
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN
DEPARTMENT OF COMPUTER SCIENCE -

SOFTWARE AND COMPUTATIONAL SYSTEMS LAB

Towards Automated Software Testing -
Applying TextGrad to Test Suite Generation using LLMs

Master Thesis

Moritz Gärtner

Supervisor: Prof. Dr. Dr. h.c. Martin Wirsing

Advisor: Dr. Lenz Belzner

Submission Date: November 10th, 2025

EIGENSTÄNDIGKEITSERKLÄRUNG

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig und nur mit den angegebenen Hilfs-
mitteln verfasst habe. Alle Passagen, die ich aus einer Literatur oder anderen Quellen übernommen
habe, sind eindeutig als Zitate mit Quellenangabe gekennzeichnet.
Ich habe ChatGPT-5 ausschließlich zur Verbesserung der Lesbarkeit und Verständlichkeit des
vorliegenden Textes in Einklang mit wissenschaftlichen Standards verwendet.
Diese gedruckte Fassung ist ein Ausdruck der eingereichten elektronischen Fassung.

München, 10. November 2025

Ort, Datum Unterschrift

DISCLAIMER

I hereby declare that I have written this work independently and only with the aids specified. All
passages that I have taken from literature or other sources have been clearly marked as quotations
with reference to the source.
I used ChatGPT-5 exclusively for language refinement, such as improving readability and rephrasing
for clarity in an academic writing style in accordance with standard academic practices for language
polishing.
This printed copy is a printout of the submitted electronic copy.

Munich, November 10th, 2025

Location, Date Signature

DANKSAGUNGEN

Mein besonderer Dank gilt Herrn Prof. Dr. Dr. h.c. Martin Wirsing sowie Dr. Lenz Belzner für ihre
engagierte Betreuung, ihre stetige Unterstützung und die vielen hilfreichen Anregungen im Verlauf
dieser Arbeit. Ihre fachliche Expertise und ihre Bereitschaft, Zeit für konstruktives Feedback zu
investieren, haben maßgeblich zur Qualität dieser Arbeit beigetragen.

Ebenso möchte ich mich bei meinen Kolleginnen, Kollegen und Freunden bedanken, die mich
während der Entstehung dieser Arbeit begleitet haben. Durch ihre Rückmeldungen, Diskussionen
und den gemeinsamen Austausch konnte ich zentrale Aspekte weiter schärfen.

Mein größter Dank gilt schließlich meinen Eltern und meiner Familie. Sie haben mich während
meiner gesamten akademischen Laufbahn begleitet, mich motiviert und mir Rückhalt bei allen
Herausforderungn gegeben. Ihre bedingungslose Unterstützung und ihr Vertrauen in meinen Weg
haben diese Arbeit erst möglich gemacht.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Prof. Dr. Dr. h.c. Martin Wirsing and Dr. Lenz
Belzner for their dedicated guidance, continuous support, and the many insightful suggestions
offered throughout the course of this work. Their expertise and their readiness to provide thoughtful,
constructive feedback played a crucial role in shaping the quality of this thesis.

I am also grateful to my colleagues and friends who accompanied me during this process.
Their feedback, discussions, and shared reflections helped me to refine key ideas and strengthen the
overall direction of the work.

Above all, I extend my deepest thanks to my parents and my family. Their encouragement,
patience, and unwavering belief in my path have supported me throughout my academic journey.
Without their trust and constant support, this thesis would not have been possible.

ABSTRACT

The rapid progress in Artificial Intelligence (AI) and particularly Large Language Models (LLMs)
has fundamentally reshaped the field of Software Engineering (SE). Recent advances demonstrate
that LLMs are not only capable of generating isolated code snippets but can perform coherent rea-
soning across software projects, including testing, validation, and maintenance. This thesis explores
the potential of LLMs to autonomously generate, execute, and iteratively refine comprehensive test
suites for real-world software systems.

Building upon established SE principles and recent developments in LLM-based optimization
frameworks such as TextGrad [39] and TestART [15], the thesis introduces LIFT (LLM-based
Iterative Feedback-driven Test suite generation) - a novel, automated, and feedback-driven approach
to test suite generation. Within LIFT, specialized LLM agents act as generator, debugger, and
evaluator components that cooperatively evolve test suites through textual gradients, self-assessment,
and refinement loops.

A case study on the Python library simplejson evaluates LIFT over multiple trials and
iterations, analysing the evolution of test count, coverage, and mutation score. Results indicate that
LLMs can consistently construct executable test suites, extend them meaningfully across iterations,
and approach near-complete behavioral coverage when given sufficient computation power and
context. These findings suggest that LLMs are capable of performing complex reasoning about
software structure and behavior, moving beyond traditional unit test generation toward a holistic
understanding of program correctness. Yet, to date, assertion quality is not on par, highlighting the
continued impact of the Oracle Problem within LLM-based test generation.
The implemented framework is made available under: § Sarius32/LIFT

The thesis contributes an empirical foundation for autonomous, LLM-driven quality assurance
and discusses implications for scalability, tool integration, and future research. By aligning gen-
erative AI with core SE practices, it highlights a promising path toward self-improving software
testing systems that bridge human expertise and machine reasoning.

Keywords: Large Language Models, Software Engineering, Software Testing, Test Case Generation,
Test Suite Generation, TextGrad

https://github.com/Sarius32/LIFT

ZUSAMMENFASSUNG

Der rasante Fortschritt im Bereich der Künstlichen Intelligenz (KI) und insbesondere der Large
Language Models (LLMs) hat das Gebiet des Software Engineering (SE) grundlegend verändert.
Jüngste Entwicklungen zeigen, dass LLMs nicht nur in der Lage sind, isolierte Codefragmente zu
generieren, sondern auch kohärente Schlussfolgerungen über gesamte Softwareprojekte hinweg zu
ziehen - einschließlich Testen, Validierung und anschließender Wartung. Diese Arbeit untersucht das
Potenzial von LLMs, umfassende Testsuiten für Softwaresysteme autonom zu erzeugen, auszuführen
und iterativ zu verbessern.

Aufbauend auf etablierten Prinzipien des Software Engineering und aktuellen Entwicklungen in
LLM-basierten Optimierungsframeworks wie TextGrad [39] und TestART [15] stellt die Arbeit LIFT
(LLM-based Iterative Feedback-driven Test suite generation) vor - einen neuartigen, automatisierten
und auf Feedback aufbauenden Ansatz zur Generierung von Testsuiten. Innerhalb von LIFT
handeln spezialisierte LLM-Agenten als Generator-, Debugger- und Evaluationskomponenten,
die gemeinsam Testsuiten mithilfe von textuellen Gradienten, Selbstbewertung und wiederholter
Verfeinerung weiterentwickeln.

Eine Fallstudie zum Python-Paket simplejson evaluiert LIFT über mehrere getrennte Durch-
läufe und Iterationen und analysiert die Entwicklung von Testanzahl, Testabdeckung und Mu-
tationserkennung. Die Ergebnisse zeigen, dass LLMs in der Lage sind, konsistent ausführbare
Testsuiten zu konstruieren, diese über Iterationen hinweg sinnvoll zu erweitern und bei ausreichender
Rechenleistung nahezu vollständige Verhaltensabdeckung zu erreichen. Diese Erkenntnisse deuten
darauf hin, dass LLMs komplexe Schlussfolgerungen über Softwarestrukturen und -verhalten ziehen
können und damit über die traditionelle Unit-Test-Generierung hinaus zu einem ganzheitlichen
Verständnis von Programmkorrektheit beitragen. Jedoch ist die Qualität der Assertions aktuell nicht
hinreichend, was auf den anhaltenden Einfluss des Oracle Problems hindeutet.
Das implementierte Framework ist zu finden unter: § Sarius32/LIFT

Die Arbeit liefert eine empirische Grundlage für autonome, LLM-gestützte Qualitätssicherung
und diskutiert Implikationen hinsichtlich der Skalierbarkeit, von Tool-Integration und zukünftiger
Forschung. Durch die Verbindung generativer KI mit zentralen Praktiken des Software Engineerings
wird ein vielversprechender Weg zu selbstverbessernden Testsystemen aufgezeigt, die menschliche
Expertise und maschinelles Schlussfolgern miteinander vereinen.

https://github.com/Sarius32/LIFT

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Research Questions . 3

2 Background 6
2.1 Software Engineering . 6
2.2 Software Development Life Cycle . 7
2.3 Software Testing . 10
2.4 Software Testing Life Cycle . 13

3 Related Work 16
3.1 Large Language Model for Software Engineering and Software Testing 16
3.2 Automated Test Case Generation with LLMs . 20
3.3 TextGrad . 26
3.4 LLM-as-a-Judge . 27

4 LIFT - LLM-based Iterative Feedback-driven Test suite generation 30
4.1 Concept & Architecture . 31
4.2 Agents & Environment . 32

4.2.1 Test Suite Generator . 35
4.2.2 Test Suite Debugger . 36
4.2.3 Test Suite Evaluator . 38

4.3 Metrics & Traceability . 39

5 Case Study: simplejson 42
5.1 Library Functionality . 42
5.2 Structural & Functional Overview . 43
5.3 Comparison with the Python Standard Library . 44
5.4 Testability Considerations . 45

