the proceed operator to skip
the SAT-checks for workers with more than 3 predecessors.

Disabling the option sendEveryErrorMessage prevents workers from send-
ing error condition messages multiple times. In case, the input program
contains loops, the options will automatically be enabled. For loop-free pro-
grams, broadcasting the exact same messages causes the exact same compu-
tation steps and thus can be saved. A more detailed explanation follows in
Section 6.3.3. Figure 16 shows a possible configuration.

61

Table 13: Message types and their desired precedence

message type prio

FoundResult 1
Error 2
ErrorCondition 3
ErrorConditionUnreachable 4
BlockPostCondition 5

5.5 Message Prioritization

To speed up the distributed analyses, we implement a prioritization of mes-
sages, shown in Table 13. The connection has to sort pending messages
ascending by their priority. Java provides a PriorityBlockingQueue that inserts
all new messages sorted. Although, according to the official Java Doc4, the
runtime complexity of inserting elements in a priority queue is O(log n), we
experience a performance boost. Whenever an error occurred or a result has
already been found, we should print the results instantly. We do not have
to wait until the workers have processed a potentially large number of other
messages first since a found result message is definite and guaranteed to be
correct, every further work would be unnecessary. The same holds for errors
and exceptions. The reason for prioritizing error condition messages over
block post condition messages is the rapid propagation of errors to the root
worker for identifying possible violations early.

5.6 Visualization

We implement a visualization of the messages for debugging purposes. The
visualization worker logs every message in JSON format to a JSON file. A
python script transforms the contained information into a HTML table and
a block graph (DOT format). The columns represent the workers and the
rows the passed time. The contents of the table are the messages sent by a
worker at a certain time point. Messages of type BlockPostcondition
are colored in yellow. Error conditions are colored red and results are colored
green. The example in Figure 17 shows the answer of worker W1 (operating
on B1) to the initial message of our root worker after 1 millisecond. The

4https://cr.openjdk.java.net/~iris/se/12/latestSpec/api/java.base/java/

util/PriorityQueue.html

62

https://cr.openjdk.java.net/~iris/se/12/latestSpec/api/java.base/java/util/PriorityQueue.html
https://cr.openjdk.java.net/~iris/se/12/latestSpec/api/java.base/java/util/PriorityQueue.html

Figure 17: Second, penultimate and last row of the visualized log

penultimate row shows that the error condition holds at the end of block B1

and thus W1 started a backward analysis. Finally, the root worker proves
the error condition feasible in the last row, resulting in the verification result
False, i.e., the program is unsafe. The messages are sorted descending by
the time of creation. Simultaneously created message are in the same row of
the table.

63

6 Evaluation

6.1 Setup

We benchmark our implementation on a subset of the ReachSafety tasks from
SV-COMP 2022 [3]. We use two setups for our experiments:

Setup 1 Intel Xeon E3-1230 v5 processor with 8 CPU cores at 3.40 GHz
each and 32 GB RAM.

Setup 2 Intel Core i7-10700 processor with 16 CPU cores at 2.90 GHz each
and 67 GB RAM.

In total we use 6671 tasks from the following sets:

� ReachSafety-BitVectors,

� ReachSafety-ControlFlow,

� ReachSafety-ECA,

� ReachSafety-Heap,

� ReachSafety-Loops,

� ReachSafety-ProductLines,

� ReachSafety-Sequentialized,

� ReachSafety-XCSP,

� ReachSafety-Combinations and

� SoftwareSystems

64

Figure 18: A worker with 4 predecessors has to check the satisfiability of 4
preconditions together with one post-condition. This takes longer than just
running a backwards analysis without satisfiability check and forwarding the
satisfiability check to the predecessors. The checks are then parallelized which
saves time. Additionally, the number of atoms in a disjunction decreases.
The formula pf denotes the disjunction for all possible paths from the initial
location to the final location of a block.

All experiments are run on revision f404760a of CPAchecker1. The arti-
facts are available here2. CPAchecker provides a script for benchmarking
a given configuration with BenchExec [21].

To improve the performance of the distributed analysis, we activate three
optimizations by default for all following benchmarks. First, we slightly
change the behavior of the proceed operator for the distributed predicate
analysis. Instead of returning (true, {}) we return (false, {}) whenever F is
incomplete (Case 1.1.2 in Section 4.2) since we would send the exact same
message as in the initial analysis. Hence, we do not gain new knowledge
and we can omit the message to reduce the traffic. Second, we apply the
message prioritization described in Section 5.5 and we skip SAT-checks if
|F| > 3. If the cardinality of F is large, the precondition of a worker contains
many disjunctions. SMT-solvers have problems dealing with disjunctions as
they have to check every possibility. For our distributed approach, it is more
efficient to just issue a backward analysis for workers with more than three
predecessors and let the predecessors execute the checks parallely instead.
Figure 18 illustrates the performance boost. To justify the usefulness of
the three optimizations, we run our DCPA on linear code blocks with and

1https://gitlab.com/sosy-lab/software/cpachecker/-/commit/f404760a
2https://doi.org/10.5281/zenodo.6224978

65

https://gitlab.com/sosy-lab/software/cpachecker/-/commit/f404760a
https://doi.org/10.5281/zenodo.6224978

10 100 10000

10

100

10000

Opt. DCPA: CPU time (s)

D
C

P
A

:
C

P
U

ti
m

e
(s

)

10 100 600

10

100

600

Opt. DCPA: wall time (s)

D
C

P
A

:
w

al
l

ti
m

e
(s

)

1000 10000

1000

10000

Opt. DCPA: RAM (MB)

D
C

P
A

:
R

A
M

(M
B

)

