
Master’s Thesis

Verification of Java Programs with
Exceptions with CPAchecker

Chair of Software and Computational Systems Lab
Ludwig-Maximilians-Universität München

Benedikt Damböck

Munich, 11 29th, 2023

Submitted in partial fulfillment of the requirements for the degree of M. Sc.
Mentor Dr. Philipp Wendler

Supervised by Prof. Dr. Dirk Beyer

Verification of Java Programs with Exceptions with CPAchecker

Acknowledgement

I would like to thank Prof. Dr. Dirk Beyer for giving me the opportunity to write the
master’s thesis at the chair for Software and Computational Systems Lab. Special thanks
goes to my mentor Dr. Philipp Wendler. I am grateful for his guidance throughout the
different steps that come with writing a master’s thesis. The weekly meetings and fast
answers when i had a question helped me a lot. I would also like to thank my family,
friends and especially my partner for their support. They cheered me up whenever I felt
frustrated and celebrated the moments of success with me.

I

Verification of Java Programs with Exceptions with CPAchecker

Abstract

Errors can occur in Java programs that must be handled by Java’s exceptional
control flow. Verification tools that provide support for Java programs must be able
to handle these exceptions. CPAchecker is one of these tools, but it is not able to
properly analyze programs with exceptions in them. It uses control-flow automata
to represent the program internally and performs its analysis on this structure.
In this thesis, we look at approaches that other tools use to handle exceptions in Java
and talk about an approach to add the exceptional control flow to the control-flow
automata by using standard non-exceptional Java control flow. A global variable
is being used to keep track of an exception that is actively affecting the program.
Exception handling is represented by conditional statements that check whether
an exception has occurred and whether it can be handled. We implement this
approach in CPAchecker and compare it with 8 state-of-the-art Java verification
tools. All programs in the dataset that contained developer-thrown exceptions could
be analyzed. However, situations with abnormal execution and exceptions thrown
by a library couldn’t be properly analyzed. The thesis shows that this approach
has improved CPAchecker’s ability to analyze Java programs, but that there are
still some issues that need to be addressed before it can perform as well as other
state-of-the-art tools.

II

Verification of Java Programs with Exceptions with CPAchecker

Contents

1 Introduction 1

2 Background 2
2.1 Software Verification . 2
2.2 Control-Flow Automaton . 2
2.3 Explicit Value Analysis . 2
2.4 Runtime Type Analysis . 2
2.5 Java Assertion . 2
2.6 Guarded Command . 3
2.7 Verification Condition . 3
2.8 Exception Handling in Java . 3
2.9 CPAchecker . 4
2.10 Configurable Program Analysis . 7

3 Related Work 8
3.1 Helper Variable based Exception Analysis 8
3.2 Java Virtual Machine Listener . 9
3.3 UML based Exception Analysis . 9
3.4 Constraint Based Exception Analysis . 10
3.5 Relation Based Exception Analysis using a Directed Graph 10
3.6 Property Based Exception Analysis . 10
3.7 Other . 11
3.8 Discussion . 11

4 Adding Exception-based Control-Flow to CFAs 14
4.1 Global Helper Variable . 14
4.2 Throw Statement . 14
4.3 Catching an Exception . 15
4.4 Finally Clause . 17
4.5 Throws Clause . 25
4.6 Nested Try Catch Finally . 25

4.6.1 Nested in Try . 25
4.6.2 Nested in Catch . 25
4.6.3 Nested in Finally . 25

4.7 Abnormal Execution - Division by Zero . 27

5 Evaluation 29
5.1 Setup . 29
5.2 Comparison between CPAchecker Implementations 29
5.3 Comparison CPAchecker to State of the Art Software 30
5.4 CPAchecker Possible Improvements . 32

6 Conclusion and Future Work 36

A Appendix V

III

Verification of Java Programs with Exceptions with CPAchecker

List of Figures

1 Control flow - exception not thrown . 5
2 Control flow - exception thrown and caught 5
3 Control Flow - exception thrown and not caught 5
4 Original program included exception, but exception control flow not included

in CFA . 6
5 Adding throw statement handling to CFA 16
6 Adding exception catching control flow to CFA 19
7 Finally - Adding Finally Block To All Eligible Paths 22
8 Adding local variable to handle control flow after finally in CFA 24
9 Nested in try block control flow . 26
10 Division by zero control flow added to CFA 28
11 Quantile plot: CPU time of all correct results 33
12 Quantile plot: walltime of all correct results 33
13 Quantile plot: memory consumption of all correct results 34
14 Quantile plot: CPU energy consumption of all correct results 34

List of Tables

1 CPAchecker comparison . 30
2 CPAchecker comparison: 241 programs containing exception handling . . . 30
3 CPAchecker performance comparison: 225 programs where all CPAchecker

versions get the correct result . 30
4 Software comparison complete dataset . 31
5 Tool performance comparison: 63 programs where all tools get the correct

result . 32
6 Software Comparison: 241 programs containing exception constructs 33
7 Link to version of tools used in evaluation V

Listings

1 Exception example program . 4
2 Programm with exception correctly solvable by CPAchecker 7
3 ESC/JAVA annotations . 11
4 Exceptional code without exception constructs 14
5 Global helper - adding static helper variable 14
6 Throw statement example . 15
7 Handling throw statement . 15
8 Example - try catch . 17
9 Source-to-Source translation - catching exceptions 18
10 Example including finally block . 20
11 Adding finally block to paths . 21
12 Adding local variable to handle control flow after finally 23

IV

Verification of Java Programs with Exceptions with CPAchecker

13 Abnormal execution - division by zero . 27
14 Division by zero control flow handled . 27

V

Verification of Java Programs with Exceptions with CPAchecker

1 Introduction

Software is one of the most important cornerstones of modern society. There are many
different parts of our lives that improve every day thanks to advances in hardware and
software. The one thing that all the different software applications have in common
is that they must work reliably. This requirement has given rise to two new areas of
research: software testing and software verification. Software verification isn’t as popular
as software testing in the enterprise sector, except for companies that produce safety-
critical software. Agencies such as NASA and universities advance the field steadily.
One of the problems these verification tools have to analyze is erroneous behavior in the
program control flow. There are many different verification tools for popular programming
languages that offer different approaches to do so. Java, being one of the most popular
programming languages, needs tools that can handle all the features that Java offers,
including exceptions.
In this paper, two different topics will be discussed. An approach to include exception
handling in a control flow automaton using standard Java control flow is being presented.
A global static variable is used to track the exception that is actively affecting the
program, as well as conditional statements that check whether an exception can be
handled. The advantage of this approach is that the exception handling mechanism
only has to be introduced at the control flow automaton creation and does not have to
be dealt with individually in each analysis. The typical exception handling constructs
and an example of an abnormal execution will be discussed. The other topic is a review
of the current state of exception handling in verification and adjacent fields. There are
many different approaches, ranging from using a local variable to track an exception, to
handling exceptions in the analysis itself, to using a listener on a Java virtual machine.
The approach discussed in this thesis is implemented in the software verification tool
CPAchecker, which provides Java verification support but is currently unable to analyze
programs with exceptions. The implementation is evaluated to see if the accuracy of
CPAchecker is improved, by using value analysis in conjunction with runtime type analysis
on a set of programs. At the end CPAchecker will be compared to other available
Java verification tools that participated in the SV-COMP 20231 software verification
competition.

1https://sv-comp.sosy-lab.org/2023/

1

https://sv-comp.sosy-lab.org/2023/

Verification of Java Programs with Exceptions with CPAchecker

2 Background

2.1 Software Verification

Software verification uses formal verification to verify that a software system is correct.
The article

”
What is formal Verification?“[11] defines formal verification as the use of

mathematical methods to prove that a well-defined notion of functional correctness applies
to a design. To obtain a proof of correctness about a computer program, two different
approaches are being used as discussed in the paper

”
Formal software verification: Model

checking and theorem proving“[26]. The first one is the pre/post condition, where a
problem is being defined as a relation between a formula that is assumed to hold at the
beginning of program execution and a formula that is assumed to hold at the end of
the program execution. A program is correct if the post condition formula holds, given
the pre-condition formula. The second approach is to use invariant assertions. For this
approach an invariant formula must be set up and must hold throughout the execution
of the program.

2.2 Control-Flow Automaton

A control-flow automaton (CFA) is a directed graph that represents the control flow of
a program. It is represented by a triple (L,l0,G). L is the set of program locations, l0
is the starting location and G is the set of edges between the locations in L. An edge
g = (l, op, l′) ∈ G consists of the location where the edge starts l ∈ L, the location the
where the edge ends l′ ∈ L and the operation op ∈ Ops. Ops contains assumptions,
declarations and statements.

2.3 Explicit Value Analysis

Explicit value analysis [10] uses the values of all fields in a program to determine the
correctness of the program. The analysis checks whether the values that are given at any
point in the program can violate a given specification. If there is no path that violates
the specification the program is considered safe. Value analysis considers only equalities
and non-equalities when analyzing a program. If a value is not present, it is considered
to be an unknown that can still be used in conditional statements. All possible branches
must be explored when encountering an unknown value in a branching statement.

2.4 Runtime Type Analysis

Runtime Type Analysis (RTT) is an analysis that tracks the concrete runtime types of
all objects. It works similarly to the Explicit Value Analysis.