6 Evaluation 46
6.1 Evaluation criteria from related research . 46
6.2 Evaluation of the Case Study . 49

6.2.1 General and Test Counts . 50
6.2.2 Correctness . 52
6.2.3 Structural Sufficieny and Coverage . 53
6.2.4 Error Detection Capability . 55
6.2.5 Holistic Coverage Exploration . 56
6.2.6 Behavioral Adequacy and Qualitative Test Quality 57
6.2.7 Integration and System Test Behavior . 60

6.3 Threats to validity . 64
6.3.1 Internal Validity . 64
6.3.2 External Validity . 65

7 Future Work 66

8 Conclusion 67

References 69

A LIFT System Prompts I
A.1 Test Suite Generator System Prompt . I
A.2 Test Suite Debugger System Prompt . IV
A.3 Test Suite Evaluator System Prompt . VII

B LIFT Evaluation Template IX

C Requirements Document for simplejson XI

D Evaluation Results XVI
D.1 Test counts .XVI
D.2 Coverages .XVIII
D.3 Mutation Testing . XX
D.4 Requirement counts and Hallucinations .XXII

List of Figures
1 Summary of the compute trends in AI by EPOCH AI 2
2 Linear Software Development Life Cycle models 8
3 Software Testing Life Cycle . 14
4 Distribution of LLM utilization in Software Engineering 17
5 Trends of arXiv LLM preprints . 18
6 Distribution of testing tasks with LLMs . 19
7 ChatUnitTest Overview . 20
8 ChatTester Overview . 21
9 MuTAP Overview . 22
10 Common workflow of LLM-based unit testing generation method 23
11 Automatic "Differentiation" via Text by TextGrad 26
12 Overview of LIFT . 31
13 Archiving process of LIFT . 33
14 Relation between requirements, test specifications, and tests within LIFT 40
15 Test counts for all trials . 51
16 Aggregated Fix Rates for all trials . 53
17 Aggreated coverages for all trials . 55

List of Tables
1 Composition of the original Test Suite, the FSSs, and LPSs 51
2 Coverages of the original Test Suite, the FSSs, and LPSs 54
3 Mutation testing results of the original Test Suite, the FSSs, and LPSs 55
4 Coverages and mutation scores of the original Test Suite, the FSSs & LPSs, and all

LPSs combined . 56
5 Requirement counts of the FSSs and LPSs . 57
A.1 Test suite size and execution time of the FSSs and LPSsXVI
A.2 Test type count of the FSSs and LPSs .XVII
A.3 Coverages of the FSSs .XVIII
A.4 Coverages of the LPSs . XIX
A.5 Mutation testing results of the FSSs . XX
A.6 Mutation testing results of the LPSs .XXI
A.7 Requirement counts of the FSSs .XXII
A.8 Requirement counts of the LPSs .XXIII

List of Listings
1 Docstring of the tool.py . 43
2 Excerpt from the requirement specification document 49
3 Example for a test covering requirement SCOPE-1 58
4 Example for a test not covering requirement SCOPE-1 58
5 Example for a test covering requirement ENC-CODE-1 59

Acronyms
AI Artificial Intelligence. 1–4, 16

API Application Programming Interface. 50

BDD Behavior-Driven Development. 10

CD Continuous Delivery. 9

CI Continuous Integration. 9

CLI Command-Line Interface. 49, 60

FLOP Floating-Point Operation. 2

FSS First Sufficient Test Suite. 50, 51, 54–64, 67, XVI–XVIII, XX, XXII

GUI Graphical User Interface. 16, 18, 52

JSON JavaScript Object Notation. 42–45, 59, 61

LIFT LLM-based Iterative Feedback-driven Test suite generation. 1, 4, 5, 30–33, 35, 38–40, 42,
46, 49, 50, 52–57, 59, 61–63, 65–68, I, IX

LLM Large Language Model. 1–5, 16–34, 42, 43, 45–48, 50–54, 56, 60–63, 65–68

LLM4SE Large Language Models for Software Engineering. 16, 17

LPS Last Passing Test Suite. 50, 51, 54–57, 59–63, 65, 67, XVI, XVII, XIX, XXI, XXIII

MuTAP Mutation Test case generation using Augmented Prompt. 22–25, 29, 30, 47, 62

PUT Program under Test. 1, 4, 10, 11, 13, 20, 22, 24, 25, 29–31, 35–37, 42, 46, 48–50, 52, 56, 60,
61, 65–68

QA Quality Assurance. 10, 14, 16

RE Requirements Engineering. 6, 16

RFC Requests for Comments. 43

SDLC Software Development Life Cycle. 6–8, 10, 11, 16

SE Software Engineering. 1, 4–6, 8, 10, 16–18, 29, 64, 65, 67, 68

STLC Software Testing Life Cycle. 6, 13–15, 19

TDD Test-Driven Development. 9, 10

TSD Test Suite Debugger. 32, 35–38, 52, 53, IV

TSE Test Suite Evaluator. 31–33, 35, 38–41, 50, 53–55, 57, 62, 64, VII

TSG Test Suite Generator. 31, 32, 35–38, 40, 50, 55, 60, 64, I

V&V Verification & Validation. 7, 30, 39

XP Extreme Programming. 9

1

1 Introduction
The rapid advances in Artificial Intelligence (AI) over the past years have fundamentally transformed
the landscape of Software Engineering (SE). Once limited to automated assistance in isolated devel-
opment tasks, intelligent systems have now become capable of performing end-to-end reasoning and
code generation across entire projects [3]. This paradigm shift opens up new opportunities to rethink
long-established engineering activities such as software testing, verification, and maintenance.

Building upon these developments, this thesis investigates how Large Language Models
(LLMs) can be employed to autonomously construct, execute, and iteratively refine complete test
suites for real-world software projects. By connecting modern LLM-based reasoning techniques
with established Software Engineering principles, it explores a new level of automation that extends
beyond single test generation toward comprehensive, self-improving test suites. The work thus
positions itself at the intersection of software quality assurance, generative AI, and continuous
improvement in automated testing.

This thesis begins with an overview of the foundations of Software Engineering and Software
Testing in Section 2, discussing established verification and validation activities, test levels, and
traditional testing methodologies that form the conceptual baseline for this work. Following this,
Section 3 reviews recent developments in the use of LLMs for Software Engineering tasks, with
particular attention to automated test generation and the growing evidence of models’ ability
to reason about program semantics and correctness. These studies serve to highlight both the
promise and current limitations of existing approaches, motivating the need for a more systematic,
feedback-driven method of test suite construction.

Building on this foundation, Section 4 introduces a novel framework named LIFT (LLM-based
Iterative Feedback-driven Test suite generation), which extends the ideas of differentiable textual
optimization and self-evaluative reasoning as previously explored in Section 3. LIFT enables
models to iteratively analyze, refine, and expand their own test suites through structured feedback
loops, thereby approaching software testing as an evolving optimization process rather than a static
generation task. The framework is then applied to the open-source Python library simplejson
- described in Section 5 - as the Program under Test (PUT), providing a realistic yet controlled
environment to assess the models’ ability to generate comprehensive and executable test suites.

The results are discussed in Section 6, which focuses on both quantitative and qualitative
aspects of test generation. Metrics such as test count, coverage, and mutation score are examined
and compared against contemporary approaches in the literature. The section also includes an
analysis of threats to validity. Finally, Section 7 outlines potential extensions of this research,
suggesting a broader range of tested projects, programming languages, and model families, as well
as refined prompt-engineering strategies to enhance scalability and robustness. The thesis concludes
in Section 8 by summarizing its contributions and highlighting how LIFT advances the current state
of LLM-based Software Testing.

2

1.1 Motivation
Software has become an indispensable component of virtually every domain, yet its long-term
maintainability continues to be a major concern. Over time, legacy systems accumulate technical
debt, dependencies become outdated, and project-specific knowledge fades - leading to an increasing
loss of maintainability and understandability [27, 34]. This knowledge erosion poses a threat to
the sustainability of large software systems, especially when documentation or test coverage is
incomplete.

At the same time, the capabilities of Artificial Intelligence have experienced exponential
growth. Figure 1 illustrates the rapid increase in training compute1 for large models over the last
decade, reflecting both the scale and sophistication of modern LLMs. With the widespread adoption
of systems like GitHub Copilot and ChatGPT, software development has entered a new era of
AI-augmented productivity. These systems demonstrate that natural language models can already
comprehend, generate, and reason about complex source code structures.

Figure 1: Summary of the compute growth trends for overall notable models, frontier models,
top language models, and top models within leading companies [31]

The growing complexity of modern software systems demands testing strategies that can evolve
dynamically alongside the code. If an artificial model can fully capture a program’s behavior, two
powerful possibilities emerge:

(a) automatic reimplementation or portation of software across languages or platforms, and
(b) verification through AI-driven behavioral testing that ensures functional equivalence.

1Training compute describes the amount of Floating-Point Operations (FLOPs) used during a model’s training. [17]

3

This thesis focuses on the latter - leveraging LLMs to automatically generate, evaluate, and refine
test suites as a means of verifying program identity and functionality.