Figure 19: Comparison of DCPAD with optimizations (x-axis) and without
optimization (y-axis).

without them. We use scatter plots to visualize the results. Scatter plots plot
all values of the same measurement produced by two different candidates for
the same task as x and y value, respectively. Every data point represents
a verification task that both analyses verified correctly. We compare the
performance of an analysis with regard to the wall time, the CPU time and
the memory usage. Figure 19 displays three scatter plots with the optimized
DCPA on the x-axis and the DCPA without optimization on the y-axis. The
data points are above the diagonals in all plots, proving the positive effect
of the optimizations. For many of the tasks the optimized DCPA solves in
under 100 seconds, the unoptimized DCPA takes far more time. The same
is valid for the CPU time. The memory usage improves but the effect is not
as strong as for the CPU or wall time. Moreover, the unoptimized DCPA
produces more timeouts and out of memory exceptions.

6.2 Experimental Results

We compare our approach with different configurations to the already exist-
ing predicate analysis in CPAchecker. Currently, our approach does not
support pointer-aliasing. Therefore, we deactivate it for the existing predi-
cate analysis, too. In this section, we first present an overview of the results

66

Table 14: All benchmark configurations

predicate DCPA- DCPAD DCPA↓ DCPA↓+

distributed? 7 3 3 3 3

optimized? - 7 3 3 3

decomposition - linear linear given size given size
worker type - default default default fast

Table 15: Occurrence of different statuses.

status predicate DCPAD DCPA↓ DCPA↓+

out of memory 39 1417 2108 2118
timeout 1920 2907 2001 2003

error 1539 1586 1935 1929
True 2086 504 382 375
False 1087 257 245 246∑

6671 6671 6671 6671

of each configuration and afterwards, we continue with an in-depth analysis
of the advantages and disadvantages of the configurations. All tasks have a
wall time limit of 10 minutes. Until further notice, all benchmarks are exe-
cuted on Setup 1 with the in-memory connection. We do not spawn utility
workers (visualization worker and timeout worker) to decrease the number
of required connections. In addition, the main purpose of the utility workers
is to assist with debugging. Hence, they do not contribute to the verification
process.

6.2.1 Overview

Table 15 shows the results of the benchmarks for each configuration. The
column predicate shows the results of the existing predicate analysis and
DCPAD shows the results of the distributed predicate analysis without fur-
ther improvements. DCPA↓ indicates the results of the distributed pred-
icate analysis but we use the GivenSizeDecomposition instead of the
LinearDecomposition. The column DCPA↓+ contains the results of the
distributed predicate analysis with the GivenSizeDecomposition and fast
workers instead of normal analysis workers. The different configurations are
shown in Table 14. We will now briefly cover the main takeaways from Ta-
ble 15. The first row shows the number of tasks where the verification does

67

Table 16: Soundness of DCPAs

result predicate DCPAD DCPA↓ DCPA↓+

correct 2993 675 548 544
incorrect 180 86 79 77

not finish due to an exceeded memory limit. We observe that the distributed
approach uses more memory than the predicate analysis. The problem arises
because of the messages and the parallel analysis. The distributed approach
stores all messages for all workers until they are processed, whereas the pred-
icate analysis never stores unimportant information. The second row shows
the number of timeouts. The distributed approach takes more time. The
reason for this is the high number of SAT checks. More on that topic follows
later. The third row shows the number of unexpected exceptions causing the
analysis to stop. The gap of 400 more exceptions for DCPA↓ and DCPA↓+
compared to DCPAD can be tracked back to two reasons. First, the default
backward predicate analysis is not as precise as the forward predicate analy-
sis, especially with the handling of pointers and arrays. Second, the backward
CallstackCpa is more error-prone and throws more exceptions. Rows 4
and 5 show the number of solved tasks with the respective verification result
of True and False. For completeness, the sixth row shows the sum of tasks
to ensure that we verified the same number of tasks for all configurations.

6.2.2 Soundness of DCPAs

The benchmark set provides us with the expected verification result for all
tasks in the set. Table 16 shows the number of correct and incorrect verifi-
cation results, i.e., tasks where the verification wrongfully proves a program
(in)correct. We are especially interested in the incorrect results. First, we
check, whether the incorrect results of the distributed approach match the
incorrect results of the existing predicate analysis. DCPA↓ and DCPA↓+
do only report wrong results if the predicate analysis does, too. DCPAD,
however, contains 8 tasks where the verification result diverges. 7 out of
the 8 tasks occur in the same class of verification tasks, namely, product-
lines/minepump. The existing predicate analysis correctly solves these tasks,
whereas the DCPA reports wrong proofs. The DCPAs with the Given-
SizeDecomposition throw an exception for these tasks claiming that the
program contains the unsupported feature recursion. Presumably, the lin-
earity of the blocks prevents the recognition of the problem for the backward
analysis. We assume that the problem originates form the backward anal-

68

l1

B1

l2 l3

l4

l5le

op1 op2

op3 op4

op6op5

Figure 20: The backward analysis returns a disjunctive path formula for error
locations in merged blocks structured like this.

ysis from which the existing predicate analysis does not make use of. The
remaining tasks uses the CPAchecker internal pointer target set which is
not yet part of the messages. The preparation of the pointer target set for
the transport over messages is difficult as the pointer target set consists of
various complex data structures where no easy way for (de)serialization exists
until now. However, the results reinforce our belief that the implementation
is correct and that the approach works. Currently, the approach is also lim-
ited by the hardware resources. In addition, the following sections explain
possible improvements for the distributed approach.