2.5 Java Assertion

An assertion in Java is a statement consisting of the assert keyword and a boolean
expression. The

”
Java SE Documentation“[3] defines it as a statement that is being

used to test assumptions about code. A program containing an assertion statement runs

2

Verification of Java Programs with Exceptions with CPAchecker

correctly if the boolean expression evaluates to true, and throws an error if it evaluates
to false when assertions are enabled. Another expression can be added to the assertion
statement: assert expr1 : expr2. The first expression, expr1, is a boolean expression,
and the second, expr2, is an expression that has a value that is being used as the error
message.

2.6 Guarded Command

A guarded command is a statement or a list of statements that is executed when a
condition is fulfilled. This construct was first introduced by Dijkstra [19] in 1975.

2.7 Verification Condition

Frade and Pinto [20] define verification conditions (VC) as first-order proof obligations.
Whether a verification condition is valid or invalid can be determined using standard
proof tools. A program can be considered correct if all verification conditions are proven
to be valid.

2.8 Exception Handling in Java

Java exceptions are a mechanism for indicating that a problem has occurred that could
lead to an error in the execution of a program. The authors of

”
How Does Exception

Handling Behavior Evolve? An Exploratory Study in Java and C# Applications“[13]
define Java exception handling as reliability-driven exception handling. This means that
the software reliability can be improved by having to explicitly define exception handling
constraints.
The Java language specification for exceptions [2] explains that the developer will be
warned by the Java virtual machine by throwing an exception when a semantic constraint
is being violated. In Java, when an exceptional circumstance happens, it is called throwing
an exception. When an exception encounters a construct that can handle it, it is called
catching an exception. A developer can indicate that an exception occurs in his code by
using the throw statement, which consists of the throw keyword and an expression. The
expression can be either a value of the type Throwable or one of its subclasses, or a null

reference. If the expression is neither, a compile-time error occurs. After an exception
is thrown, all statements are ignored until a try statement is encountered that contains
a matching catch clause. The thread to which the throw statement belongs is killed if
no such try statement exists. A method or constructor declaration can contain a throws

clause that indicates that it potentially throws an exception but doesn’t handle it itself.
There are two types of exception classes: the unchecked exception classes include the
runtime exception classes and the error classes, while the checked exception classes include
Throwable and all of its subclasses except for the unchecked exception classes. There are
three different ways to trigger the exception mechanism: when the Java virtual machine
executes a throw statement, when an abnormal execution condition is detected, or when an
asynchronous exception occurs. An abnormal execution occurs when the normal semantics
of the Java programming language is violated, when loading, linking, or initializing a
section of the program results in an error, or when the Java virtual machine cannot

3

Verification of Java Programs with Exceptions with CPAchecker

continue due to an internal error or resource limitation. Asynchronous exceptions can
also occur when the Java virtual machine cannot continue in a concurrent program, and
when the stop method of the Thread or ThreadGroup class is used.
The try-catch(-finally) construct is used to handle exceptions in Java. A try statement
encloses a block of code. When this code is executed and an exception is thrown, the catch

clauses are checked if one matches the exception, if the try statement has catch clauses. If
a catch block matches the exception, the control flow will be continued at the catch clause
and the code that is responsible for throwing the exception does not get executed. If more
than one catch clause matches the exception, only the first one will be executed. If none
of the catch clauses match the exception, the next closest catch clause that can handle
the exception will be executed. A thread is terminated if an exception isn’t caught in
that thread. If there is a finally clause, the block of code enclosed by the finally clause is
executed after the try statement and the catch clause, even if an exception is thrown in the
try block or a catch clause gets executed. The catch clause consists of the catch keyword
and a CatchFormalParameter, which consists of a CatchType that is a ClassType, a
VariableDeclaratorId, and optionally of a VariableModifier. The following figures Figure
1, Figure 2, and Figure 3 are examples that show some paths that an exception can take.
They are based on Listing 1, which is written in a Java-style pseudocode form.

1 void exceptionMethod (){

2 try{

3 foo(); \\may throw an exception e

4 bar(); \\ exception free method

5 } catch(Exception e) {

6 c \\ catch block

7 } finally {

8 f \\ finally block

9 }

10 r \\rest of method

11 }

Listing 1: Exception example program

2.9 CPAchecker

CPAchecker [9] is an open source configurable software verification tool developed in
Java for C and Java programs. It offers the possibility to use different program analysis
approaches and model checking approaches.
The central data structure used to represent a program in CPAchecker is a set of CFAs.
The analyses that can be applied to Java programs are value analysis and runtime type
analysis. CPAchecker provides a framework that is called configurable program analysis
for introducing new analyses. It currently does not provide support for Java programs
with exceptions. The exceptional control flow is being ignored, but the content of the code
blocks within the try statement and the catch and finally clauses are added to the CFA.
This can lead to the analysis returning a correct result by chance. The CFA in Figure
4 is generated when analyzing the program that contains an exception and an exception
handling construct in Listing 2 with the current CPAchecker version2.

2https://svn.sosy-lab.org/software/cpachecker/trunk/?p=45346

4

https://svn.sosy-lab.org/software/cpachecker/trunk/?p=45346

Verification of Java Programs with Exceptions with CPAchecker

exceptionMethod()

1

2

try

3

foo();

6

bar();

7

finally

8

f

10

r

11

return;

Figure 1: Control flow -
exception not thrown

exceptionMethod()

1

2

try

3

foo();

5

catch(Exception e)

6

c

7

finally

8

f

10

r

11

return;

Figure 2: Control flow
- exception thrown and
caught

exceptionMethod()

1

2

try

3

foo();

5

catch(Exception e)

7

8

f

11

return;

finally

Figure 3: Control Flow -
exception thrown and not
caught

5

Verification of Java Programs with Exceptions with CPAchecker

Main_f()

Main_main_String[]()

N4
16

N22
15

INIT GLOBAL VARS

N23
14

private static java.lang.Boolean Main_entered = false;

N24
13

private static int Main_i = 0;

N5
12

Function start dummy edge

N6
11

while

N7
10

[Main_i < 10]

N8
7

[!(Main_i < 10)]

N1
2

Main_f()

N9
9

Main_f();

N2
1

Function start dummy edge

N0
0

default return

Return edge from Main_f to Main_main_String[]: Main_f();
N10

8

Main_i = Main_i + 1;

N12
6

java.lang.RuntimeException e;

N13
5

Main_entered = true;

N15
4

[Main_entered != false]

N16
1

[!(Main_entered != false)]

N14
3

assert success

N3
2

default return

N17
0

assert fail

Figure 4: Original program included exception, but exception control flow not included
in CFA

6

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3 private static Boolean entered = false;

4

5 private static void f() {

6 throw new RuntimeException ();

7 }

8

9 public static void main(String [] args) {

10 try {

11 while (i < 10) {

12 f();

13 i++;

14 }

15 } catch (RuntimeException e) {

16 entered = true;

17 }

18 assert entered;

19 }

20 }

Listing 2: Programm with exception correctly solvable by CPAchecker

2.10 Configurable Program Analysis

A configurable program analysis (CPA) [8] allows the abstract domain specification to
be separated from the analysis algorithm itself. The CPA algorithm is a reachability
analysis algorithm that can be used with any CPA. Multiple CPAs can be combined to a
composition of CPAs.

7

Verification of Java Programs with Exceptions with CPAchecker

3 Related Work

3.1 Helper Variable based Exception Analysis

A possible technique used to describe exceptions for an analysis of a program is the use of
a helper variable that handles the representation of the variable in the respective format,
e.g. directed graph. JayHorn [4][1][23] is one of the tools using this technique. It is a
software model checking tool for Java that can analyze programs that do not contain
multithreading or dynamic class loading. It uses the Soot framework, which parses the
code and returns a JIMPLE representation, which is a simplified version of Java source
code. The Jimple representation is translated into a set of Horn clauses, which then
get analyzed by a Horn engine. To handle exceptional control flow, a static variable is
introduced that keeps track of the last exception thrown. This static variable is getting
checked every time the control flow changes, e.g. when a method is getting called.
JBMC [17][18] is another verification tool for Java byte code. The code is translated into
a static single assignment form that includes a control flow graph. When an exception
occurs in the code, it is stored in a global variable. The control flow from the exception case
is being written as conditional branches. JBMC will attempt to match the exception with
a catch statement in this exceptional control flow. The GOTO program resulting from
this translation is then analyzed by a bounded model checker and checked for unwanted
behavior. A solver or configured SAT is then used to solve the bit-vector formula from the
previous process. One of the features of JBMC is that it is able to detect both runtime and
user-specified exceptions. It creates safety conditions that check for various exceptional
behaviors such as null dereference or array bounds errors.
Translation of Annotated Code (TACO)[16] is a SAT-based tool that uses bounded
verification to analyze sequential Java programs. The Java code must be annotated with
either the Java Modeling Language or JFSL. It translates the annotation and the code
into SAT formulas using intermediate languages such as JDynAlloy. One of the problems
of this concept is the lack of exception management in JDynAlloy. The solution to this
problem is the introduction of a new variable which represents the exception and can be
analyzed as such.
In

”
Interprocedural Exception Analysis for C++“[27], a framework is discussed that

introduces interprocedural exception analysis and a method for transformating C++
programs that contain exceptions into exception-free programs. The transformation
process is divided into three steps. Transformation of the C++ code into intraprocedural
exception control flow graphs. An exceptional return is being introduced for each function
in addition to the normal return. A new edge type is introduced: the exception edge. The
content of the edge type is a Signed-TypeSet containing either a plus or a minus sign and
a set of exception types. A TypeSet containing a plus sign signals that the exception types
in the set are supposed to be included in the analysis. Including a minus in the TypeSet
signals that the condition is met if it is an exception type other than the types in the set.
The next step consists of combining these graphs into a interprocedural exception control
flow graph. An exception analysis is used to refine the information on the exception edges
in the interprocedural exception control flow graph. In the last step, an exception-free
program is generated. This consists of introducing a type-id helper variable that holds
the type that is being thrown and local exception-objects that represent each exception

8

Verification of Java Programs with Exceptions with CPAchecker

type that the function can throw. The functions parameter is expanded by a reference
parameter that holds the type-id and a reference parameter for each exception that is
thrown in the function. A throws keyword is replaced by assigning the exception type to
the helper variable. The catch construct is represented by a switch statement on the local
type id. A GO-TO statement is added that leads either to the content of a catch block
or the exceptional-exit node.