In this context, Artificial Intelligence is not merely a supporting tool but a potential enabler for
scalable software validation. By combining principles of software testing with the emerging LLM
paradigm, this work aims to explore how LLM-based agents can autonomously drive test generation
and refinement, bridging the gap between human insight and automated reasoning.

1.2 Research Questions
Building on the motivation outlined above, the following section defines the research questions that
guide this thesis. The importance of software testing is well established and Large Language Models
(LLMs) have recently emerged as powerful and widely adopted tools. This leads to the question
of their adoptability in the realm of automated test generation. It is not yet clear whether LLMs
are fundamentally capable of generating test suites, whether such test suites can be considered
"good" in terms of established testing criteria, and how their performance compares to existing
automated approaches. To address these uncertainties, the first research question focuses on the
basic feasibility of employing LLMs for test generation:

RQ-1: Are LLMs able to generate test suites at all?

To determine whether Large Language Models are able to generate test suites at all, several fun-
damental aspects must be examined. A central requirement is the ability to provide or approximate
suitable test oracles. Without meaningful assertions, test cases cannot validate program behavior,
regardless of how well they are structured and implemented. It is therefore crucial to investigate
whether LLMs can extrapolate expected outputs or conditions that go beyond trivial checks.

Equally important is the syntactic correctness of the generated code. Test cases must be valid
and executable to be considered usable artifacts in the testing process. Code that fails to run cannot
contribute to a functioning test suite. Even if the generated code is syntactically valid, it must
also integrate correctly into its surrounding context. Handling imports, external dependencies, and
framework-specific conventions such as pytest fixtures is necessary for tests to work within larger
projects.

The manner in which these tests are produced also plays a central role. Some outputs may be
usable immediately, while others may require refinement or fixes, either through human feedback
or automated repair. Exploring this aspect helps to understand the autonomy and practicality of
LLM-based test generation.

Finally, the scope of testing must be taken into consideration. Test cases target different levels
of abstraction, from unit-level checks of individual functions to broader integration, system, or
acceptance testing. Examining which of these levels LLMs are able to cover helps to determine the
boundaries of their current capabilities and therefore their ability to generate full-scale test suites.

4

These considerations combined form the basis for answering RQ-1 and break it down into the
following sub-questions:

RQ-1.1: Can LLMs provide or approximate suitable test oracles?

RQ-1.2: Can LLMs generate syntactically correct and executable test code?

RQ-1.3: Can LLMs understand the structure of the Program under Test, make correct refer-
ences in the test code, and handle interactions with the working environment?

RQ-1.4: Can LLMs produce usable tests in a single shot or do they require iterative hu-
man/feedback guidance to generate runnable tests?

RQ-1.5: Which levels of testing can LLMs generate and where do their current capabilities
reach their limits?

If the assumption holds true that RQ-1 can broadly be answered with "yes", this does not yet imply
that the resulting test suites are of sufficient value. The mere ability to generate executable tests
does not address their adequacy, effectiveness, or long-term usefulness. To assess these aspects, the
second research question focuses on the quality of LLM-generated test suites.

RQ-2: Are LLMs able to generate "good" test suites?

A generated test suite that merely executes without compilation or runtime errors may provide
little value if it fails to capture relevant behavior, is unreadable, or does not detect faults. Addressing
the quality dimension, therefore, requires an investigation of the criteria by which test suites can be
evaluated and how these criteria apply to LLM-generated artifacts.

A first step concerns the identification of suitable quantitative measures. While software testing
research provides a variety of established metrics such as statement coverage, branch coverage,
mutation score, or simply the number of generated tests, it is not immediately clear which of these
are most informative overall. Some metrics may offer only limited insight into the effectiveness
of a test suite, while others may capture more meaningful aspects of adequacy. Determining
which measures are relevant and how they should be applied is, therefore, an important part of the
investigation.

In addition to numerical indicators, qualitative properties also play a crucial role in determining
the value of a test suite. Factors such as readability, maintainability, and similarity to human-written
tests need to be examined in relation to their contribution to test quality. Equally important is
whether the generated tests exhibit a true validation character. Are they meaningfully checking
program behavior rather than merely executing code paths without substantive assertions? It remains
to be analysed how such qualitative aspects can be evaluated and whether additional criteria beyond
established practice need to be considered.

Building on these two perspectives, the question arises of what actually constitutes a "good" test
suite in the specific context of LLM-based generation. It is not yet clear whether traditional notions
of adequacy, oracle soundness, and maintainability apply directly or whether LLM-generated suites
call for a redefinition of quality criteria. Clarifying this is necessary before meaningful evaluations
can be carried out.

5

Once quantitative and qualitative criteria have been identified, the next step is to examine the
extent to which LLM-generated test suites actually satisfy them. The investigation must therefore
determine how well-established measures are fulfilled by LLM-generated suites. Additionally, any
LLM-specific criteria need to be checked, and all metrics need to be weighted.

Finally, the ultimate purpose of any test suite is its ability to uncover faults. Coverage or
readability alone does not guarantee effectiveness if real defects remain undetected. Investigating
whether LLM-generated test suites can expose seeded defects or mutants, therefore provides the
most substantial evidence of their practical value.
Taken together, these considerations form the basis for answering RQ-2 and are addressed through
the following sub-questions:

RQ-2.1: Which quantitative metrics characterize good test suites?

RQ-2.2: Which qualitative criteria need to be evaluated for a good test suite?

RQ-2.3: What constitutes a good test suite in the context of LLM-based generation?

RQ-2.4: How well do LLM-generated test suites fulfill traditional and possible LLM-adapted
quantitative and qualitative metrics?

RQ-2.5: To what extent are LLM-generated test suites able to detect faults beyond simply
achieving high coverage?

6

2 Background
To understand the context in which this thesis is situated, this section introduces the foundational
concepts of Software Engineering and the structure and dynamics of the Software Development Life
Cycle. It situates Software Testing within Software Engineering and further outlines the Software
Testing Life Cycle as a specialized process for ensuring quality and dependability. Additionally, it
defines the role of Test Suites and their effectiveness with regards to Software Testing.

2.1 Software Engineering
"Software engineering is an engineering discipline that is concerned with all aspects of software
production from the early stages of system specification through to maintaining the system after it
has gone into use." [34, p. 21]
Sommerville differentiates between the engineering aspect in Software Engineering - producing
solutions to problems within time and financial limitations - and software production itself, which
includes all other aspects apart from technical processes like project management or methods and
tooling. Furthermore, he identifies four fundamental activities that are common to all software
processes:

1. Software specification, in which engineers and customers define the required system func-
tionality as well as constraints on its operation.

2. Software development, where the system is designed and implemented according to the
specification.

3. Software validation, in which the system is checked and tested to ensure it satisfies customer
requirements.

4. Software evolution, where the software is adapted and modified to meet changing customer
needs and market conditions. [34, p. 23]

Requirements Engineering Requirements are a reflection of the stakeholders’ needs and wishes
for a system or software. They "establish a high-level view of what the system might do and
the benefits that it might provide." [34, p. 104] Functional requirements describe capabilities and
behavior. They detail technical designs and limitations and describe the type of software being
developed. Non-functional requirements, in turn, "relate to emergent system properties such as
reliability, response time, and memory use." [34, p. 107] Their aim is to provide a general idea of
the system’s attributes like performance, security, and usability, not implementation details. [5, 27,
34]

The process of creating and working with requirements is called Requirements Engineering (RE)
and comprises a structured workflow that transforms stakeholder needs into controlled and testable
specifications. The scope encompasses:

(1) elicitation: the systematic acquisition of goals, constraints, and domain knowledge from
stakeholders and sources,

7

(2) analysis and negotiation: where conflicts are resolved, feasibility is assessed, and requirements
are prioritized and allocated2,

(3) specification: production of precise, unambiguous, and verifiable artifacts with formally
defined requirement attributes (identifier, source, rationale, priority, verification method,
acceptance criteria), and

(4) validation: checking the set for correctness, completeness, and consistency against stakeholder
intent. [34, ch. 4]

On a different level, requirements are broken down into system and (high-/low-level) software
requirements. In this, the system requirements provide general information on the whole system,
while software requirements are derived from the system requirements and relate to individual
software parts or components. [5, 34]

Verification & Validation (V&V) Verification & Validation constitutes a life cycle-spanning
assurance discipline. Verification establishes conformance of artifacts to their specifications through
analysis, inspection, demonstration, and test. Validation, on the other hand, establishes the fitness of
the delivered system for its intended use in its operational context. NASA offers two easy questions:
"Did I build the product right?" [24, p. 196] for verification and "Am I building the right product?"
[24, p. 196] for validation.
V&V spans the entire life cycle and all artifacts: requirements, architectural and detailed designs,
source code, tests, and accompanying documentation. Bidirectional traceability is central to
Verification & Validation. To this end, a requirements traceability matrix can be used to link each
requirement to its verification method, concrete test specifications and test cases, and finally to
observed results. [5, 27, 34]

The effectiveness of V&V depends on its systematic integration with life cycle activities and
artifacts, together with bidirectional traceability. To make these dependencies explicit, the following
subsection introduces the Software Development Life Cycle as the coordinating structure that
schedules V&V activities, defines their entry and exit criteria, and governs the flow of evidence
across phases. [5, 27, 34]

2.2 Software Development Life Cycle
Sommerville identifies the Software Development Life Cycle (SDLC) as "a simplified representation
of a software process" [34, p. 45] that includes all the aforementioned fundamental activities. The
SDLC provides a process architecture for software projects, typically spanning problem definition
and requirements, architectural and detailed design, implementation, integration, verification,
validation and acceptance, deployment, and operation with evolution or maintenance. Different
development models instantiate this life cycle with distinct ordering, feedback, and documentation
practices, trading off controllability, responsiveness to change, and early defect discovery. The role
of Software Testing within these models highlights its importance and whether it is implemented in
a static, iterative or incremental manner. [5, 34]

2Note that Sommerville does not include this step in [34, ch. 4]. Rather, Pressman mentions it in [27, p. 122].