DCPAD with linear decomposition finds over 200 proofs more than work-
ers operating on merged blocks. We identify two reasons for this behavior:
first, the backward callstack CPA recognizes recursions on merged blocks al-
though there are none. The linear decomposition prevents these false alarms
since the proceed operator prohibits many of the backward analyses causing
the CallstackCPA to throw the exceptions. Secondly, the finer division
into blocks rejects infeasible paths earlier, saving computation time. Fig-
ure 20 shows a merged block with an error location at the block exit. The
backward analysis creates the path formula op5 ∧ ((op3 ∧ op1) ∨ (op4 ∧ op2)),
starting form the error location le, because the merge operator of the predi-
cate CPA creates a disjunction of the two possible paths at the block entry
l1. For every backward analysis, we have to check the disjunction of the pre-
condition with the disjunction of the error condition for satisfiability. Linear
blocks causes workers to analyze every possible error condition separately,
whereas path formulas at the initial location of a merged block might repre-
sent a set of possible error paths. Denying a set of error conditions usually

69

10 100 10000
10

100

10000

RAM DCPA_ (MB)

R
A

M
D

C
P

A
_
+

(M
B

)

(a) Comparison of RAM usage
between DCPA↓ on the x-axis
and DCPA↓+ on the y-axis.

10 100 10000
10

100

10000

RAM DCPA_ (MB)

R
A

M
D

C
P

A
(M

B
)

(b) Comparison of RAM usage
between DCPA↓ on the x-axis
and DCPA on the y-axis.

10 100 10000
10

100

10000

RAM DCPA_ (MB)

R
A

M
p
re

d
ic

at
e

(M
B

)

(c) Comparison of RAM usage
between DCPA↓ on the x-axis
and the predicate analysis on the
y-axis.

10 100 10000
10

100

10000

RAM DCPA (MB)

R
A

M
p
re

d
ic

at
e

(M
B

)

(d) Comparison of RAM usage
between DCPA and the predi-
cate analysis on the y-axis.

Figure 21: Comparison of the memory usage

requires more knowledge. Hence, the error condition has to be propagated
further. Furthermore, the resulting SAT-checks are time-consuming.

In the following three sections, we compare the different configurations
(Table 14) with respect to the memory usage, the needed wall time and the
needed CPU time.

6.2.3 Comparison of Memory Usage

We begin with the comparison of the RAM usage and exclusively consider the
tasks where the compared configurations of the analyses are correct. First,
we compare the existing predicate analysis to DCPAD. The corresponding
scatter plot is shown in Figure 21d. The distributed predicate CPA is shown
on the x-axis. We plot the memory usage on a logarithmic scale. The unit is
given in mega byte (MB). The memory usage of the distributed approach is

70

higher. The reason for this is the message exchange since messages rapidly
grow up to over 200,000 characters. In case, many workers are running, the
number of messages and thus the required amount of memory increases. Ad-
ditionally, many messages contain information about infeasible paths but are
only discarded at a very late stage because the workers do not guarantee a
certain order of processing messages. We introduce the GivenSizeDecom-
position to reduce the number of workers and thus the number of messages.
The plots shown in Figures 21b and 21c support our assumption. Figure 21c
compares DCPA↓ to the predicate analysis. We observe a left-shift of the
data points indicating that the distributed approach with fewer workers needs
less memory. The direct comparison of DCPA and DCPA↓ shows the same
effect, the data points are in above the diagonal of the plot, meaning that the
DCPA usually needs more RAM. Lastly, we compare the memory usage of
DCPA↓ to DCPA↓+. The data points in Figure 21a are basically aligned in
a straight line. Hence, the memory usage is equal. This is expected because
a fast worker processes the exact same messages but triggers less analyses.
The noise in the plot can be explained with the nondeterministic processing
of messages.

6.2.4 Comparison of CPU Time

Next, we compare the CPU time. We expect the predicate analysis to per-
form better as no unnecessary work is done. Our workers check every message
for satisfiability and therefore consume more CPU time. Additionally, many
workers run parallel. The scatter plots in Figure 22 prove our assumption cor-
rect. DCPAs take significantly more CPU time, shown by the accumulation
of the data points on the bottom right, beneath the diagonals of Figures 21c
and 22c. We implement the GivenSizeDecomposition since we want to
reduce the number of messages and subsequently speed up the analysis. Fig-
ure 22b indicates a slight improvement of the CPU time consumption over
the distributed analysis with the linear decomposition. The reduction of the
code blocks and the accompanying reduction of analysis workers helps find-
ing the results faster. Additionally, the number of timeouts goes back, too.
Table 15 provides evidence that there are 900 fewer timeouts when reduc-
ing the number of workers compared to the distributed analysis using the
LinearDecomposition. Unfortunately, most tasks result in other errors
that are not detected by the linear decomposition. We already described
this phenomenon earlier. Figure 22a compares the CPU time of DCPA↓
with DCPA↓+. Their CPU times are also very similar because the forward
analyses do not consume as much resources as the SAT-checks.