3.2 Java Virtual Machine Listener

One way to handle exceptions in software verification is to use a listener on a virtual
machine. The information that the listener encounters can be saved and reused later.
Java Pathfinder (JPF) [21] and its various extensions use this technique. JPF uses a
custom virtual machine that can store and match program states. JPF’s main feature is
the ability to backtrack to previously explored states. It can handle concurrent programs
and is able to check for various properties such as runtime errors, assertion violations,
and deadlocks. It uses an explicit-state model checker to analyze a given problem.
Symbolic Pathfinder (SPF) [28][24] is an extension to JPF that introduces symbolic
execution of Java byte code. It implements a byte-code instruction set that uses symbolic
execution principles. An important feature is the ability to enable it at any point of
the program analysis. The main goal of SPF is automatic test case generation. The
authors implemented a custom listener class that listens for exceptions and adds all of the
necessary information to a summary if it is a runtime exception. It adds a warning for
every runtime exception encountered even if it’s handled by the developer, because the
authors believe that relying on runtime exceptions in code is bad practice.
JDart [25] is another JPF extension that uses dynamic symbolic analysis on Java programs.
It’s modular and has an executor and an explorer at its core. The executor runs the
program with different concrete data values and records symbolic constraints for the
different paths it follows. The explorer organizes a constraint tree while also handling
termination, exploration strategies and support for the constraint solver. This core can
be extended with extensions like JUnit Test Generator. Paths that lead to an ERROR
state containing unhandled exceptions are added to the constraint tree along with their
value. It tracks the number of unique satisfiable paths, along with their termination state
(OK or ERROR).

3.3 UML based Exception Analysis

A technique that falls under the category of architectural verification is UML activity
graph-based exception verification. In the paper

”
Architecting fault tolerance with exception

handling: Verification and validation“[12] a fault-tolerant architectural element is presented:
Idealised Fault-Tolerant Architectural Element (iFTE). It provides multiple interfaces to
depict normal and abnormal behavior. The Provided Abnormal interface is responsible for
signaling the exceptions a class may throw, and the Required Abnormal interface indicates,
which exceptions can be handled by the class. A thrown exception that is not part of the
Required Abnormal interface of a class, leads to an internal iFTE error, which produces a
failure exception. Each abnormal use case requires a UML component diagram containing

9

Verification of Java Programs with Exceptions with CPAchecker

the interfaces and a set of UML sequence diagrams containing abnormal scenarios. The
UML files are translated into a formal notation using B-Method, a formal language,
which is supported by Communicating Sequential Process, an algebraic process to present
execution sequences.

3.4 Constraint Based Exception Analysis

The authors of
”
Interprocedural Exception Analysis for Java

”
[15] discuss a formal verification

method for finding unhandled exceptions. The approach they discuss is an improvement to
the intraprocedural exception analysis of the current JDK Java compiler, which uses only
the developer’s specification. The interprocedural exception analysis reports unnecessary
try-catch constructs, as well as improving existing catches in the form of specifying the
caught exception when, for example, a parent class is used. A set-constraint framework
is used to analyze classes. Chang et al. discuss the analysis at two different levels:
expression-level and method-level. At the expression-level each object class of each
expression generates a set constraint. This wastes a lot of resources because exception
statements are usually rare. Method-level analysis only considers set variables for class
methods and try blocks, while preserving the information that you would get from expression-
level analysis.
Another constraint-based approach used in the tool Jex is discussed by Robilliard and
Murphy [29]. The tool parses a Java source file and generates an abstract syntax tree.
The AST visitor is responsible for storing try-catch-finally constructs and generating a set
of exception types for exceptions that are explicitly thrown by the developer, thrown by
a system operation (e.g. division by zero), or propagated by a method. Each statement
is checked to generate the set of exception types. The information is then analyzed to
generate a Jex file that contains a description of the exception flow in a class.

3.5 Relation Based Exception Analysis using a Directed Graph

In a relation based exception analysis approach the exception handling constructs are
added to a directed graph and an analysis has to handle the way the exceptions are
approached. The authors of

”
Static analysis of exception handling in Ada“[31] discuss an

approach for Ada programs. They present a four-step automatic process for analyzing
exception constructs in Ada programs. A semantically correct Ada source file is compiled
into a non-optimized intermediate form called DIANA. While analyzing the DIANA
output, a directed graph is built that contains all of the exception information. In the
third step, the directed graph is used to define relations that are useful for exception
handling analysis, and these are written to a separate text file. In the next step, the
relations defined previously are used to identify violations of developer-defined guidelines.

3.6 Property Based Exception Analysis

An architectural exception flow analysis is being discussed in the paper
”
Specification of

exception flow in software architectures
”
[14]. They use ACME as a software architecture

description language and Aereal to describe and analyze the exception control flow in a
program. The specification process, which is part of software architecture process in this

10

Verification of Java Programs with Exceptions with CPAchecker

case, includes failure scenarios, exceptions that handle these scenarios, and the specific way
in which these exceptions handle the failures, among other things. Aereal includes point-
to-point connectors that are used to describe exceptions between software components.
The connectors are unidirectional. The Aereal specification, which consists of a set of
ACME systems and family descriptions, is then converted into an Alloy specification. The
analysis checks whether the resulting Alloy specification satisfies one of the three groups of
properties: basic, desired and application specific properties. The basic property includes
rules that check if the program is well-formed, while the desired property includes rules
that are beneficial for the program. The application-specific properties are made up of a
number of basic and desired properties and optionally developer-specified properties.

3.7 Other

ESC/JAVA [22] is a compile-time program checker that uses a mix of annotations and
extended static checking. The tool is able to detect a large number of automatically
thrown exceptions. One of the problems with ESC/JAVA is that these will produce a
warning even if they are caught and handled properly. It introduces the exsures pragma
to handle exceptions which includes a boolean expression to indicate whether the exception
should be thrown. This will be checked when the body of the annotated code is being
analyzed. Listing 3 and the following explanation are taken from the ESC/Java user
manual [22]:

1 exsures (T t) E ;opt

2 exsures (T) E ;opt

Listing 3: ESC/JAVA annotations

T is a subtype of java.lang.Throwable, t (if included) is a an identifier, and E is a boolean
specification expression. The identifier t (if included) is in scope in E, where it has type
T. The pragma makes E an exceptional postcondition of the routine the pragma modifies.
That is, it specifies that E holds whenever the routine completes abruptly by throwing
an exception t whose type is a subtype of T.
ESC/JAVA produces an AST while compiling the code and the annotations. This abstract
syntax tree is then translated into guarded commands, which are then translated into
verification conditions which are passed to a theorem prover.
Java Applet Correctness Kit (JACK) [6] is a tool for source and byte code verification
that must be annotated with the Java Modeling Language. The tool uses an extended
version of weakest precondition calculus, which includes various Java concepts such as
exceptions. The two frameworks being used to handle the proof obligation that is being
generated by the weakest precondition calculus are Simplify - an automatic prover, and
Coq - an interactive prover.