8

Waterfall Model First described by Royce in 1970, the Waterfall Model depicts a linear flow
from the early planning stages of a project, progressing through implementation to the deployment
of software. Each phase must be completed before the next begins and feedback between phases is
limited. Even though Royce originally did include so-called "feedback loops", Pressman highlights
that most modern references to the Waterfall Model "treat it as if it were strictly linear" [27, p. 39].
Figure 2a shows all stages and possible loops as described by Royce. The model’s strengths lie in its
simplicity and clear structure, which make it suitable for projects with stable and well-understood
requirements. However, its rigidity makes it less adaptable to changes during development and
defects discovered late in the process can be costly to address. [1, 5, 27, 34]

Testing as the prior to last step within the Waterfall model highlights, that it is only considered
late in the process of software development. Yet, it is necessary to provide feedback about defects
found in the program possibly impacting the whole chain of previous activities. Projects developed
based on this model therefore have a tendency to underestimate the effort of testing, based on the
impression that, with well-implemented software, testing is only complementary. [5, 27, 34]

(a) Waterfall Model after Royce [28, p. 329/330] (b) V-Model [27, p. 40]

Figure 2: Linear Software Development Life Cycle models

V-Model Extending the Waterfall Model, the V-Model explicitly links each development phase
with a corresponding testing phase. Through this, two streams are created that form the shape of a
"V", where the left side represents the decomposition of requirements and design into progressively
more detailed specifications, while the right side illustrates the corresponding integration and testing
activities. For instance, unit testing is directly associated with component design, integration testing
with architectural design, and system and acceptance testing with the requirements analysis phase.
Different V-Models exist, varying in the individual broken-down stages in the streams. The explicit
mapping emphasizes early planning of verification and validation activities, fostering stronger
traceability between requirements, design, and testing. The V-Model is particularly popular in
safety-critical domains such as aerospace and automotive Software Engineering, where rigorous
testing and documentation are mandatory. Pressman concludes that "there is no fundamental
difference between the classic life cycle [Waterfall Model] and the V-Model" [27, p. 40]. Therefore,

9

both models assume stable requirements and are less flexible when confronted with frequent changes.
Yet, the V-Model enforces the impression that testing needs to be thought of in every step of the
software development, through the explicit linking between development and testing phases. [1, 4,
25, 27, 34]

Iterative/Incremental Models In contrast to the presented models, iterative models organize
development as a sequence of repeated cycles delivering parts (increments) of software. This
incremental delivery allows feedback to be incorporated early and continuously, reducing the risk
of building a system that does not meet user needs. Iterative models are particularly well-suited for
projects where requirements are uncertain or likely to evolve during development. Often, iterative
models are equated with agile methods, which gained wide adoption after the publication of the
Agile Manifesto [2] in 2001. Agile emphasizes flexibility, close collaboration between developers
and customers, and rapid delivery of working software. Instead of completing all specifications and
designs upfront, agile methods promote adaptive planning and continuous improvement. Agile has
proven effective in dynamic environments where requirements frequently change and stakeholder
involvement is high. However, agile methodologies can be challenging to apply in highly regulated
or safety-critical domains, where comprehensive documentation, traceability, and formal verification
are required. [1, 2, 25, 27, 34]

DevOps, Continuous Integration, and Continuous Delivery Since the 2010s, software devel-
opment has increasingly adopted practices that emphasize automation, rapid delivery, and close
collaboration between development and operations teams. The shift toward DevOps and continuous
practices reflects a natural evolution from iterative and agile models, aiming to shorten release
cycles while maintaining reliability and quality. DevOps integrates development and operations,
breaking down traditional silos to enable faster delivery of software. Continuous Integration (CI)
is an integral part of DevOps in which developers frequently merge code into a shared repository.
Each integration triggers an automated build and test process, ensuring that issues are detected
early and integration problems are minimized. Building on this shared work, Continuous Delivery
(CD) extends automation into delivery pipelines, ensuring that every build is a potentially releasable
product. For that, automatic testing and packaging are performed after passing all quality checks.
Automated unit, integration, and system tests can be executed as part of the pipeline, reducing the
cost of defects and ensuring consistent quality. Continuous monitoring in production environments
further supports rapid detection of issues, feeding back into the development process to enable
ongoing improvement. Through this, adaptability is improved and the time between concept and
delivery is reduced. [1, 19, 27, 34]

Test-/Behavior-Driven Development Test-Driven Development (TDD) emerged as one of the
core practices of Extreme Programming (XP) and is characterized by the principle of writing unit
tests prior to implementing the corresponding functionality. "TDD develops the test cases as a sur-
rogate for a software requirements specification document rather than as an independent [validation
artifact]" [5, p. 94]. This practice guides the design of code by iteratively defining, implementing,
and refining small units of functionality through automated test cases, thereby ensuring traceability
between requirements, implementation, and verification. Beyond its verification role, TDD also

10

fosters clearer understanding and elaboration of user needs and software requirements through the
continuous reformulation of test specifications. [5]

Behavior-Driven Development (BDD) extends and refines the principles of TDD by shifting the
focus from testing implementation details towards specifying and validating the intended behavior
of a system. According to Farooq et al., BDD emphasizes collaboration between technical and
non-technical stakeholders by expressing requirements in structured, executable natural language
scenarios using the Given–When–Then pattern. These scenarios serve as both living documentation
and automated acceptance tests that bridge the communication gap between business experts and
developers. While TDD mainly supports developer-centric unit-level verification, BDD operates at a
higher level of abstraction, integrating acceptance criteria directly into the development process. [13]

Both approaches aim to shift the role of testing from a late-stage activity to a driving force
of the development process itself. Within this agile progression, testing becomes a central design
mechanism rather than a post hoc validation step. By continuously intertwining specification,
implementation, and verification, TDD and BDD exemplify the paradigm shift from reactive defect
detection toward proactive Quality Assurance.

2.3 Software Testing
Software Testing is one of the central activities in Software Engineering. It serves as the primary
mechanism for verifying and validating that a system behaves as intended and satisfies its specified
requirements. In the most fundamental sense, testing is the process of executing a program with
the intention of identifying defects and evaluating whether it performs according to its expected
functionality and quality attributes. Both Sommerville and Pressman emphasize that testing is not
merely a technical step at the end of development but an integral and systematic part of the Software
Development Life Cycle that ensures dependability, quality, and user confidence. [27, 34]

Pressman conceptualizes testing within a broader framework of software quality management.
He defines it as a structured, planned, and measurable process that verifies software functionality at
different levels of abstraction. Testing, in his view, proceeds through a layered strategy: beginning
with unit tests that examine individual components, continuing with integration tests that assess in-
teractions between modules, and culminating in system and validation tests that ensure the complete
software product meets its requirements. Each layer contributes to progressively uncovering errors
and building confidence in the system. This closely resembles the layered testing of the V-Model
(Section 2.2), which progresses from testing the smallest parts of software to the whole Program
under Test, broadening the scope of testing gradually. Pressman therefore regards testing as an
engineering discipline in its own right, characterized by systematic planning, defined processes,
quantitative measurement, and continuous improvement. [27]

Sommerville, on the other hand, situates testing within the life cycle of software validation,
focusing less on the mechanics of testing and more on its purpose in ensuring dependability and
stakeholder confidence. He distinguishes between development testing, release testing, and user
testing, each corresponding to different stages in the maturity of the system. For Sommerville,
testing is part of the wider assurance process that demonstrates that a system is "fit for purpose" and
behaves reliably under realistic conditions. [34]

11

Test Suites Within the broader context of Software Testing, the test suite represents the operational
foundation of the testing process. As described, both Sommerville and Pressman emphasize that
testing is not an isolated activity but an integral part of the Software Development Life Cycle, aimed
at verifying that software conforms to its specification and behaves reliably in practice. Pressman
describes a test suite as the structured collection of test cases designed and executed to reveal
defects and confirm compliance with specified requirements. Sommerville frames the test suite
as the practical mechanism through which validation is achieved, linking it directly to software
dependability and user confidence rather than to mere defect detection. In both perspectives, the
test suite serves as the engine of the verification process. It realises requirements into executable
checks and provides systematic evidence for software correctness and reliability. [27, 34]