71

10 100 5000

10

100

5000

CPU-time DCPA_ (s)

C
P

U
-t

im
e

D
C

P
A
_
+

(s
)

(a) Comparison of the CPU time
between DCPA↓ on the x-axis
and DCPA↓+ on the y-axis

10 100 5000

10

100

5000

CPU-time DCPA_ (s)

C
P

U
-t

im
e

D
C

P
A

(s
)

(b) Comparison of the CPU time
between DCPA↓ on the x-axis
and DCPA on the y-axis

10 100 5000

10

100

5000

CPU time DCPA_ (s)

C
P

U
ti

m
e

p
re

d
ic

at
e

(s
)

(c) Comparison of the CPU time
between DCPA↓ on the x-axis
and the predicate analysis on the
y-axis

10 100 5000

10

100

5000

CPU time DCPA (s)

C
P

U
ti

m
e

p
re

d
ic

at
e

(s
)

(d) Comparison of the CPU time
between DCPA and the predi-
cate analysis on the y-axis

Figure 22: Comparison of the CPU time

6.2.5 Comparison of Wall Time

Finally, we compare the wall time of each configuration. Currently, the pred-
icate analysis outperforms the distributed approaches. Figures 23c and 23d
plot the wall time of the distributed approach (with and without Given-
SizeDecomposition) and the time for the predicate analysis. Most of the
points are beneath the diagonal. In other words, the predicate analysis is
faster. The reason for this is the sequential processing of the messages. Ev-
ery error condition needs time-expensive SAT-checks. Messages reach sizes
of over 200,000 bytes. The biggest part of every message is the string rep-
resentation of the formula that has to be parsed again. In case the pre-
condition of a worker was never updated, the backward analysis tends to
cause unnecessary work as we traverse a potential infeasible path. To sup-

72

10 100 600

10

100

600

Walltime DCPA_ (s)

W
al

lt
im

e
D

C
P

A
_
+

(s
)

(a) Comparison of the wall time
between DCPA↓ on the x-axis
and DCPA↓+ on the y-axis

10 100 600

10

100

600

Wall time DCPA_ (s)

W
al

l
ti

m
e

D
C

P
A

(s
)

(b) Comparison of the wall time
between DCPA↓ on the x-axis
and DCPA on the y-axis

10 100 600

10

100

600

Wall time DCPA_ (s)

W
al

l
ti

m
e

p
re

d
ic

at
e

(s
)

(c) Comparison of the wall time
between DCPA↓ on the x-axis
and the predicate analysis on the
y-axis

10 100 600

10

100

600

Wall time DCPA (s)

W
al

l
ti

m
e

p
re

d
ic

at
e

(s
)

(d) Comparison of the wall time
between DCPA and the predi-
cate analysis on the y-axis

Figure 23: Comparison of the wall time

Table 17: Average wall time for calling each operator once.

operator DCPA DCPA↓ DCPA↓+

serialize 0.62 s 0.87 s 1.37 s
deserialize 0.74 s 1.09 s 1.58 s

proceed (f) 1.66 s 4.73 s 3.89 s
proceed (b) 5.00 s 3.89 s 6.93 s

combine 0.19 s 0.27 s 0.33 s

port our argumentation, we measure the wall time for each operator of the
distributed CPAs. For every program under analysis, we track the average
time of all workers for all four operators for every task with a verification
result of True or False. The averages of these time spans are listed in

73

Table 18: Comparison of average wall time (s) to find a correct proof or
counterexample for the predicate analysis and the DCPA

predicate DCPA factor

correct proofs 3.34 s 43.58 s 13.06
correct counterexamples 2.92 s 38.94 s 13.33

Table 17. The proceed operators take up to 7 seconds per call on average.
The average time for (de)serialization is approximately 1 second, implying
that large messages are sent. To conclude, the current approach needs a
reduction of SAT-checks in the proceed operations as, for example, described
in Figure 18. Possible improvements leave out SAT-checks based on previous
results or only perform the check sporadically. The comparison of DCPA↓
and DCPA↓+ (Figure 23a) leads to the conclusion that combining the ab-
stract states in advance is irrelevant. The forward analyses on a block do not
take long. Thus, saving forward analyses has no impact regarding the wall
time.

The distributed approach takes longer than the predicate analysis. We
are interested in the average time to find a correct proof and a correct coun-
terexample between both approaches. Table 18 shows that the predicate
analysis takes about 3 seconds to find a correct proof. The distributed ap-
proach takes 43 seconds. For correct counterexamples, the predicate analysis
needs approximately 3 seconds as well, whereas the distributed approach
needs 38 seconds more. In general, finding a correct result takes about 13
times longer. We run the verification for all correctly solved tasks again on
Setup 2 to examine the effect of more hardware resources. In theory, our ap-
proach benefits from more computation power and more memory. Figure 24
shows three scatter plots listing the results of DCPADs on Setup 2 on the
y-axis and the results of Setup 1 on the x-axis. The data does not provide
sufficient evidence that increasing the resource limits indeed speeds up the
analysis. We find a possible explanation in other collected statistics: more
computational power causes an increasing number of messages. Whereas, on
Setup 1 2,940 messages are sent on average, the average number of sent
messages increases by 25% to 3,660 using Setup 2. Since we only consider
correctly solved tasks, we know that all but one message (the result message)
are either of type ErrorCondition, ErrorConditionUnreachable or
BlockPostCondition. For most of these messages, we have to perform a
time-expensive SAT-check.

To conclude, the predicate analysis outperforms the distributed approaches
because of the abstraction. Therefore, the next section compares the dis-

74

10 100 10000

10

100

10000

DCPA_ (S1): CPU time (s)

D
C

P
A
_

(S
2)

:
C

P
U

ti
m

e
(s

)

10 100 600

10

100

600

DCPA_ (S1): wall time (s)

D
C

P
A
_

(S
2)

:
w

al
l

ti
m

e
(s

)

1000 10000

1000

10000

DCPA_ (S1): RAM (MB)

D
C

P
A
_

(S
2)

:
R

A
M

(M
B

)

Figure 24: Comparison of DCPAD running on Setup 1 (x-axis) and Setup
2 (y-axis).

tributed approach with decompositionType = SINGLE BLOCK to DCPAD to
see the effect of the distribution.