3.8 Discussion

There are several ways to handle the exception flow when using helper variables. While the
approach discussed in this thesis uses a global static variable in Java that can be accessed
from anywhere in the program, the approach developed in

”
Interprocedural Exception

Analysis for C++“[27] solves this problem by passing along a pointer to a local helper

11

Verification of Java Programs with Exceptions with CPAchecker

variable that is supposed to represent the exception that is being thrown by a function that
was called by another function. The authors discussed several reasons for this behavior,
addressing the difference between exceptions in Java and exceptions in C++. One of the
differences is the subtyping difference between Java and C++. Exceptions in Java all
have a common ancestor class, the Exception class and only allow inheritance from one
class while C++ allows a class to inherit from multiple classes.
The tool discussed in

”
Static analysis of exception handling in Ada“[31] can be considered

to be similar to the approach discussed in this paper. The difference is where the
exception should be handled. While the analysis itself is responsible for properly handling
exceptions in the Ada tool, CPAchecker uses a helper variable and conditional statements
to map the exceptional control flow on a CFA. The Ada implementation would also
be possible in CPAchecker. While the Ada implementation would reduce the numbers
of paths in a CFA, the advantage of the approach discussed in this thesis is that the
analysis implementation does not become more complex. The Ada approach can be
a disadvantage if the implementation of the analysis should be as simple as possible.
The disadvantage of the approach discussed in this thesis is that a lot of paths will
be added to the CFA. This adds to the already existing path explosion problem a lot of
verification tools struggle with. Compared to TACO, CPAchecker has more freedom when
it comes to implementing exceptional control flow. TACO also uses a helper variable in
its process but is forced to do it because one of its intermediate languages do not offer
exception handling, whereas CPAchecker could implement exception handling without
the use of a helper variable. Both JBMC and the approach discussed in this thesis
use a helper variable and conditional statements to translate exceptional control flow to
non-exceptional control flow. In the case of JBMC, the translation results in a GO-TO
program, while CPAchecker’s translation results in a CFA.
The architectural exception flow analyses depend on a good understanding of the control
flow in the program. Finding and defining all of the exceptional use cases can be quite
difficult. Users often find ways to break a program that the software architect or developer
didn’t think of. Another problem with architectural exception flow analysis is that it can’t
inform the developer about implementation-specific problems, such as trying to access an
array position outside of the arrays scope.
There are papers that compare different tools discussed in this chapter. In

”
Bug detection

in Java code: An extensive evaluation of static analysis tools using Juliet Test Suites“[5]
Java Pathfinder, ESC/JAVA and other tools are being compared. The authors used the
Juliet Test Suite v1.2 as the dataset on which to test against. Java Pathfinder was quite
precise, meaning that it could assign the correct problem when it found one but had
problems finding the bugs in the first place. ESC/JAVA on the other hand found all of
the known problems but performed rather poorly at assigning those bugs to the correct
problem.
There is a comparison between JBMC, JayHorn and Java Pathfinder in

”
JBMC: A

Bounded Model Checking Tool for Verifying Java Bytecode“[17]. The programs used
were from four different suites: a self-created suite, one made by Java Pathfinder, the
MinePump suite and a recursive suite. JBMC performed quite well followed by Java
Pathfinder. JayHorn, in comparison, was only able to correctly identify about half of the
problems.

12

Verification of Java Programs with Exceptions with CPAchecker

In
”
A comparison of bug finding tools for java“[30] 5 different bug finding tools are

being compared including ESC/JAVA. Several categories are being discussed, including
concurrency errors, null dereferences and array bounds errors. The programs used as a
test suite were Apache Tomcat 5.0.19, JBoss 3.2.3, Art of Illusion 1.7, Azureus 2.0.7 and
Megamek 0.29. Looking at the null dereferences ESC/JAVA does report many warnings
in the different projects that were used to test these programs, up to a factor of 500 more
warnings than the other tools tested. The time needed to analyze the different programs
is also quite long, from at least one day up to fifteen days while the other programs often
needed only a few hours or even minutes. This shows that ESC/JAVA doesn’t really
perform well without the annotations, which are either a big commitment to include for
already written software or need to be considered from the beginning.
SV-COMP is a competition for software verification tools. It offers a Java category since
2019. The following results reference the report from 2023 [7]. The set of programs used
can be found on their website3 and includes test programs from different participants
such as JayHorn, JBMC, JPF and Java Ranger. The participants that competed in the
SV-COMP 2023 were GDart, Java-Ranger, JayHorn, JBMC, JDart, Coastal and SPF.
The report includes two tables that show different results. The first one goes over all
regular results and contains GDart, Java-Ranger, JBMC and MLB. The second table is
a quantitative overview of all participants who want to participate in the competition
without being ranked. The table contains the tools Coastal, JayHorn, JDart and SPF.
JBMC and GDart performed by far the best when looking at the first table, both sitting
at around 80% of the points. MLB managed to score around 60% of the points and Java-
Ranger had close to 50% of the points. When looking at the second table JDart manages
to get close to 50% of the points, while JayHorn and SPF both had around 25% of the
points. Coastal was the only one in this category with a negative score. The scoring
scheme can be found in the SV-COMP report

”
Competition on Software Verification and

Witness Validation: SV-COMP 2023“[7].

3https://sv-comp.sosy-lab.org/2023/benchmarks.php

13

https://sv-comp.sosy-lab.org/2023/benchmarks.php

Verification of Java Programs with Exceptions with CPAchecker

4 Adding Exception-based Control-Flow to CFAs

In this chapter, we will discuss an approach to building a CFA for a Java program with
exceptions using the standard control flow. We will look at the different parts of the
Java exception construct and how to translate them. Finally, an example of an abnormal
execution will be translated into a CFA control flow using the methods discussed in
this section. This concept is based on JayHorn’s [4] implementation. The CFAs in this
chapter will be simplified so as not to show any information that is unnecessary for the
implementation. Listing 4 contains a program that is used as a running example in this
chapter. The various Java exception statements are added to that program and translated
into a CFA. In addition, we also show what the Java program would look like if source
code with exceptional control flow would be translated to source code without exceptional
control flow.

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){}

5 private static void bar(){}

6

7 public static void main(String [] args) {

8 foo();

9 bar();

10 }

11 }

Listing 4: Exceptional code without exception constructs

4.1 Global Helper Variable

The first step is to add a class to the program model that contains a public static helper
variable of the type Throwable. The variable is initialized with a null value. This is shown
in Listing 5. This variable represents an exception that is actively impacting the control
flow.

1 public class Helper {

2 public static Throwable helperVariable = null;

3 }

Listing 5: Global helper - adding static helper variable

4.2 Throw Statement

A throw statement is represented in the CFA as an assignment of the throw statement
expression to the helper variable. Execution of the method ends if the throw statement is
not in a try block. This means that the path containing the throw statement goes directly
to the end of the method or to a finally block if it was thrown in a catch block if a finally

block exists in the same try statement as the catch block. If the throw statement is in a try

block the normal exception handling mechanisms discussed Section 4.3 will apply. The

14

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 throw new NullPointerException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 foo();

11 bar();

12 }

13 }

Listing 6: Throw statement example

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 Helper.helperVariable = new NullPointerException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 foo();

11 bar();

12 }

13 }

Listing 7: Handling throw statement

result of translating the code in Listing 6 is the CFA in Figure 5 and the code in Listing 7.

4.3 Catching an Exception

There are two steps to implementing the exception handling. The first step adds a
conditional statement that checks if the global helper variable is not null. These conditional
edges are added after each edge that is a method call, a throw statement in a try block,
or an abnormal execution. One path leads to the next statement in the program if the
variable is null. The other path leads to the exception handling if the helper variable is
not null. For each method that is used within another operation, e.g. bar() in foo(bar()),
a temporary variable is declared with the return type of the method as a type and the
method call is assigned to that variable. The operation uses the temporary variable as a
value instead of the method call. After that step 1 can be applied to these methods as
well. If there are no catch blocks in the source code the helperVariable!=null edge will go
directly to the end of the method, or to the finally clause, if a finally clause exists if it
is not nested. The nested cases will be discussed in Section 4.6

15

Verification of Java Programs with Exceptions with CPAchecker

Main_bar()

Main_foo()

Main_main_String[]()

N8

N18

public static Throwable Helper_helperVariable = null;

N19

private static int Main_i = 0;

N2

Main_foo()

N10

Main_foo();

N3

Helper_helperVariable =
new NullPointerException();

N0

return;return edge

N6

Main_bar()

N11

Main_bar();

N4

return;return edge

N12

Main_i = Main_i + 1;

N7

return;

Figure 5: Adding throw statement handling to CFA

16

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 throw new NullPointerException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 try{

11 foo();

12 bar();

13 } catch(NullPointerException n){

14 n.printStackTrace ();

15 } catch(RuntimeException r){

16 r.printStackTrace ();

17 }

18 }

19 }

Listing 8: Example - try catch

In the second step, a conditional statement for each catch block will be added in the form
of an if-else if-else construct that checks whether the helper variable is an instance
of the class of the exception or a superclass of the class of the exception that is caught
in the catch clause. The catch-block content will be the corresponding if-block content.
At the beginning of each if block, a variable is declared with the type and the id of
the CatchFormalParameter and initialized with the value of the helper variable. The
helper variable must then be set to null. The else path leads either to a finally block,
if available, or to the end of the method if the try-catch block does not include a finally

block if it is not nested within another exception construct. The nested cases will be
discussed in Section 4.6 The method continues normally if one of the if-else if blocks is
executed. The way the two steps translate the example code in Listing 8 into a CFA is
shown in Figure 6, and the source-to-source code translation is shown in Listing 9.