Test suites comprise multiple test types, referring back to the levels of the V-Model (Figure 2b).
Unit testing covers focal methods or other components of the PUT, breaking down the functionality
to the lowest code level. Since internal functionality, architecture, or the flow of data inside the
PUT is addressed directly, it is classified as white box testing. Integration testing focuses on the
interactions of multiple modules or components "to ensure that they work correctly as a system." [36,
p. 3] The entire PUT is tested as one in system testing. This ensures that all internal parts and
components work together seamlessly, allowing the system to integrate smoothly into the desired
environment. Lastly, acceptance testing is the last layer of testing. It involves the PUT as a Blackbox.
Often, this testing is not done by the developers themselves, but rather by the customer or user of
the system, and includes covering non-functional requirements against the Program under Test. [36]

A good test suite is not simply large or comprehensive; it must also be effective. For both
authors, it must be systematic, traceable, and maintainable. Pressman stresses that effectiveness
depends on the suite’s ability to detect faults efficiently, cover critical paths, and evolve alongside the
Program under Test. He highlights attributes such as completeness, repeatability, and maintainability
as essential for ensuring that testing remains a controllable and measurable engineering process.
A test suite’s quality must also be assessed by its purpose, following Sommerville. It should
raise confidence in the software’s dependability by demonstrating that it performs correctly in
realistic operational scenarios. Thus, quantitative adequacy must be complemented by qualitative
suitability. [27, 34]

Test Suite Effectiveness Empirical research supports and refines these theoretical foundations.
Zhang et al. note that effectiveness remains the central metric in test suite assessment. Effectiveness
is multidimensional and involves not only structural coverage metrics such as statement or branch
coverage. Semantic dimensions such as fault detection capability, redundancy, and the meaningful-
ness of assertions are also considered within the definition of effectiveness. The authors emphasize
that effectiveness metrics must be interpreted with care since high coverage does not necessarily
imply high fault detection ability or reliability, echoing Sommerville’s emphasis on validation as
confidence building rather than coverage maximization. [34, 40]

Tran et al. identify in their large-scale survey across 354 software professionals [35] fault detec-
tion, maintainability, reliability, usability, and coverage as the most important quality attributes of
test suites in practice. These attributes collectively capture both quantitative and qualitative aspects
of test quality. Quantitative attributes like fault detection and coverage describe the measurable
effectiveness of the suite, while qualitative attributes like maintainability, usability, and reliability
reflect its practical value in long-term development and continuous integration environments. They

12

also highlight key challenges that hinder achieving high-quality test suites. Namely, inadequate defi-
nitions of quality attributes, a lack of consistent metrics, and missing review and support processes
result in inadequate test suites. These findings underline the gap between theoretical adequacy
criteria and the operational realities faced by testing practitioners. [35]

Chekam et al. deepen the empirical understanding of quantitative effectiveness metrics by
examining the relationship between coverage and fault revelation. Their large-scale study demon-
strates that while statement and branch coverage are commonly used indicators, they correlate with
fault revelation only when high levels of coverage are reached. In particular, strong mutation testing,
measuring a suite’s ability to detect deliberately injected faults, shows the most consistent relation-
ship with actual fault detection. This work challenges the clean program assumption, emphasizing
that coverage alone cannot be relied upon to represent effectiveness and must be complemented by
mutation-based adequacy metrics that capture the test suite’s true defect detection potential. [8]

Namin and Andrews reinforce the multifaceted nature of effectiveness in [23] and demonstrate
that both test suite size and code coverage independently influence effectiveness, but that neither
alone provides a complete picture. Their controlled study shows that while larger suites tend to
detect more faults, the benefit diminishes when coverage redundancy increases, thus indicating
that test quality, not mere quantity, is decisive. Zhang and Mesbah extend this view by examining
assertions as a key internal determinant of suite performance in [41]. Their large-scale analysis
across five real-world Java projects reveals that the number and coverage of assertions are strongly
correlated with test suite effectiveness, even when test suite size is held constant. Therefore, the
presence of meaningful, well-distributed assertions has stronger predictive power for fault detection
than structural coverage alone. They define assertion coverage as the fraction of code directly
checked by assertions and show that it is a more sensitive indicator of effectiveness than statement
coverage. Additionally, the type of assertion can significantly affect a suite’s ability to reveal
faults. This finding directly supports the notion that "coverage without checking for correctness is
meaningless", underscoring the need to combine structural metrics with semantic adequacy (i.e.,
qualitative measures) in evaluating test quality. [23, 41]

Synthesizing these perspectives, a good test suite can be defined as a structured, maintainable,
and semantically rich collection of test cases that maximizes fault detection and behavioral verifi-
cation while minimizing redundancy and maintenance effort. Its effectiveness does not lie merely
in executing many lines of code but in the capacity to generate trustworthy, reproducible evidence
of correctness through meaningful assertions and comprehensive checking. Methodologically,
the assessment of test suite quality should therefore balance objective indicators with qualitative
attributes, ensuring that testing supports both technical correctness and long-term dependability of
the software system. [23, 27, 34, 35, 40, 41]

13

RQ-2.1: Which quantitative metrics characterize good test suites?

Quantitative metrics that characterize good test suites primarily measure their fault detection
capability and structural adequacy. Common indicators include statement and branch coverage,
which quantify how much of the Program under Test code is exercised, and mutation scores,
which reflect the suite’s ability to detect injected faults. Test suite effectiveness as a measure
of a good test suite itself is influenced by its size (i.e., number of tests), which must also be
balanced against redundancy to ensure efficiency [23]. Furthermore, assertion quantity, type of
assertions, and assertion coverage have been shown to strongly correlate with fault detection
and serve as more sensitive predictors of effectiveness than coverage alone [41].

RQ-2.2: Which qualitative criteria need to be evaluated for a good test suite?

Qualitative criteria for evaluating a good test suite focus on its practical usability, maintainability,
and contribution to long-term software quality rather than on numeric coverage alone. Key
attributes include maintainability, ensuring that tests remain understandable and adaptable as
the system evolves, and readability and clarity, which enable effective collaboration and review
by developers. Traceability supports systematic validation and accountability [27, 34]. Studies
such as [35] highlight usability, reliability, and realism of test scenarios as essential for building
developer confidence and ensuring relevance in continuous integration contexts. Together, these
qualitative dimensions ensure that test suites not only detect faults effectively but also sustain
software dependability, consistency, and ease of evolution over time.

2.4 Software Testing Life Cycle
The Software Testing Life Cycle (STLC) defines a systematic approach to realise Software Testing.
Divyani Shivkumar Taley defines the STLC in [11], as seen in Figure 3. It aims to provide assurance
that the developed code aligns with the expected behavior and underlines that Software Testing
itself is comprised of multiple phases that are codependent on each other. They show the amount of
work contributing towards creating meaningful tests. [11]

14

Figure 3: Software Testing Life Cycle [11, p. 819]

Requirement Analysis The first stage focuses on a thorough review of the requirement specifica-
tions. The Testing and Quality Assurance (QA) teams analyse the documentation to gain a clear
understanding of what must be verified. Whenever ambiguities arise, testers communicate directly
with stakeholders to resolve uncertainties. The outcome of this phase is a well-defined scope of
testing and an initial prioritization of testing objectives. Early engagement at this stage reduces the
likelihood of overlooking critical functionality. [11]

Test Planning Based on the analysed requirements, a comprehensive test plan is developed. This
includes defining the test strategy, estimating effort, costs, and timelines, and assigning roles and
responsibilities within the testing team. The planning phase also determines the types of testing
to be conducted (e.g., functional, performance, or security testing) as well as the required test
environment. A solid plan ensures resource optimization and serves as a roadmap for subsequent
activities. [11]

Test Case Development During this phase, the testers design detailed test cases and scripts that
trace back to the requirements. These test cases specify inputs, preconditions, execution steps, and
expected results. To ensure completeness and accuracy, peer reviews or verification activities are
typically conducted. If the test environment is available, corresponding test data is also prepared.
This step is crucial for achieving high test coverage and ensuring reproducibility of results. [11]

15

Test Environment Setup The test environment defines the hardware, software, and network
conditions under which the tests will run. Although testers document the requirements for this setup,
the actual configuration is generally performed by developers or system administrators, often with
input from the customer. A properly configured environment ensures that the tests mimic real-world
conditions, thereby increasing the validity of the results. [11]

Test Execution Once the environment and test cases are ready, the execution phase begins. Testers
systematically run the designed test cases, recording the outcomes. Any deviations from expected
behavior are reported as defects, which are then addressed by the development team. After fixes
are applied, the testers perform regression checks to confirm the resolution. The cycle of reporting,
fixing, and retesting continues until the product aligns with the specified requirements. [11]

Test Cycle Closure The final stage of the STLC involves evaluating the overall testing effort. The
team compiles metrics such as the number of executed test cases, defect densities, and their severity
distributions. A closure report is prepared, summarizing the quality of the software, coverage of
requirements, and outstanding risks or limitations. Lessons learned can be documented to improve
future projects. This phase ensures transparency for stakeholders and formally concludes the testing
process. [11]

16

3 Related Work
Software Engineering has continuously evolved towards a mature engineering discipline guided
by defined processes, systematic testing, and quantitative evaluation. As emphasized by Pressman
and Sommerville, this maturation was driven by the increasing complexity, size, and criticality of
software systems and the need for reliable methods ensuring their correctness, maintainability, and
quality. [27, 34]