6.2.6 Comparison to DCPAs with Single Worker

To show the impact of the distribution of the verification to many workers,
we run DCPAD on a single block containing the complete CFA instead of ap-
plying the linear decomposition. We refer to this configuration as DCPA(SB).
Figure 25 shows the corresponding scatter plots with all tasks solved correctly
by both configurations. DCPA(SB) is displayed on the y-axis. On the x-axis,
we see the default DCPA (DCPAD) with linear blocks. The plots show that
the distribution speeds up the analysis significantly. The distribution on the
x-axis finishes within 10 seconds, whereas the analysis on a single block takes
up to 10 minutes for the same tasks. The number of timeouts also increases
drastically. As shown in Table 15, DCPAD times out 2907 times whereas
DCPA(SB) causes 4776 timeouts. However, the number of out-of-memory
errors decreases from 1,417 to 27 since the number of messages decreases
drastically. In total, DCPA(SB) solves 183 tasks (36 incorrect) which is
significantly less than the 761 tasks (86 incorrect) from DCPAD.

75

10 100 5000

10

100

5000

DCPA: CPU time (s)

D
C

P
A

(S
B

):
C

P
U

ti
m

e
(s

)

10 100 600

10

100

600

DCPA: wall time (s)

D
C

P
A

(S
B

):
w

al
l

ti
m

e
(s

)

Figure 25: DCPAD running on a single block (y-axis) versus DCPAD running
on multiple blocks (x-axis).

10 100 10000

10

100

10000

DCPA: CPU time (s)

B
M

C
:

C
P

U
ti

m
e

(s
)

10 100 600

10

100

600

DCPA: wall time (s)

B
M

C
:

w
al

l
ti

m
e

(s
)

1000 10000

1000

10000

DCPA: RAM (MB)

B
M

C
:

R
A

M
(M

B
)

Figure 26: Comparison of DCPAD (x-axis) with BMC (y-axis).

6.2.7 Comparison to BMC

Bounded model checking (BMC) [7, 10] executes the predicate analysis but
unrolls loops only a given number of times. In case, the analysis cannot finish
because the loops are not unrolled completely, BMC returns the verification
result Unknown. BMC solves approximately 800 tasks correctly but it is
faster and uses less memory. Figure 26 shows three plots with our distributed
approach (DCPAD) on the x-axis and BMC on the y-axis. BMC solves most
tasks in under 10 seconds, whereas DCPAD takes up to 10 minutes. The

76

Table 19: The average time and memory usage for DCPAs with and without
compression.

without compression with compression

avg. CPU time 273 s 269 s
avg. wall time 96 s 92 s

avg. memory usage 13,078 MB 12,939 MB

memory-usage ranges from 100 MB to 10 GB for the distributed approach.
BMC always uses less than 1 GB of RAM.

6.2.8 Network Connection

In this section, we compare the DCPA↓ using the in-memory connection to
the DCPA↓ using the network connection with and without message com-
pression. We use the built-in GZIPInputStream and GZIPOutputStream to zip the
messages. This reduces the size of the messages by approximately 30% on av-
erage. Compression does only help to a limited extend. While it reduces the
size for the message transfer, it does not reduce the overall needed memory as
we decompress messages to the original size on all ends again. Contrary to the
in-memory connection, we cannot pass messages by reference. To send the
messages over the sockets, we translate them into byte-arrays. The receiver
of the byte-array transforms the byte-array back to an instance of the class
Message. Hence, every receiver allocates memory for the exact same mes-
sage. Since our implementation is only executed on one machine, we tend to
exceed the memory limit faster. However, we can run our implementation on
different machines to mitigate this problem. Currently, running experiments
on different machines is not supported. We lack the implementation of a
strategy, capable of distributing an equal amount of work to every connected
machine. As soon as this is implemented, the existing network connection
should work without further adaptions. Table 19 compares the network con-
nection with and without compression. In many cases BenchExec did not
interrupt the analysis after the given wall time limit of 600s (10 minutes)
expired. Therefore, some data points contain large numbers for the CPU
and the wall time. As a consequence, we only consider the tasks that have a
wall time of 600s or less for this comparison. The average values of the CPU
time, wall time, and RAM usage are nearly equal. The data does not show
significant differences regarding the compression. Taking a look at Fig-
ure 27 supports this assumption as the data points are aligned in a straight
line. The x-axis shows the results of the distribtued verification with com-

77

10 100 10000

10

100

10000

Compr.: CPU time (s)

N
o

co
m

p
r.

:
C

P
U

ti
m

e
(s

)

10 100 600

10

100

600

Compr.: wall time (s)

N
o

co
m

p
r.

:
w

al
l

ti
m

e
(s

)

1000 10000

1000

10000

Compr.: RAM (MB)

N
o

co
m

p
r.

:
R

A
M

(M
B

)

Figure 27: Comparison of the CPU time, wall time and memory usage of the
DCPA↓ with and without compression when using the network connection.

pression and the y-axis shows the results without compression. Once again,
the noise comes from the nondeterministic processing of messages. Finally,
we examine the influence of the connection type on the performance of the
verification. Figure 28 shows the scatter plots for the needed CPU-time and
the memory usage. Shown are the tasks that are solved correctly by both
analyses. Despite the fact that DCPA↓ with the network connection solved
34 tasks less than DCPA↓ with the in-memory connection, Figure 28 shows
a slight time-loss and a higher memory usage when communicating over the
network. The additional threads for receiving messages and the process of
sending large messages consumes time that is not needed with the in-memory
connection.