4.4 Finally Clause

The finally code block is always being executed regardless whether an exception is caught
or not. An exception that is thrown in the finally block overrides an exception thrown
before it or an exception that was not caught. Two different approaches to including a
finally block in a CFA are discussed in this section.
The first is to add the content of the finally block at the end of all 3 paths before returning
to the method body after the try-catch construct: helper variable is null, helper variable
has a value but none of the if-else if statements catch it, and helper variable has a
value and the value is caught by one of the if-else if cases. The paths continue after
the finally block as discussed in the previous sections.
The second approach is to declare a boolean variable directly after the

17

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 Helper.helperVariable = new NullPointerException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 foo();

11 if(Helper.helperVariable != null){

12 if(Helper.helperVariable instanceof NullPointerException){

13 NullPointerException n = Helper.helperVariable;

14 Helper.helperVariable = null;

15 n.printStackTrace ();

16 } else if(Helper.helperVariable instanceof RuntimeException) {

17 RuntimeException r = Helper.helperVariable;

18 Helper.helperVariable = null;

19 r.printStackTrace ();

20 } else {

21 return;

22 }

23 } else {

24 bar();

25 if(Helper.helperVariable != null){

26 if(Helper.helperVariable instanceof NullPointerException){

27 NullPointerException n = Helper.helperVariable;

28 Helper.helperVariable = null;

29 n.printStackTrace ();

30 } else if(Helper.helperVariable instanceof RuntimeException) {

31 RuntimeException r = Helper.helperVariable;

32 Helper.helperVariable = null;

33 r.printStackTrace ();

34 } else {

35 return;

36 }

37 } else {}

38 }

39 }

40 }

Listing 9: Source-to-Source translation - catching exceptions

18

Verification of Java Programs with Exceptions with CPAchecker

Main_bar()

Main_foo()

Main_main_String[]()

N8

N54

public static Throwable Helper_helperVariable = null;

N55

private static int Main_i = 0;

N2

Main_foo()

N10

Main_foo();

N3

Helper_helperVariable =
new NullPointerException();

N0

return;

return edge

N12

[Helper_helperVariable != null]

N13

[!(Helper_helperVariable != null)]

N15

[Helper_helperVariable instanceof NullPointerException]

N24

[!(Helper_helperVariable instanceof NullPointerException)]

N18

NullPointerException n = Helper_helperVariable;

N19

Helper_helperVariable = null;

N20

n.printStackTrace();

N14

N11

N7

return;

N22

N26

RuntimeException r = Helper_helperVariable;

N27

Helper_helperVariable = null;

N28

r.printStackTrace();

[Helper_helperVariable instanceof RuntimeException]

N23

[!(Helper_helperVariable instanceof RuntimeException)]

return;

N6

Main_bar()

N30

Main_bar();

N4

return;return edge[Helper_helperVariable != null]

N31

[!(Helper_helperVariable != null)]

Figure 6: Adding exception catching control flow to CFA

19

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 throw new NullPointerException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 try{

11 foo();

12 bar();

13 } catch(NullPointerException n){

14 n.printStackTrace ();

15 } catch(RuntimeException r){

16 r.printStackTrace ();

17 } finally {

18 i = 1;

19 }

20 }

21 }

Listing 10: Example including finally block

helperVariable != null check and initialize it with the value false. This variable keeps
track of whether an exception was handled. At the end of each catch block that is
represented by a conditional statement the variable gets assigned the value true, indicating
that the exception was successfully handled. The boolean variable is also added and set
to true at the end of to the normal execution path in the try block. The three paths
that were mentioned in the first finally block approach lead to the same node. After this
node, the finally block content will be added to the CFA. A conditional statement will be
introduced after the finally block that checks whether the boolean variable is true or false.
If it is false the path goes either to the end of the method or possibly to another exception
handling construct when nested, as discussed in Section 4.6. It continues with the next
statement of the method body if the boolean variable is true. While the first approach
seems better when the finally block does not contain structures like loops that are hard to
verify, the second approach should work better when many paths are introduced because
the content is not added to all of the paths. The example code in Listing 10 is used to
demonstrate both approaches. The first approach is shown in Figure 7 and Listing 11
and the second one can be seen in Figure 8 and Listing 12.

20

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 Helper.helperVariable = new RuntimeException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 foo();

11 if(Helper.helperVariable != null){

12 if(Helper.helperVariable instanceof NullPointerException){

13 NullPointerException n = Helper.helperVariable;

14 Helper.helperVariable = null;

15 n.printStackTrace ();

16 i = 1;

17 } else if(Helper.helperVariable instanceof RuntimeException) {

18 RuntimeException r = Helper.helperVariable;

19 Helper.helperVariable = null;

20 r.printStackTrace ();

21 i = 1;

22 } else {

23 i = 1;

24 return;

25 }

26 } else {

27 bar();

28 if(Helper.helperVariable != null){

29 if(Helper.helperVariable instanceof NullPointerException){

30 NullPointerException n = Helper.helperVariable;

31 Helper.helperVariable = null;

32 n.printStackTrace ();

33 i = 1;

34 } else if(Helper.helperVariable instanceof RuntimeException) {

35 RuntimeException r = Helper.helperVariable;

36 Helper.helperVariable = null;

37 r.printStackTrace ();

38 i = 1;

39 } else {

40 i = 1;

41 return;

42 }

43 } else {

44 i = 1;

45 }

46 }

47 }

48 }

Listing 11: Adding finally block to paths

21

Verification of Java Programs with Exceptions with CPAchecker

Main_bar()

Main_foo()

Main_main_String[]()

N8

N60

public static Throwable Helper_helperVariable = null;

N61

private static int Main_i = 0;

N2

Main_foo()

N10

Main_foo();

N3

Helper_helperVariable =
new RuntimeException();

N0

return;

return edge

N12

[Helper_helperVariable != null]

N13

[!(Helper_helperVariable != null)]

N15

[Helper_helperVariable instanceof NullPointerException]

N25

[!(Helper_helperVariable instanceof NullPointerException)]

N18

NullPointerException n = Helper_helperVariable;

N19

Helper_helperVariable = null;

N20

n.printStackTrace();

N21

Main_i = 1;

N14

N11

N7

return;

N23

N27

RuntimeException r = Helper_helperVariable;

N28

Helper_helperVariable = null;

N29

r.printStackTrace();

N30

Main_i = 1;

[Helper_helperVariable instanceof RuntimeException]

N24

[!(Helper_helperVariable RuntimeException)]

N31

Main_i = 1;

return;

N6

Main_bar()

N33

Main_bar();

N4

return;return edge[Helper_helperVariable != null]

N34

[!(Helper_helperVariable != null)]

N41

Main_i = 1;

Figure 7: Finally - Adding Finally Block To All Eligible Paths

22

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 private static int i = 0;

3

4 private static void foo(){

5 Helper.helperVariable = new RuntimeException ();

6 }

7 private static void bar(){}

8

9 public static void main(String [] args) {

10 foo();

11 if(Helper.helperVariable != null){

12 boolean pathToEnd = false;

13 if(Helper.helperVariable instanceof NullPointerException){

14 NullPointerException n = Helper.helperVariable;

15 Helper.helperVariable = null;

16 n.printStackTrace ();

17 pathToEnd = true;

18 } else if(Helper.helperVariable instanceof RuntimeException) {

19 RuntimeException r = Helper.helperVariable;

20 Helper.helperVariable = null;

21 r.printStackTrace ();

22 pathToEnd = true;

23 }

24 i = 1;

25 if(pathToEnd){}

26 else {return ;}

27 } else {

28 bar();

29 if(Helper.helperVariable != null){

30 boolean pathToEnd = false;

31 if(Helper.helperVariable instanceof NullPointerException){

32 NullPointerException n = Helper.helperVariable;

33 Helper.helperVariable = null;

34 n.printStackTrace ();

35 pathToEnd = true;

36 } else if(Helper.helperVariable instanceof RuntimeException) {

37 RuntimeException r = Helper.helperVariable;

38 Helper.helperVariable = null;

39 r.printStackTrace ();

40 pathToEnd = true;

41 }

42 i = 1;

43 if(pathToEnd){}

44 else{return ;}

45 } else {

46 boolean pathToEnd = false;

47 pathToEnd = true;

48 i = 1;

49 if(pathToEnd){}

50 else{return ;}

51 }

52 }

53 }

54 }

Listing 12: Adding local variable to handle control flow after finally

23

Verification of Java Programs with Exceptions with CPAchecker

Main_bar()

Main_foo()

Main_main_String[]()

N8

N68

public static Throwable Helper_helperVariable = null;

N69

private static int Main_i = 0;

N2

Main_foo()

N10

Main_foo();

N3

Helper_helperVariable =
new RuntimeException();

N0

return;

return edge

N12

[Helper_helperVariable != null]

N38

[!(Helper_helperVariable != null)]

N15

boolean pathToEnd = false;

N17

[Helper_helperVariable instanceof NullPointerException]

N26

[!(Helper_helperVariable instanceof NullPointerException)]

N20

NullPointerException n = Helper_helperVariable;

N21

Helper_helperVariable = null;

N22

n.printStackTrace();

N23

pathToEnd = true;

N16

N32

Main_i = 1;

N34

[pathToEnd]

N35

[!(pathToEnd)]

N33

N11

N7

return;

return;

N25

N28

RuntimeException r = Helper_helperVariable;

N29

Helper_helperVariable = null;

N30

r.printStackTrace();

N31

pathToEnd = true;

[Helper_helperVariable instanceof RuntimeException]

N24

[!(Helper_helperVariable instanceof RuntimeException)]

N6

Main_bar()

N39

Main_bar();

N4

return;return edge

N43

[Helper_helperVariable != null]

N40

[!(Helper_helperVariable != null)]

N41

N42

pathToEnd = true;

boolean pathToEnd = false; boolean pathToEnd = false;

Figure 8: Adding local variable to handle control flow after finally in CFA

24

Verification of Java Programs with Exceptions with CPAchecker

4.5 Throws Clause

The throws clause does not need to be handled since it is only an indication that a checked
exception may occur, not a statement that an exception will occur. The global helper
variable is already a stronger form of indication because it tells you exactly when an
exception must be handled at any point in the program.