In recent years, the rapid progress of Artificial Intelligence (AI) and particularly Large Lan-
guage Models (LLMs) has reshaped the Software Engineering landscape. Belzner, Gabor, and
Wirsing state that the application of LLMs "promises to support developers in a conversational way
with expert knowledge along the whole software lifecycle" [3, p. 3], marking the latest transfor-
mative shift in Software Engineering. Their work outlines several key areas in which LLMs are
expected to become integral components of future Software Engineering processes. In Require-
ments Engineering, they can assist in eliciting and structuring stakeholder needs by transforming
unstructured natural language descriptions into formalized specifications or user stories. They may
also detect ambiguities and inconsistencies, thereby improving requirement quality early in the
lifecycle. [3]

Within System Design, LLMs may generate initial architecture drafts, propose design patterns,
and visualize component interactions. Their ability to reason over existing repositories and docu-
mentation enables them to recommend modular structures or interface definitions consistent with
established best practices and prior projects. [3]

In Code Generation, LLMs already demonstrate strong capabilities by translating requirements
and design artifacts into executable implementations. Beyond generating isolated functions, they
can synthesize coherent modules, integrate dependencies, and refactor legacy code bases, effectively
acting as autonomous programming assistants embedded in the development environment. [3]

Finally, in Quality Assurance and Software Testing, LLMs can automate the creation of test
cases, predict potential failure points, and interpret test outcomes. They may further support
verification by explaining code behavior in natural language or by generating property-based or
mutation tests. Through such integration, LLMs could evolve into continuous validation agents
that enhance reliability and accelerate feedback throughout the entire Software Development Life
Cycle. [3]

3.1 Large Language Model for Software Engineering and Software Testing
This section reviews relevant literature across the Software Engineering and Software Testing
domains, providing an overview of current LLM capabilities within these fields.

Large Language Models for Software Engineering (2024) Hou et al. provide a comprehensive
systematic literature review of Large Language Models for Software Engineering (LLM4SE) cov-
ering studies published between January 2017 and January 2024 [18]. Their analysis reveals that
research on LLMs for Software Testing remains comparatively underrepresented within the broader
LLM4SE domain. Out of a total of 395 identified publications, only 23 (approximately 5.8%)
address testing-related topics. Among these, four focus on testing automation, seventeen on test
generation and two on Graphical User Interface testing [18, p. 27].

17

Software

development

56.65%

Software

maintenance

22.71%

Software quality

assurance

15.14%

Requirements

engineering

3.90%

Software design

0.92%

Software

management

0.69%

(a) Distribution of LLM usages
in SE activities

Generation

70.97%

Classification

21.61%

Recommendation

6.77%

Regression

0.65%

(b) Problem classification based
on collected studies

Figure 4: Distribution of LLM utilization across
different SE activities and problem types [18, p. 26]

Figure 4a provides an overview of the distribution of LLM4SE studies across different Software
Engineering activities. The majority of work focuses on software development and maintenance,
whereas only a minor share relates to software quality assurance, where testing research is located.
Figure 4b further classifies the identified studies by task type, indicating a clear dominance of
generation-based applications, while regression and recommendation tasks play a subordinate role.

The limited proportion highlights that, despite the rapid adoption of LLMs across various
Software Engineering tasks such as code generation, documentation, and maintenance, their system-
atic application to Software Testing is still emerging. The relative scarcity of research in this area
underlines both the novelty and the potential impact of LLM-based testing approaches, particularly
as models continue to evolve in reasoning and code synthesis capabilities.

Large Language Models for Software Engineering (2023) Further deepening the perspective,
Fan et al. provide an extensive survey of the emerging field of LLM4SE and outline a comprehensive
agenda of open research challenges [12]. Their analysis confirms the rapidly growing attention of
the computer science community towards LLMs and artificial intelligence, with an exponential rise
in related publications since 2019 (Figure 5b). This trend illustrates the increasing relevance of
LLM-based methods for core Software Engineering activities such as code generation, debugging,
and testing.

A key insight of their study is that Software Engineering offers a uniquely automatable
environment for evaluating LLM outputs, as program execution provides an objective ground truth
for correctness checking. Yet, the authors emphasise that the Oracle Problem remains central,
particularly in light of the hallucination tendencies of LLMs. While execution can confirm behavioral
equivalence, it cannot guarantee semantic validity. To address this, they introduce the notion of
an Automated Regression Oracle, which uses the existing program behavior as a benchmark for

18

subsequent adaptations. This approach supports automated regression testing but also risks "baking
in" existing faults when applied without additional semantic safeguards.

2008 2010 2012 2014 2016 2018 2020 2022
0

100

101

102

103

104

105

of

 p
re

pr
in

ts

in CS category
w/ LLM in title or abstract
in cs.SE or cs.PL w/ LLM in title or abstract

(a) Trends in number of arXiv preprints

2008 2010 2012 2014 2016 2018 2020 2022
0

2

4

6

8

10

%
 o

f p
re

pr
in

ts

% of LLM papers in CS category
% of SE papers out of LLM papers

(b) Proportions of LLM papers and SE papers
about LLMs

Figure 5: Trends of arXiv preprints and proportions of LLM and LLM-centered papers [12, p. 3]

In the domain of testing, Fan et al. observe that most existing studies focus on the generation
of entirely new test cases rather than the augmentation or regeneration of existing suites. They
argue that future work should explore how partial oracle information, such as behavioral similarity
between new and prior tests, can guide refinement and improve efficiency. At the same time, they
highlight the uncertainty inherent in evaluating automatically generated tests. A passing test may
simply confirm an incorrect system behavior, whereas a failing one could either reveal a genuine
fault or merely contain an erroneous assertion. In the worst case, such misaligned assertions
may solidify faulty behavior and obstruct later fixes; conversely, excessive false positives can
impose significant verification overheads. These observations underline the necessity of confidence
estimation, self-checking mechanisms, and robust evaluation pipelines.

The survey further notes that LLMs enable new areas of testing previously difficult to automate,
such as GUI testing, and can enhance established techniques including mutation testing. The latter
is identified as a particularly promising direction as fine-tuned models may generate more realistic
mutants that mimic developer-like faults, thereby improving adequacy assessment. Therefore, LLMs
could themselves act as mutation engines, proposing meaningful variations of program behavior to
stress-test both code and its corresponding tests.

Overall, Fan et al. conclude that LLM-based Software Testing remains an early but rapidly
maturing field. Its progress depends on combining generative reasoning with empirical validation
and on closing the methodological gap between test creation, execution feedback, and correctness
assurance, that being an open challenge that continues to shape current research in automated testing
with LLMs.

Software Testing with Large Language Models (2024) Complementary to the previous studies,
Wang et al. conduct an extensive review entitled Software Testing with Large Language Models:
Survey, Landscape and Vision, which systematises the state of research across 102 publications and
provides a forward-looking perspective on the evolving role of LLMs in testing [36]. Their results
indicate that LLMs have been applied to virtually all stages of the Software Testing process - from
test design and generation to bug fixing and regression testing - reflecting a rapidly diversifying
research landscape (Figure 6).

19

Figure 6: Distribution of testing tasks with LLMs [36, p. 7]
(aligned with Software Testing Life Cycle,

the number in bracket indicates the number of collected studies per task,
and one paper might involve multiple tasks)

In contrast to earlier surveys, which primarily emphasised test generation, Wang et al. highlight
that the use of LLMs now spans all major testing activities of the Software Testing Life Cycle. The
authors also identify the growing adoption of iterative refinement paradigms such as ChatTester [38],
which employs a validate-and-fix cycle to improve the correctness and coverage of generated tests.
Such strategies represent a shift towards closed feedback loops in LLM-driven testing, where
execution outcomes are reintegrated into the generation process for further optimisation.

Nevertheless, the survey emphasises that achieving high coverage remains an open challenge.
Increasing the model’s sampling temperature, although increasing output diversity does not nec-
essarily translate into broader behavioral exploration and can even lead to instability in generated
tests [36, p. 17]. Similarly, the persistent Test Oracle Problem continues to limit the reliability of
automated evaluation. While LLMs can effectively expose crash-inducing faults through execution,
this approach "restricts the potential of utilizing the LLMs for uncovering various types of software
bugs" [36, p. 18]. In other words, crash detection alone fails to ensure comprehensive behavioral
correctness, especially for subtle logic or semantic defects.

Wang et al. further discuss practical limitations stemming from the computational requirements
of large models. Many academic studies rely on medium-sized variants due to cost constraints,
which can impede reproducibility and result in significant performance variation compared to
frontier-scale systems [36, p. 19]. This highlights a methodological challenge in maintaining
consistent benchmarks for evaluating LLM-based testing approaches across research environments.

Looking ahead, the authors identify several promising directions for future work. They advo-
cate for expanding the role of LLMs into the earlier phases of Software Testing, like requirements
definition, planning, and test design, as well as into higher levels, including integration and ac-
ceptance testing, as currently, most research focuses on creating unit tests or generating input for
system tests. This call for broader coverage aligns with the vision of a holistic, model-driven testing
workflow that bridges natural-language specifications and executable verification artifacts. Similar
to observations made by Santos et al. in [29], such extensions could enable end-to-end automation
from requirements engineering to validation.