6.2.9 Distributed Fault Localization

We already showed the theoretical performance boost for the distributed fault
localization. Unfortunately, we do not have access to a reliable benchmark
set for fault localization tasks to (dis)prove the assumed effect. Still, we can
prove the soundness of the distributed fault localization. We compare the
result of both approaches with the help of a set of hand-crafted tasks. The set

78

1000 10000

1000

10000

DCPA_: CPU time (s)

D
C

P
A
_

(n
et

):
C

P
U

ti
m

e
(s

)

1000 10000

1000

10000

DCPA_: RAM (MB)

D
C

P
A
_

(n
et

):
R

A
M

(M
B

)

Figure 28: Comparison of the CPU time and the memory usage for the
in-memory connection and the network connection.

Table 20: Error-prone lines according to fault localization.

task name distributed FL FL

1 prime factor 12, 35 12, 35, 36
2 fault 4 4, 6, 12, 13
3 ifs 14 12, 14
4 simple 14 14, 15
5 prime 29 27, 28, 29
6 gcd timeout 24, 34, 36

consists of six tasks with easy to complex problems. The tasks can be found
here3. We enable the option flPreconditionAlwaysTrue for the distributed
analysis. Table 20 shows the evaluation of the six tasks. The first two
columns contain the ID of the task and its name. Columns 3 and 4 list the
outputted lines where adaptions may fix the bug in the given program. For
the first five tasks the distributed fault localization returns at least one fault
reported by the existing fault localization technique. Since the undistributed
implementation returns every possible irreducible subset, it often reports
more error locations than our distributed analysis. However, for task 6, the
distributed approach does not find a solution because the verification does
not terminate in time. Unfortunately, there are many tasks with timeouts.
Subsequently, the evaluation of the fault localization is not yet feasible for
larger programs where we could compare the duration of fault localization.
Although the evaluation only concentrates on a small set of programs, these
experimental results give a first insight in the correct application of fault

3https://doi.org/10.5281/zenodo.6224978

79

https://doi.org/10.5281/zenodo.6224978

localization in our distributed framework.

6.3 Discussion

6.3.1 Disadvantages

Currently, our approach suffers from a great number of satisfiability checks
in the backwards analysis and large messages (around 200,000 characters on
average at an advanced stage). The (de)serialization of the pointer target
set, containing information about pointers of, e.g., arrays and structs is not
supported yet. As soon as the support for the (de)serialization is added,
the number of correctly solved tasks should increase. Moreover, the miss-
ing support for abstraction causes the path formulas to grow large in size
increasing the time to check the formulas for satisfiability. Despite the im-
plementation of the GivenSizeDecomposition, our implementation still
has to deal with a larger number of workers. That also increases the number
of spawned threads and, hence, they do not really run parallel. Subsequently,
the wall time increases because we process to the verification result unim-
portant messages first.

6.3.2 Advantages

Disregarding the missing support of the (de)serialization of the pointer target
set and the abstraction, theoretically, our approach should need less time to
find a proof and equal time to find a violation. Proofs are found by declining
all error condition messages. Since we reuse the information of the forward
analysis, analyses from two directions contribute to finding a proof. Other
workers might already have gained all the necessary knowledge to disprove
the reachability of error locations as the SAT-check of the proceed operator
deems it unsatisfiable. Contrary, error condition messages always have to
be propagated to the root worker to be recognized as violation. Beyond
that, the number of SAT-checks grows if a worker with many predecessors
propagates the error condition to the root. Hence, we do not expect an
improvement in theory. Figure 29 illustrates the concurrent work, leading
to a faster proof. The decomposition algorithm produces two blocks (the
figure does not show the root worker) and spawns two workers (left-hand
side of the figure). Initially, both workers run a forward analysis but Worker
2 finds an error location and runs a backward analysis instead. This happens
simultaneously (middle part of the figure). Worker 1 does not find a violation
and broadcasts the path formula to Worker 2. Now, Worker 1 runs the

80

Figure 29: Parallel contribution of workers to a proof

backward DCPA since it receives a message of type ErrorCondition. The
proceed operator checks the recently computed path formula of the forward
analysis and the error condition from Worker 2 for satisfiability (right-hand
side of the figure). The solver proves the conjunction unsatisfiable and the
result worker broadcasts the verification result True by using the results of
the backward and the forward analysis.

6.3.3 Further Improvements

A possible optimization prevents workers to send duplicate ErrorCondi-
tion messages if the program under analysis is loop-free. In case no loops
exist, identical ErrorCondition messages provoke the exact same com-
putational steps for all predecessors and thus can be omitted, too. There
exist cases for programs with loops where we wrongfully decline an error
condition because the loop is not unrolled sufficiently. Therefore, we cannot
discard them, as the precondition of the workers becomes stronger by another
iteration.

Finally, we expect to raise the number of correctly solved tasks with the
support of abstraction and the pointer target set as mentioned before.

6.3.4 Summary

Our approach and the implementation are sound and produce correct veri-
fication results. However, the performance suffers from the high number of
sent messages. More resources cause workers to issue more messages which
in return costs more time to process again. The reduction of messages con-
taining irrelevant information is just one possible entry point for future im-
provements. Additionally, the evaluation reveals more points of departure for
boosting the performance, giving us confidence that the approach might scale

81

well. We already present some optimizations that have an measurable im-
pact on reduction of resources and with the support of abstraction, we hope
to make a fist step towards a competitive implementation of the presented
distributed approach. Moreover, the fact that distributing the verification
to multiple workers performs significantly better than executing it on one
blocks encourages us to further explore the possibilities of this approach.

6.3.5 Threats to Validity

We run the experiments on the benchmark set of SV-Comp 2022 which cur-
rently is the biggest collection of verification tasks. However, there is always
the risk biased benchmark sets.