4.6 Nested Try Catch Finally

4.6.1 Nested in Try

Exception handling when a try-catch(-finally) construct is nested within a try block is
similar to the normal exception handling. The difference is that the path representing
that an exception occurred but was not caught in the try-catch(-finally) construct leads
to the exception catching construct of the next outer try block. This can be seen in the
CFA in Figure 9: it is the [(HelperVariable helper instanceof ClassCastException)]! edge
between node 14 and node 12. The rest of the code in the try block will be executed
when no exception is thrown in the try-catch(-finally) construct or when the exception
is properly handled.

4.6.2 Nested in Catch

When a try-catch(-finally) construct is nested within a catch block that is part of a try

statement with multiple catches, if an exception is not caught by the
try-catch(-finally) construct and the potential finally block already handled, the path
leads to either a finally block that exists and is part of the same try statement as the
catch clause, the end of the method or the next catch clause, if the catch block is also
nested within a try statement. The execution of the rest of the code in the catch block
continues when no exception is thrown in the try-catch(-finally) construct or when the
exception is properly handled.

4.6.3 Nested in Finally

If an exception is thrown but not caught in a try-catch(-finally) construct that is nested
within a finally block the execution gets interrupted and resumed at the next possible
occasion. This could be either the end of the method, the next exception catch construct
if the finally block was nested in a try statement or another finally block if the finally
block was nested inside a catch which is followed by a finally statement. In the case that
no exception is thrown in the try-catch(-finally) construct or the exception is properly
handled, the execution of the rest of the finally block will be continued .

25

Verification of Java Programs with Exceptions with CPAchecker

Main_bar()

Main_foo()

Main_main_String[]()

N10
21

N35
19

public static Throwable Helper_helperVariable = null;;

N5
2

Main_foo()

N16
17

Main_foo();

N3
1

Helper_helperVariable =
new NullPointerException();

N0
0

return;

return edge
N14
16

[Helper_helperVariable != null]

N17
10

[!(Helper_helperVariable != null)]

N18
15

[Helper_helperVariable instanceof ClassCastException]

N12
8

[!(Helper_helperVariable instanceof ClassCastException)]

N19
15

ClassCastException c = Helper_helperVariable;

N21
12

Helper_helperVariable = null;

c.printStackTrace();

N8
1

Main_bar()

N23
9

Main_bar();

N6
0

return;return edge[Helper_helperVariable != null]

N24
1

[!(Helper_helperVariable != null)]

N25
7

[Helper_helperVariable instanceof NullPointerException]

N15
2

[!(Helper_helperVariable instanceof NullPointerException)]

N26
7

NullPointerException n = Helper_helperVariable;

N28
4

Helper_helperVariable = null;

n.printStackTrace();

N9
0

return;

return;

Figure 9: Nested in try block control flow

26

Verification of Java Programs with Exceptions with CPAchecker

1 public class Main {

2 public static void main(String [] args){

3 int x = 0;

4 int result = 5/x;

5 }

6 }

Listing 13: Abnormal execution - division by zero

1 public class Main {

2 public static void main(String [] args){

3 int x = 0;

4 int tempDivByZero;

5 if(x == 0){

6 Helper.helperVariable = new ArithmeticException ();

7 if(Helper.helperVariable != null){

8 return;

9 }

10 } else {

11 tempDivByZero = 5/x;

12 }

13 result = tempDivByZero;

14 }

15 }

Listing 14: Division by zero control flow handled

4.7 Abnormal Execution - Division by Zero

There are abnormal executions that result in an exception that is not explicitly thrown by
a developer using the throw keyword. Each of these cases requires its own way of handling.
We will look at integer division by zero to demonstrate how these cases can be handled
with the already discussed approaches. When encountering a division where the divisor is
a variable, declare a temporary integer variable. Add conditional statements that check
whether the variable in the divisor is zero. If it is not zero, assign the result of the division
to the temporary variable and put the variable in the place where the division was before.
Otherwise assign a new ArithmeticException instance to the helper variable and continue
with the steps discussed in Section 4.3. Listing 13 is used as an example program. The
result of the translation is shown in Figure 10 and Listing 14.

27

Verification of Java Programs with Exceptions with CPAchecker

Main_main_String[]()

N1

N21

public static Throwable Helper_helperVariable = null;

N4

int x = 0;

N6

int tempDivByZero;

N8

[x == 0]

N9

[!(x == 0)]

N10

Helper_helperVariable =
new ArithmeticException();

N12

[Helper_helperVariable != null]

N11

[!(Helper_helperVariable != null)]

N0

return;

N7

N15

result = tempDivByZero;

return;

N14

tempDivByZero = 5 / x;

Figure 10: Division by zero control flow added to CFA

28

Verification of Java Programs with Exceptions with CPAchecker

5 Evaluation

5.1 Setup

The following section answers two questions: how do the two branches javaExceptions4

and javaExceptionsFinallyVariable5 and CPAchecker trunk6 compare to each other, and
how do they compare to other state-of-the-art tools that participated in the SVCOMP
2023? A link to the exact version of the tools can be found in Table 7. All 3 CPAchecker
programs used value analysis in conjunction with runtime-type analysis. The javaExceptions
branch implemented the finally block in all eligible paths and the javaExceptionsFinallyVariable
branch implemented the local finally handling variable approach, while none of the branches
implemented abnormal execution scenarios. The evaluation was performed on the ws-
cluster on the SoSyLab verifier cloud. Each machine in this cluster contains an Intel
Core i7-6700 @3.400GHz CPU with 8 cores and a frequency of 4 000MHz with Turbo
Boost disabled. The time limit is 120 s with a hard time limit of 150 s, and the memory
limit is set to 3 000MB. A Linux 5.15.0-88-generic operating system is installed on
the machines. The benchmark consists of 608 programs: the current iteration of the
SV-Benchmark JavaCategory7 and 21 small programs that test different parts of user-
handled exceptions8. All of these programs use the assert property to check for program
correctness. Performance values are rounded to 3 significant digits.

5.2 Comparison between CPAchecker Implementations

In Table 1, you can see that CPAchecker trunk manages to solve 354 problems without
running into a timeout or an error, while correctly solving 244 problems. Of the incorrectly
solved problems, 3 were false positives and 107 were false negatives. It was able to solve
some of the problems with exception constructs as mentioned in Section 2.9. There are
241 programs in the dataset that contain exception handling constructs. Trunk managed
to correctly analyze 56 of these problems, incorrectly analyzed 38, and encountered an
error, exception, or timeout in 147.
The javaExceptions branch manages to solve 355 problems while correctly solving 250
of them. It manages to correctly solve 18 problems that the CPAchecker trunk couldn’t
correctly solve. All of the 18 problems include some form of exception handling. There
were 105 programs that were incorrectly identified. CPAchecker Trunk and javaExceptions
share 92 of these. Of the other 13 problems that javaExceptions can’t correctly identify,
10 are problems that contain abnormal execution scenarios. Of the 241 programs that
contained exceptions, 62 were correctly analyzed, 33 were incorrectly analyzed, and 146
could not be analyzed due to some kind of error, exception, or timeout.
The javaExceptionsFinallyVariable branch only manages to solve 346 problems compared

4https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptions@45359
5https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptionsfinallyvariable@

45361
6https://svn.sosy-lab.org/software/cpachecker/trunk@45346
7https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/

509aa68247e0050034f037ff56391fe87a8e4b0a/java
8https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptions@45184

29

https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptions@45359
https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptionsfinallyvariable@45361
https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptionsfinallyvariable@45361
https://svn.sosy-lab.org/software/cpachecker/trunk@45346
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/509aa68247e0050034f037ff56391fe87a8e4b0a/java
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/509aa68247e0050034f037ff56391fe87a8e4b0a/java
https://svn.sosy-lab.org/software/cpachecker/branches/javaexceptions@45184

Verification of Java Programs with Exceptions with CPAchecker

CPAchecker Overall
Correct Incorrect

Results True False Results True False
Trunk 354 244 82 162 110 3 107

javaExceptions 355 250 100 150 105 15 90
javaExceptionsFinallyVariable 346 244 100 144 102 15 87

Table 1: CPAchecker comparison

CPAchecker Correctly Analyzed Incorrectly Analyzed Unknown

Trunk 56 38 147
javaExceptions 62 33 146

javaExceptionsFinallyVariable 56 30 155

Table 2: CPAchecker comparison: 241 programs containing exception handling

to javaExceptions. It can correctly analyze 244 of these problems. It solves 102 problems
incorrectly, having the same problem with false positives as javaExceptions. When
analyzing 241 programs that contained exceptions, 56 correct results were produced, 30
incorrect results were produced, and 155 could not be analyzed due to some kind of
error, exception, or timeout in CPAchecker. The difference in solvable programs between
javaExceptions and javaExceptionsFinallyVariable is due to a bug, not the approach.
The difference between the branches is negligible when comparing the performance of

the 225 problems that are correctly analyzed by all 3 implementations as shown in
Table 3 . This indicates that even if the exception constructs are being added to the CFA,
they don’t affect the performance of the tool in any meaningful way in this set of programs.
This comparison can be made because the CPAchecker trunk manages to analyze some
of the problems that involve exceptions, as discussed at the start of this section. From
this point on, only trunk and javaExceptionsPath will be discussed, since there are no
performance differences between javaExceptionsPath and javaExceptionsFinallyVariable
in the current set of programs. Trunk will be called CPAchecker - Trunk and javaExceptionsPath
will be called CPAchecker - Branch.