Overall, Wang et al. portray a research area transitioning from isolated proof-of-concept
studies towards integrated, feedback-driven testing ecosystems. The convergence of generation,
execution, and repair phases within LLM-based testing frameworks signals a paradigm shift towards
more adaptive and self-correcting testing methodologies, laying the conceptual foundation for the
subsequent discussion on test case generation.

20

3.2 Automated Test Case Generation with LLMs
ChatUniTest (2024) Chen et al. introduce ChatUniTest in [9]. This "Framework for LLM-Based
Test Generation" creates unit tests for individual methods of a PUT. ChatUniTest follows the
generation-validation-repair approach, visible in Figure 7. Each method of the PUT is extracted
and integrated into a prompt for the generation of appropriate unit tests. The resulting tests are parsed
from the LLM response and undergo validation for syntactic correctness, successful compilation,
and runtime executability. Any failure during this validation will trigger an attempted repair of the
test, firstly through a rule-based approach, followed by an LLM-based repair. Notably, the tests
are only repaired for technical errors. The assertion outcome (either pass or fail) is not the subject
of ChatUniTest’s validation-repair loop. Chen et al. highlight a line coverage of 59.6% that was
achieved "across diverse projects" [9, p. 4].

Prompt

ChatUniTest Maven Plugin

ChatUniTest IntelliJ IDEA Plugin

• Syntactic correctness
• Compile correctness
• Runtime correctness

• Rule-based repair
• LLM-based repair

• Test extraction
• Test encapsulation

• Adaptive focal context
• Chain-of-thought

• Parsing
• Analysis

Generation

Validation

Repair

Prompt
Construction

Preparation

Projects

Other tools & langs

hatUniTest Core hatUniTest Toolchain

Pr
ep

ro
ce

ss
in

g
Po

st
pr

oc
es

si
ng

G
en

er
at

io
n

Figure 7: ChatUnitTest Overview [9, p. 2]

The paper fundamentally highlights that (a) LLMs are capable of generating unit tests and (b)
can provide valuable repair help where rule-based repair methods fail. The paper fails to provide
any insights into the effectiveness of generated test cases and solely relies on line coverage as the
optimization objective. It does not assess the semantic correctness or fault-revealing capability
of these tests. Therefore, its contribution towards true automated test case generation overall is
marginal. ChatUniTest should be viewed as a tool for initial unit test generation, where the unit
tests themselves will be subject to further development by humans based on their experience, the
execution results, and the testing targets of the project. [9]

No More Manual Tests? (2024) Yuan et al. use a dataset of 1,000 Java focal methods. Against
this dataset, unit tests are generated. As a baseline, they use ChatGPT without adaptations and
find that all of the generated tests are syntactically correct while only 39.0% compile correctly.
Of all tests, only 22.3% are passing the execution (see Table 7 in [38, p. 17]). To enhance this
performance, Yuan et al. propose ChatTester in [38].

21

ChatTester follows an iterative repair strategy. As seen in Figure 8, ChatTester splits the
initial test generation into two parts. The intention of the focal method is described by ChatGPT in
natural language in the first step. This output, in addition to the focal method and the instruction
to generate a unit test based on this data, is used in the second step. If the returned test compiles,
no refinement is done, and the test is assumed to be final. Any compilation error will invoke the
Iterative Test Refiner part of ChatTester. For this, any error messages as well as contextual code
information is combined into a new prompt. A new test is generated using this prompt and will
follow the same validation structure. This validation-repair cycle is repeated until either the test
compilation is successful or the maximum number of refinement iterations is reached; both leading
to a stopping of the refinement process. The last state of the test will be considered valid and output
by ChatTester. [38]

Figure 8: ChatTester Overview [38, p. 13]

Using the ChatTester approach, Yuan et al. show a syntactical correctness of 100% equal to the
initial output of ChatGPT without enhancements while increasing the number of compilable tests to
73.3%. The tests with a successful execution nearly double to 41.0%. With the lower number of
repair loops (set to max. three iterations in [38]), Yuan et al. underline the strength of LLM-based
repair and repeated reprompting. Similar to ChatUniTest [9], no attempt at analysing assertions was
made. They explicitly state that they "only focus on fixing compilation errors instead of execution
errors [i.e., failed assertions], since in practice it is challenging to identify whether a test execution
failure is caused by the incorrect test code or by incorrect focal methods" [38, p. 15].
Two research results can be drawn from this paper:

(a) The correction of syntactical errors is not considered in the approach at all. It is shown that
all generated tests have a correct syntax, initially as well as after any refinement. This can be
attributed to improved LLM performance on coding tasks by newer models.

(b) Reprompting with additional information from the environment helps the LLM improve
its unit tests significantly. The work shows that the error messages with some contextual
information are a sufficient input for the LLM to correct compilation errors nearly doubling
the number of compilable tests. [38]

Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing
(2023) Dakhel et al. attempt to include assertion correctness for unit test generation in their

22

approach Mutation Test case generation using Augmented Prompt MuTAP [10]. After an initial
LLM-based test generation, any syntax errors are fixed by the LLMC (LLM component) with a
repair prompt. Any persistent syntax errors are resolved through the removal of the affected lines of
test code. No natural language descriptions of the method’s intent are included, such that the LLMC
needs to infer the intended behavior of the function. Possible incorrect oracle assumptions may lead
to failed assertions. Through the execution of the test, any incorrect assertions are detected and
MuTAP replaces the LLM-generated oracle of those assertions with the observed PUT output. This
results in a so-called "Initial Unit Test" (IUT) that only includes passing assertions. Figure 9 shows
that these IUTs are then assessed for their quality and effectiveness using mutation testing - the core
novelty of MuTAP. [10]

PUTs
Initial

Prompt

Zero-shot
Learning

Few-shot
Learning

LLMC Test
Cases

Syntax Fixer Intended
Behavior Repair

Mutation
Testing

MutPy

Yes

No

Is there any
surviving
mutants?

Prompt
Augmentation

Oracle
Minimization

Surviving
Mutants

Final
Test Cases

Refining

Figure 9: MuTAP Overview [10, p. 4]

The mutation testing introduces bugs into the PUT and asserts whether set mutants are detected
by generated unit tests. If the number of detected mutants is not equal to the total number of injected
mutants, the unit test is evaluated as incomplete and needs to be refined. This refinement consists
of a new prompt that involves the current unit test, the undetected mutants, and the instruction
to "Provide a new test case to detect the fault in prior code" [10, p. 6]. The reprompted unit test
then undergoes the described process seen in Figure 9 starting from the Syntax Fixer. If a unit test
successfully killed all mutants, no further iterative changes are done. Possibly redundant assertions
are reduced through a Greedy algorithm based on the mutants killed by the individual assertions.
The reduced unit test is considered final and represents the output of MuTAP. [10]

Dakhel et al. highlight that around "60% of the test cases generated by Codex encounter
compilation issues due to syntax errors" [10, p. 13]. This contrasts the findings of Yuan et al. but
can be attributed to the selection of the Codex LLM instead of ChatGPT. Their refining process
before applying the mutation testing is therefore justified, but its need for later, more capable models
remains to be investigated. Importantly, they show that LLMs are capable of correcting assertion
behavior based on real PUT outputs. MuTAP assumes a correct PUT on which all assertion failures
are due to incorrect oracle predictions. This, in combination with the mutation testing, enhances
the effectiveness of the tests. Dakhel et al. stress that a good mutation score3 does not directly
correlate to other quality metrics like coverage and is only weakly linked to the test’s ability to
detect faults. [10]

3Mutation score is defined as the number of killed mutants over the total number of mutants.

23

TestART (2025) The generalized process of LLM-based unit test generation, including repair
loops, is described by Gu et al. in [15]. They characterize the workflow (Figure 10) as mainly
consisting of three components: the prompt constructor, test validator, and processing engine.

The task of the prompt constructor is to build a generation instruction, typically by initializing
the system prompt and combining the source code and other information into the following prompts.
The LLM is the generating test cases, which are analysed by the test validator. This validation can
include syntactical or assertion correctness. Following that, a repair or refinement is attempted that
may include static analyses, error message parsing, or LLM-based repairs. [15]

Figure 10: Common workflow of LLM-based unit testing generation method [15, p. 3]

Gu et al. themselves implement the described workflow in their approach called TestART.
It includes pre-processing before the initial generation to reduce the token count and possible
hallucinations. The generated tests are syntactically repaired and corrected for incorrect assertions
in a dedicated repair loop, effectively removing or correcting all non-compilable or failing tests.
The remaining tests are then analysed for their coverage behavior. Using JUnit and OpenClover,
the code coverage achieved by the test is identified. If coverage standards are not yet met, the test
case will be refined based on a new prompt that includes the current coverage report and stated
coverage goal. This iterative process is repeated until sufficient coverage is provided by the returned
test cases. [15]

TestART therefore optimizes for coverage as a metric of test case quality. Notably, this differs
from MuTAP [10] which uses the mutation score as a quality stand-in. In tests, TestART achieved
around 70% line and branch coverage with a pass rate4 of over 71%. This shows that LLM-based
generation is not only limited to pure unit test generation with a focus on syntactical correctness
and repair abilities to enforce correct assertions. The current LLM capabilities, as proven in
[15], also include the optimization of test cases towards quality metrics like the mutation score or
coverage. [15]

4Pass rate is defined by Gu et al. as "the percentage of test code that is syntactically accurate, compiles and runs
without errors or failures" [15, p. 12].