Our implementation may contain undetected bugs. Nevertheless, the
experimental results are sound and comply with our assumptions reinforcing
our belief that the implementation works as intended.

Additionally, the order of processing messages is nondeterministic. De-
pending on when the operating system schedules workers, the duration of
the analysis varies. We implement the message prioritization to mitigate the
nondeterminism to at least some extend.

Benchmarks may be invalid because of varying initial conditions. How-
ever, we use BenchExec, a tool for reliable benchmarks, for our evaluation.
BenchExec is also used to run the benchmarks for SV-COMP [1]. Further-
more, all benchmarks are executed on the same machines.

The evaluation of the fault localization tasks is based on a selection of
hand-crafted tasks. Therefore, the results might differ for currently uncov-
ered cases. However, the hand-crafted tasks are complex enough to indicate
whether the distributed fault localization is actually working.

6.4 Future Work

6.4.1 Combining Analyses and Blocks

Our approach allows a variety of future adaptions and improvements. The
flexibility of the actor model permits the introduction of other workers that
may or may not operate on the same blocks. Since the processing of a mes-
sage solely relies on the target CFA node, we can even spawn workers working
on a differently partitioned CFA. Messages for specific target nodes can sub-
sequently be used by all blocks starting or ending with that target node.
Another possible scenario may run different distributed CPAs on the same
blocks and the verification results of the one analysis strengthen the abstract

82

states of the other analysis. In case, either one of the CPAs proves a violation
itself, we can report that the program is unsafe. For this, we additionally
have to implement more distributed CPAs. The value analysis. for example,
can easily be implemented as distributed CPA as we only have to commu-
nicate the current map of variables to their values. The combine operator
inherits from the merge operator and we stop if values at the same location
do not match. Furthermore, we did not yet take a look at distributed CPAs
where every worker executes either the forward or the backward analysis but
not both. Running the actual CPA on the whole CFA provides us with an
upper bound. No matter what, we take at most as long as the parent CPA.
The implementation of the network connection allows running completely
different instances of CPAchecker on different machines enabling us to
use even more CPU power. The objective becomes to reduce the wall-time
to the expense of the CPU-time. Once again, this enlarges the number of
possible extensions. The way we implement the messages allows to change
the protocol at any time just by introducing new message types.

We can optimize our free resources by deactivating unnecessary workers.
If a block contains an unsatisfiable formula after the forward analysis, we can
shutdown all workers analyzing successor blocks since they analyze unreach-
able blocks. This frees resources and memory because fewer threads require
the CPU and large messages can be deleted. In addition, we can experiment
with deactivating the forward or the backward analysis and solely rely on
one of the analyses reducing the number of expensive solver calls and the
number of memory-heavy messages.

6.4.2 Port Blocks to BAM-Blocks

In Section 2.1 we describe BAM which already is implemented in CPAche-
cker. BAM also partitions the CFA into blocks and a data structure for
these blocks already exists. In the future, our blocks should extend these
blocks. The advantage is, that we can make use of already implemented
visualization techniques and other utility methods.

6.4.3 Strategy Selection

CPAchecker comes with a strategy selection analysis [5], meaning that
based on some features of a program the probably best algorithm for verifying
the given task will be chosen. In our approach, we could run a strategy
selection for every block and run the best algorithm accordingly. However,
this comes with a challenge. Every worker has to understand messages that
do not represent abstract states of the CPA of the worker. There are two

83

ways to tackle this problem: either we extend distributed CPAs in a way
that they know how to serialize messages for other CPAs or they know how
to deserialize messages of other CPAs. Since many of the CPAs rely on
path formulas, the effort to achieve this may be manageable. The value
analysis, for example could simple convert the variable-value map to a path
formula ({x : 0} ⇒ x〈0〉 = 0). The strategy selection benefits from intelligent
block finding. CPAchecker implements techniques capable of calculating
invariants for loops. If we, for example, choose our blocks in a way that
every loop maps to one block, we might be able to speed up the analysis
significantly.

6.4.4 Abstraction

Our implementation already supports abstraction. Unfortunately, the needed
abstraction strategy Elimination causes problems with the underlying solver
used by CPAchecker. The idea of the elimination abstraction is, to only
track variables that are really needed to reach the error and eliminate all
other variables from the formulas to make messages smaller in size. As soon
as Elimination works, we can experiment with it. Another goal for the
future is to make our approach work with CEGAR [9, 12].

6.4.5 Other Improvements

The visualization of blocks is not perfect yet. There are many possible ways
to extend it. An overview of when which worker entered and finished an
analysis would also be helpful for debugging. On this way, we can identify
blocks that are stuck or take long. The insights help to improve the code as
we are able to understand and recognize such problems faster.

Another minor improvement concerns the error handling. Workers that
fail to send messages are believed to be working. There is no way to reach
them. For debugging purposes it is beneficial to better log the errors and to
shutdown workers after some time. Currently, this is not implemented as we
would have to spawn even more threads.

The reached set in the main analysis is not yet adapted accordingly. Sub-
sequently, the graphical representation of the verification cannot be shown.
In the future this should be possible as well. This is a non-trivial task be-
cause every computed abstract state has to be transferred to the main thread
and many abstract states are computed multiple times because updates to
the pre- and post-conditions might trigger the same analysis twice.

For the predicate analysis, we can implement a combine operator that
combines multiple abstract states to one abstract state by calculating the

84

disjunction of the given path formulas. There may be analyses where this is
not possible. For such cases, we can extend the combine operator to return
a set of abstract states that are added to the waitinglist and the reached set
initially. Successive blocks have to deal with every abstract state separately.