5.3 Comparison CPAchecker to State of the Art Software

In the following section CPAchecker and state-of-the-art Java verification tools get compared.
The tools included are all tools that participated in the SV-Comp 2023: Coastal, GDart,
Java-Ranger, JayHorn, JBMC, JDart, MLB and SPF. JBMC didn’t perform as well

CPAchecker cputime(s) walltime(s) memory(MB) cpuenergy(J)

Trunk 1490 472 42400 12900
javaException 1510 480 43600 12900

javaExceptionsFinallyVariable 1490 478 43500 13000

Table 3: CPAchecker performance comparison: 225 programs where all CPAchecker
versions get the correct result

30

Verification of Java Programs with Exceptions with CPAchecker

Software
Correct Incorrect CPU time

(s)
Walltime

(s)
Memory
(MB)

CPU energy
(J)True False True False

CPAchecker - Trunk 82 162 3 107 21000 11600 255000 169000
CPAchecker - Branch 100 150 15 90 21000 11700 260000 170000

Coastal 196 210 97 0 12600 12500 62100 160000
GDart 192 309 0 0 18600 7870 372000 170000

Java-Ranger 197 275 0 0 10900 5610 217000 103000
JayHorn 122 94 1 0 31200 15000 557000 303000
JBMC 109 140 0 0 1130 530 32200 9800
JDart 209 328 0 0 10400 8020 271000 93900
MLB 180 272 0 0 8800 6600 94200 104000
SPF 122 92 0 0 1490 593 35800 13400

Table 4: Software comparison complete dataset

as it did in the SV-Comp 2023 due to an error occurring, but is still discussed in the
performance comparison.
The results in Table 4 show that JDart, GDart, Java-Ranger and MLB all perform well,
being able to validate at least 450 of the 601 given problems and not producing any
incorrect results. Coastal comes close to the mentioned tools with 406 correctly analyzed
problems, but it produces 97 false positives. The remaining tools, including CPAchecker-
branch and trunk, JayHorn and SPF, are only able to correctly identify between 210 and
250 problems. CPAchecker is performing by far the worst of these tools, producing a large
number of false positives and false negatives.
Table 5 shows that there is quite large difference when looking at the performance of

the tools. The set of problem considered are the 63 problems that all of the tools can
correctly identify. The quantile plots discussed in this section include all problems that
the individual tools could solve correctly.
SPF, JBMC, Java-Ranger, and Coastal are the best performers when it comes to CPU
time, all staying under 150 s. MLB and JDart both take a little over 200 s. CPAchecker
managed to correctly analyze the problems in about 6min. GDart and JayHorn are
the only programs that take close to or more than 10min to correctly analyze all 63
problems. Looking at the quantile plot in Figure 11, both CPAchecker implementations,
JBMC and SPF all finish their analysis quite fast but don’t have many problems that
they can correctly analyze. This seems to be due to the fact that they weren’t able to
solve the more complex problems. JayHorn does produces just as many results correct
results but takes much more time.
There isn’t that much difference between the tools when looking at the walltime. JBMC,
SPF, Java-Ranger all need less than 60 s, JBMC only needing 33.7 s. MLB as well as
Coastal and both CPAchecker implementations do solve the problems in close to 100 s to
120 s walltime. GDart and JDart are close with about 2.5min, while JayHorn takes by
far the longest with about 4.5min. The quantile plot in Figure 12 shows a similar result
to the previos quantile plot in Figure 11.
JBMC, Coastal, SPF and Java-Ranger have the lowest memory consumption of all the
tools at around 4 000MB or less, closely followed by MLB at 6 750MB. Both CPAchecker
implementations use almost twice as much memory as MLB. JDart and JayHorn have a
similar memory consumption, requiring 15 600MB and 17 800MB, respectively. GDart

31

Verification of Java Programs with Exceptions with CPAchecker

Software CPU time (s) Walltime (s) Memory (MB) CPU energy (J)
CPAchecker - Trunk 368 120 11100 3240
CPAchecker - Branch 370 122 11100 3240

Coastal 142 109 3110 1590
GDart 575 170 29100 4740

Java-Ranger 139 58.8 4040 1280
JayHorn 778 264 17800 6780
JBMC 67.7 33.7 2840 609
JDart 227 150 15600 2370
MLB 194 92.5 6750 1810
SPF 119 52.4 3270 1090

Table 5: Tool performance comparison: 63 programs where all tools get the correct result

has by far the largest memory consumption at almost 30 000MB. Most of the tools use
around 1 000MB and 2 000MB when comparing the tools in the quantile plot in Figure
13. SPF and JBMC appear to be the most memory efficient programs overall, staying
under 100MB per program for the most part. The rest of the tools do seem to have some
problems that consume quite a lot of memory.
JBMC, SPF, Java-Ranger, Coastal and MLB are the most energy efficient tools. They all
consume less than 2 000 J, with JBMC consuming less than 700 J. JDart and CPAchecker
are in the middle of the pack when it comes to energy consumption. GDart and JayHorn
perform the worst compared to the rest of the tools, consuming more than 4 500 J. The
same can be seen in Figure 14.
When considering only those programs that contain at least one of the following exception
keywords:

”
try“,

”
catch“,

”
finally“or

”
throw“, GDart, JDart and Java-Ranger perform the

best. As shown in Table 6 they are able to correctly identify between 188 and 199 of the
241 problems and don’t produce any false positive or false negative results. MLB also
performs quite well, correctly analyzing 150 of the 241 problems. Coastal still manages to
produce 106 correct results, but also has 95 incorrect results too. CPAchecker, JayHorn
and SPF perform the worst, only being able to correctly analyze between 40 and 70
of the programs. CPAchecker does also produce 33 incorrect results when looking at
CPAchecker-Branch and 38 when looking at CPAchecker-Trunk.

5.4 CPAchecker Possible Improvements

There are quite a few programs that CPAchecker either can’t analyze correctly or can’t
handle at all. Programs with exceptions can’t currently be handled by CPAchecker -
Trunk. This includes abnormal execution, e.g. division by zero, and a way to include
potential exceptions from other libraries, which can’t be handled by the CPAchecker -
Branch either. One approach that could be implemented is to make the helper variable
non-deterministic after a library method is encountered and check both paths. CPAchecker
does currently not support anonymous classes, which leads to an assertion error when
analyzing the securibench problems. The replace5 eqchk problems from the java-ranger-
regression folder cause an exception because the increment operation on an array index
position is not properly handled. There is currently a bug in the ErrorPathShrinker class

32

Verification of Java Programs with Exceptions with CPAchecker

0 100 200 300 400 500
0.1

1

10

100

n-th fastest result

C
P
U

ti
m
e
(s
)

Coastal
CPAchecker-Implementation

CPAchecker - Trunk
GDart

Java-Ranger
JayHorn
JBMC
JDart
MLB
SPF

Figure 11: Quantile plot: CPU time of all correct results

0 100 200 300 400 500
0.1

1

10

100

n-th fastest result

W
al
lt
im

e
(s
)

Coastal
CPAchecker-Implementation

CPAchecker - Trunk
GDart

Java-Ranger
JayHorn
JBMC
JDart
MLB
SPF

Figure 12: Quantile plot: walltime of all correct results

Software Correctly Analyzed Incorrectly Analyzed Unknown

CPAchecker - Trunk 56 38 147
CPAchecker - Branch 62 33 146

Coastal 106 95 40
GDart 188 0 53

Java-Ranger 181 0 60
JayHorn 42 0 199
JBMC 65 0 176
JDart 199 0 42
MLB 150 0 91
SPF 50 0 191

Table 6: Software Comparison: 241 programs containing exception constructs

33

Verification of Java Programs with Exceptions with CPAchecker

0 100 200 300 400 500
10

100

1000

n-th largest result

M
em

or
y
(M

B
)

Coastal
CPAchecker-Implementation

CPAchecker-trunk
GDart

Java-Ranger
JayHorn
JBMC
JDart
MLB
SPF

Figure 13: Quantile plot: memory consumption of all correct results

0 100 200 300 400 500
1

10

100

1000

n-th largest result

C
P
U

en
er
gy

(J
)

Coastal
CPAchecker-Implementation

CPAchecker - Trunk
GDart

Java-Ranger
JayHorn
JBMC
JDart
MLB
SPF

Figure 14: Quantile plot: CPU energy consumption of all correct results

34

Verification of Java Programs with Exceptions with CPAchecker

in CPAchecker that can’t handle objects that don’t need to be declared. An example
for such a scenario would be jbmc-regression/basic1. There is another bug in the CFA
creation when including a method with a return type, where one of the paths doesn’t
return a value but throws an exception. Another problem is that the main method
parameter does not get its own local variable, which leads to problems in situations using
the instanceof operator with the string array parameter of the main method. Explicit
value analysis and runtime type analysis cannot properly handle random values; all paths
that rely on that value are explored, leading to incorrect false results if one of those paths
leads to an assert false statement, even though that statement would never be reachable.
This could be improved by changing the other analyses to handle Java programs.

35

Verification of Java Programs with Exceptions with CPAchecker

6 Conclusion and Future Work

In this paper we introduced an exception handling concept based on introducing a global
variable to keep track of an exception that is actively affecting the program, and conditional
statements to check whether the exception can be handled. We also analyzed the current
state of exception handling in verification and verification adjacent areas and discussed
the different approaches.
Afterwards we discussed how the new CPAchecker implementations compare to each
other, to the current state, and to 8 state-of-the-art Java verification tools. There is no
difference in performance between the two finally implementations when being compared
with the used dataset. We proved that the new exception handling system improves
the Java verification capability of CPAchecker. The current state of CPAchecker and
the new implementations that include the exception handling are currently not able to
compare to the other tools and still need some improvement. To be able to handle all
types of exceptions, abnormal execution needs to be implemented in the future. Another
problem is that CPAchecker is not able to handle exceptions that are thrown from included
libraries. In Section 5.4 we discussed non-exception issues that CPAchecker needs to
improve in order to be comparable to the other tools. An interesting topic to research
would be a performance comparison between the approach discussed about in this thesis
and an implementation of the exception control flow in the analysis.

36

Verification of Java Programs with Exceptions with CPAchecker

A Appendix

Tool Link

Coastal
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/coastal.zip

GDart
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/gdart.zip

Java-Ranger
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/java-ranger.zip

JayHorn
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/jayhorn.zip

JBMC
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/jbmc.zip

JDart
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/jdart.zip

MLB
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/mlb.zip

SPF
https://gitlab.com/sosy-lab/sv-comp/

archives-2023/raw/svcomp23/2023/spf.zip

Table 7: Link to version of tools used in evaluation

V

Verification of Java Programs with Exceptions with CPAchecker

References

[1] Jayhorn github readme. https://github.com/jayhorn/jayhorn#readme. [Online;
last accessed 29-11-2023].

[2] Oracle specification: Chaper 11. exceptions. https://docs.oracle.com/javase/

specs/jls/se8/html/jls-11.html. [Online; last accessed 29-11-2023].

[3] Oracle specification: Programming with assertions. https://docs.oracle.

com/javase/7/docs/technotes/guides/language/assert.html. [Online; last
accessed 29-11-2023].

[4] Alexdi. Getting rid of implicit control flow. http://jayhorn.github.io/jayhorn/
jekyll/2016/08/02/implicit-control-flow/, August 2016. [Online; last
accessed 29-11-2023].

[5] R. Amankwah, J. Chen, H. Song, and P. K. Kudjo. Bug detection in java code:
An extensive evaluation of static analysis tools using juliet test suites. Software:
Practice and Experience, 53(5):1125–1143, 2023.

[6] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. JACK: a tool for validation of security and behaviour
of Java applications. In FMCO: Proceedings of 5th International Symposium on
Formal Methods for Components and Objects, Lecture Notes in Computer Science.
Springer-Verlag, 2007. To appear.

[7] D. Beyer. Competition on software verification and witness validation: Sv-
comp 2023. In S. Sankaranarayanan and N. Sharygina, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 495–522, Cham,
2023. Springer Nature Switzerland.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:
Concretizing the convergence of model checking and program analysis. In
W. Damm and H. Hermanns, editors, Proceedings of the 19th International
Conference on Computer Aided Verification (CAV 2007, Berlin, July 3-7),
LNCS 4590, pages 504–518. Springer-Verlag, Heidelberg, 2007.

[9] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification, 2009.

[10] D. Beyer and S. Löwe. Explicit-value analysis based on CEGAR and interpolation.
Technical Report MIP-1205, Department of Computer Science and Mathematics
(FIM), University of Passau (PA), December 2012.

[11] P. Bjesse. What is formal verification? SIGDA Newsl., 35(24):1–es, dec 2005.

[12] P. H. Brito, R. De Lemos, C. M. Rubira, and E. Martins. Architecting fault
tolerance with exception handling: Verification and validation. Journal of
Computer Science and Technology, 24(2):212–237, 2009.

VI

https://github.com/jayhorn/jayhorn#readme
https://docs.oracle.com/javase/specs/jls/se8/html/jls-11.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-11.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
http://jayhorn.github.io/jayhorn/jekyll/2016/08/02/implicit-control-flow/
http://jayhorn.github.io/jayhorn/jekyll/2016/08/02/implicit-control-flow/

Verification of Java Programs with Exceptions with CPAchecker

[13] N. Cacho, E. Barbosa, J. Araujo, F. Pranto Filho, A. Garcia, T. Cesar, E. Soares,
A. Cassio, T. Filipe, and I. Garcia. How does exception handling behavior evolve?
an exploratory study in java and c# applications. 09 2014.

[14] F. Castor Filho, P. H. da S. Brito, and C. M. F. Rubira. Specification of exception
flow in software architectures. Journal of Systems and Software, 79(10):1397–1418,
2006. Architecting Dependable Systems.

[15] B.-M. Chang, J.-W. Jo, K. Yi, and K.-M. Choe. Interprocedural exception analysis
for java. In Proceedings of the 2001 ACM Symposium on Applied Computing,
SAC ’01, page 620–625, New York, NY, USA, 2001. Association for Computing
Machinery.

[16] M. Chicote, D. Ciolek, and J. P. Galeotti. Practical jfsl verification using taco.
Software: Practice and Experience, 44(3):317–334, 2014.

[17] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik. Jbmc: A
bounded model checking tool for verifying java bytecode. In H. Chockler and
G. Weissenbacher, editors, Computer Aided Verification, pages 183–190, Cham,
2018. Springer International Publishing.

[18] L. Cordeiro, D. Kroening, and P. Schrammel. Jbmc: Bounded model checking
for java bytecode. In D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 219–223,
Cham, 2019. Springer International Publishing.

[19] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, aug 1975.

[20] M. J. Frade and J. S. Pinto. Verification conditions for source-level imperative
programs. Computer Science Review, 5(3):252–277, 2011.

[21] K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer,
2:366–381, 2000.

[22] K. Rustan and M. Leino, Greg Nelson and James B. Saxe. Esc/java user’s manual.
https://www.kindsoftware.com/products/opensource/escjava2/esctools/

docs/escjava-usersmanual#ESC, October 2012. [Online; last accessed 29-11-
2023].

[23] T. Kahsai, P. Rümmer, and M. Schäf. Jayhorn: A java model checker. In D. Beyer,
M. Huisman, F. Kordon, and B. Steffen, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 214–218, Cham, 2019. Springer
International Publishing.

[24] I. Kádár, P. Hegedűs, and F. Rudolf. Runtime exception detection in java
programs using symbolic execution. Acta Cybernetica, 21(3):331–352, Jan. 2014.

VII

https://www.kindsoftware.com/products/opensource/escjava2/esctools/docs/escjava-usersmanual#ESC
https://www.kindsoftware.com/products/opensource/escjava2/esctools/docs/escjava-usersmanual#ESC

Verification of Java Programs with Exceptions with CPAchecker

[25] K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai,
Z. Rakamarić, and V. Raman. Jdart: A dynamic symbolic analysis framework. In
M. Chechik and J.-F. Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 442–459, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[26] M. Ouimet and K. Lundqvist. Formal software verification: Model checking and
theorem proving. Embedded Systems Laboratory Technical Report ESL-TIK-00214,
Cambridge USA, 2007.

[27] P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivančić, and A. Gupta. Interprocedural
exception analysis for c++. In M. Mezini, editor, ECOOP 2011 – Object-Oriented
Programming, pages 583–608, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[28] C. S. Pundefinedsundefinedreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing nasa software. In Proceedings of the
2008 International Symposium on Software Testing and Analysis, ISSTA ’08, page
15–26, New York, NY, USA, 2008. Association for Computing Machinery.

[29] M. P. Robillard and G. C. Murphy. Static analysis to support the evolution of
exception structure in object-oriented systems. ACM Trans. Softw. Eng. Methodol.,
12(2):191–221, apr 2003.

[30] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding tools for
java. In 15th International symposium on software reliability engineering, pages
245–256. IEEE, 2004.

[31] C. F. Schaefer and G. N. Bundy. Static analysis of exception handling in ada.
Software: Practice and Experience, 23(10):1157–1174, 1993.

VIII

Verification of Java Programs with Exceptions with CPAchecker

Declaration of authorship

I hereby declare that the report submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references. I am aware that the Thesis in digital form
can be examined for the use of unauthorized aid and in order to determine whether
the report as a whole or parts incorporated in it may be deemed as plagiarism. For
the comparison of my work with existing sources I agree that it shall be entered in a
database where it shall also remain after examination, to enable comparison with future
Theses submitted. This paper was not previously presented to another examination board
and has not been published.

Germering, den 29. November 2023

Name

IX

	Introduction
	Background
	Software Verification
	Control-Flow Automaton
	Explicit Value Analysis
	Runtime Type Analysis
	Java Assertion
	Guarded Command
	Verification Condition
	Exception Handling in Java
	CPAchecker
	Configurable Program Analysis

	Related Work
	Helper Variable based Exception Analysis
	Java Virtual Machine Listener
	UML based Exception Analysis
	Constraint Based Exception Analysis
	Relation Based Exception Analysis using a Directed Graph
	Property Based Exception Analysis
	Other
	Discussion

	Adding Exception-based Control-Flow to CFAs
	Global Helper Variable
	Throw Statement
	Catching an Exception
	Finally Clause
	Throws Clause
	Nested Try Catch Finally
	Nested in Try
	Nested in Catch
	Nested in Finally

	Abnormal Execution - Division by Zero

	Evaluation
	Setup
	Comparison between CPAchecker Implementations
	Comparison CPAchecker to State of the Art Software
	CPAchecker Possible Improvements

	Conclusion and Future Work
	Appendix