85

7 Conclusion

In this work, we introduce the concept of DCPAs, allowing the distribution
of arbitrary existing CPAs to threads by extending it with four operators.
With the help of forward and backward analyses, error location are proven
(un)reachable distributed over all workers. The workers contribute to the
verification result by running analyses, regardless of the progress of all other
workers.

To evaluate and explore this approach, we provide the implementation
of a framework supporting distributed DCPAs. Our framework is integrated
in the already highly configurable CPAchecker. For existing CPAs in
CPAchecker it suffices to implement the four operators serialize, deseri-
alize, combine and proceed and our framework automatically runs the CPA
distributed on the analysis workers if activated. Currently, the most chal-
lenging part for integrating DCPAs is the implementation of the (de)serialize
operators since it requires to represent potentially complex data structures
as strings. Nevertheless, to make use of the distributed approach, users do
not need to take care of anything but the implementation of the operators.

The analysis worker run DCPAs on code blocks obtained by various de-
composition algorithms. We provide two implementations for decomposing
CFAs: the linear and the given size decomposition with both having advan-
tages and disadvantages. Whereas the GivenSizeDecomposition reduces
the number of workers, the LinearDecomposition is easily extensible to
other approaches and is able to solve more tasks. Moreover, our approach
allows an easy integration of other concepts as, for example, fault localiza-
tion.

Currently, the performance of our approach is limited by the available
hardware resources and the potential execution of equal computation steps,
increasing both, the needed time and the needed memory. However, the eval-
uation gives insightful hints for further improvements. We already achieve
a performance boost by reducing the number of SAT-checks and we expect
further improvements as soon as abstraction enriches our approach. The re-
duction of the size of messages and the support of the pointer target set will

86

also increase the number of correct results.
In summary, we make a first step towards distributed analyses of pro-

grams. With the framework as foundation, we have a multitude of possi-
bilities for further adaptions and extensions as well as experiments with a
variety of other existing approaches as, e.g., strategy selection.

87

Bibliography

[1] D. Beyer. Reliable and reproducible competition results with benchexec
and witnesses (report on sv-comp 2016). In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 887–904. Springer, 2016.

[2] D. Beyer. Software verification: 10th comparative evaluation (sv-comp
2021). Tools and Algorithms for the Construction and Analysis of Sys-
tems, 12652:401, 2021.

[3] D. Beyer. Progress on software verification: SV-COMP 2022. In Proc.
TACAS (2), LNCS 13244. Springer, 2022.

[4] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In 2009 Formal Meth-
ods in Computer-Aided Design, pages 25–32. IEEE, 2009.

[5] D. Beyer and M. Dangl. Strategy selection for software verification
based on boolean features. In International Symposium on Leveraging
Applications of Formal Methods, pages 144–159. Springer, 2018.

[6] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software ver-
ification: Concretizing the convergence of model checking and program
analysis. In International Conference on Computer Aided Verification,
pages 504–518. Springer, 2007.

[7] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable
software verification. In International Conference on Computer Aided
Verification, pages 184–190. Springer, 2011.

[8] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction
with adjustable-block encoding. In Formal Methods in Computer Aided
Design, pages 189–197. IEEE, 2010.

88

[9] D. Beyer and S. Löwe. Explicit-state software model checking based on
cegar and interpolation. In International Conference on Fundamental
Approaches to Software Engineering, pages 146–162. Springer, 2013.

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. 2003.

[11] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The math-
sat5 smt solver. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 93–107. Springer,
2013.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of
the ACM (JACM), 50(5):752–794, 2003.

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[14] B. Hailpern and P. Santhanam. Software debugging, testing, and veri-
fication. IBM Systems Journal, 41(1):4–12, 2002.

[15] C. Hewitt. Actor model of computation: scalable robust information
systems. arXiv preprint arXiv:1008.1459, 2010.

[16] M. Jose and R. Majumdar. Cause clue clauses: error localization using
maximum satisfiability. ACM SIGPLAN Notices, 46(6):437–446, 2011.

[17] M. Kettl. Fault localization for formal verification. an implementation
and evaluation of algorithms based on error invariants and unsat-cores.
Bachelor’s Thesis, LMU Munich, Software Systems Lab, 2020.

[18] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[19] P. O’Hearn. Separation logic. Communications of the ACM, 62(2):86–
95, 2019.

[20] R. Qiu, S. Khurshid, C. S. Pasareanu, and G. Yang. A synergis-
tic approach for distributed symbolic execution using test ranges. In
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing Companion (ICSE-C), pages 130–132. IEEE, 2017.

[21] P. Wendler. Reliable benchmarking: Requirements and solutions. 2019.

89

[22] D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction
memoization. In International Conference on Formal Engineering Meth-
ods, pages 332–347. Springer, 2012.

90

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und alle Ausführungen, die wörtlich oder sinngemäß übernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher
oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

22.02.2022
Matthias Kettl Datum

	Introduction
	Related Work
	BAM
	Infer
	SynergiSE

	Background
	Control Flow Automaton (CFA)
	Decomposition of CFAs
	Messages
	Configurable Program Analysis (CPA)
	Static Single Assignment
	SMT Solvers and Models
	Distributed CPA (DCPA)
	Actor Model

	Actor-Based Block Summaries for Formal Verification
	Distributed Framework
	Distributed Predicate CPA
	Distributed Fault Localization

	Implementation
	Distributed Framework
	Distributed CPAs
	Distributed Fault Localization
	Configurations
	Message Prioritization
	Visualization

	Evaluation
	Setup
	Experimental Results
	Discussion
	Future Work

	Conclusion