24

RQ-1.1: Can LLMs provide or approximate suitable test oracles?

Evidence from current research suggests that LLMs can only approximate suitable test oracles
to a limited extent. While program execution provides an automatable ground truth [12], the
persistent Oracle Problem and lack of semantic reasoning hinder reliable validation. Approaches
such as MuTAP [10] and TestART [15] approximate behavioral oracles by aligning assertions
with observed program outputs, implicitly assuming the correctness of the PUT. This risks
reinforcing faulty behavior. As highlighted by Wang et al. and Fan et al., current LLMs cannot
ensure differentiate faulty code from faulty tests, leaving true oracle capability unresolved.

Empirical Evaluations and Complementary Approaches Beyond the dedicated frameworks
discussed above, several empirical and domain-specific studies have evaluated or extended the
effectiveness of LLM-based unit test generation. Schäfer et al. present TESTPILOT, an empirical
evaluation of iterative loop–based repair strategies similar to those employed by ChatUniTest and
ChatTester. Their results indicate that such iterative correction can achieve a mean line coverage
of 70.2% and branch coverage of 52.8%, thereby approaching the levels reported for TestART.
TESTPILOT further highlights the substantial performance variance between individual Large
Language Models, underlining that test generation quality remains strongly model-dependent even
when following identical prompting pipelines. [30]

Siddiq et al. conduct a complementary empirical study using OpenAI’s Codex to generate
JUnit tests for the HumanEval and EvoSuite SF110 benchmarks. While achieving up to 80% line
coverage on HumanEval, the approach drops to merely 2% on the more complex EvoSuite SF110
dataset, accompanied by a low execution success rate and a reduced number of generated tests
relative to the available focal functions. These findings emphasise that model generalisation and
domain complexity critically affect both coverage and executability of LLM-produced tests. [33]

Finally, Shin et al. propose Domain Adaptation for Code Model-based Unit Test Case Genera-
tion, which employs smaller, fine-tuned models rather than frontier-scale LLMs. By adapting the
model to project-specific data, the authors report improvements of more than 15% in both line cov-
erage and mutation score compared to untuned baselines. Although this work does not implement
iterative repair loops, it demonstrates that domain adaptation can partially compensate for limited
model capacity and resource constraints, suggesting a complementary path to large-model–centric
generation pipelines. [32]

RQ-1.2: Can LLMs generate syntactically correct and executable test code?

Research shows that LLMs can generate syntactically correct and executable test code, with
success depending on model capability, the selected dataset, and refinement strategy. ChatU-
niTest [9] and ChatTester [38] achieve high syntactic validity, raising passing executions from
22.3% to 41.0% through iterative repair. TestART [15] attains pass rates above 70% via dedi-
cated syntax correction. Empirical studies [30, 33] confirm that residual failures largely stem
from unresolved dependencies or environmental misconfiguration. With validation and repair,
LLMs reliably produce compilable tests.

25

RQ-1.3: Can LLMs understand the structure of the Program under Test, make correct
references in the test code, and handle interactions with the working environment?

LLMs demonstrate partial understanding of a Program under Test’s structure and can generate
test code with correct references when contextual information is explicitly provided. ChatU-
niTest [9] and ChatTester [38] achieve accurate method calls through prompt guidance, while
MuTAP [10] and TestART [15] encounter frequent dependency and import errors without
preprocessing. Empirical studies [30, 33] show many execution failures stem from unresolved
dependencies or framework issues rather than syntax. Complex, strongly typed languages
amplify these effects. LLMs thus are capable of capturing local structure but seem to lack a
consistent understanding of global architecture and runtime environments.

RQ-1.4: Can LLMs produce usable tests in a single shot or do they require iterative
human/feedback guidance to generate runnable tests?

Studies consistently indicate that LLMs rarely produce fully runnable tests in a single generation
step. This is in line with content generation of any type by LLMs being improved by iterative
refinement [22, 26]. While models can generate syntactically valid code, most outputs require
iterative validation and feedback to achieve executability. Frameworks such as MuTAP [10]
and TestART [15] explicitly implement generation–validation–repair loops, demonstrating sub-
stantial improvements in compilation and pass rates through automated refinement. Empirical
evaluations [30, 33] likewise confirm that test quality increases significantly after reprompting
or environment-based correction. Consequently, usable tests generally emerge through iter-
ative feedback rather than single-shot generation, highlighting the importance of structured
refinement mechanisms in LLM-based testing.

RQ-1.5: Which levels of testing can LLMs generate and where do their current capabilities
reach their limits?

Current evidence indicates that LLMs are primarily effective in generating unit and, to a
lesser extent, system tests. Wang et al. identify only 24 papers addressing unit testing and
22 focusing on system testing, while no studies explicitly target integration or acceptance
levels [36]. This distribution underscores that existing approaches concentrate on testing
isolated functions or providing test inputs for complete programs. They rarely target interactions
between components or user-facing validation. The absence of research on higher testing levels
suggests that LLMs might struggle with contextual dependencies and cross-module reasoning,
marking a key limitation in extending current capabilities beyond unit-level generation.

26

3.3 TextGrad
Yuksekgonul et al. propose TextGrad in [39], introducing both a conceptual foundation and an im-
plementation framework for optimizing LLMs through differentiation via text. Instead of relying on
numerical gradients, TextGrad formulates the optimization process in natural language, effectively
treating model feedback as a form of "textual gradient". This analogy extends the principle of
backpropagation known from neural networks to the domain of language-based reasoning, allowing
complex Blackbox AI systems to be optimized without requiring access to internal parameters.
The conceptual correspondence between numerical and textual differentiation is illustrated in
Figure 11. [39]

(a) Neural network and backpropagation
using numerical gradients

(b) Blackbox AI systems and backpropagation using natural
language “gradients”

Figure 11: Automatic "Differentiation" via Text [39, p. 3]

The framework operates on the minimal configuration of two LLMs: a predictor and an
evaluator. Given a prompt O and a query Q, the predictor generates a prediction P according
to Equation 1. The evaluator then assesses this output using an instruction I and produces an
evaluation E as defined in Equation 2. Both components can be instances of the same underlying
model, separated only by their contextual configuration, such as system prompts or temperature
settings. [39]

O+Q LLM−−−→ P (+ denotes string concatenation) (1)

I +P LLM−−−→ E (2)

The optimization target in this setup is typically the prompt O. Based on the evaluator’s output
E, a local feedback signal F is generated that expresses how the prediction P could be modified to
better satisfy the evaluation criteria. This feedback is obtained through an additional LLM query,
for example:

"Given this Prediction P and this Evaluation E,
how should the Prediction change to improve the Evaluation?"

The obtained feedback F is then propagated back to update the optimization variable O,
effectively closing the feedback loop. The LLM is again queried to propose an improved version of
the prompt:

27

"Given this Prompt O, its use to generate the Prediction P and
the feedback F against P, how should the Prompt be changed so that

the Prediction resulting from the new Prompt would satisfy that feedback?"

Through this iterative refinement, TextGrad establishes an emergent form of gradient descent
in text space. Each iteration produces a slightly improved prompt, gradually steering the LLM
toward higher performance with respect to the evaluation metric. The resulting optimization process
can be seen as a linguistic analog to stochastic gradient descent, yet with all intermediate steps
expressed in natural language rather than numerical form. [39]

Two classes of optimization problems are distinguished. The first - instance optimization -
aims to improve the solution itself, where the generated output (e.g., code, reasoning, or symbolic
structure) constitutes the optimization target. The second focuses on prompt optimization, in which
the goal is to enhance the general performance of a model across multiple queries or tasks [39, p. 6].

3.4 LLM-as-a-Judge
Zheng et al. propose the LLM-as-a-Judge approach in [42], a systematic framework that employs
powerful language models such as GPT-4 to evaluate the quality of responses produced by other
Large Language Models. The approach aims to replace costly and time-consuming human evaluation
with scalable, automated, and explainable judgment models that approximate human preferences. It
has been empirically validated against human experts and crowdsourced evaluations, achieving an
agreement rate exceeding 80%, comparable to inter-human agreement levels.

Types of Judges Three principal types of LLM-based judges are proposed, each tailored to
different evaluation contexts:

• Pairwise comparison: The model is presented with a question and two answers and must
determine which one is superior or declare a tie. This method captures relative preferences
but scales quadratically with the number of compared systems, limiting its applicability in
large-scale studies.

• Single-answer grading: The model assigns an absolute score to a single response. This
variant is more scalable but may be less stable, as absolute ratings can fluctuate more strongly
than relative judgments.

• Reference-guided grading: A reference solution is provided, allowing the judge to compare
responses against a known standard. This is particularly effective for structured domains such
as mathematics or programming tasks.

Each variant exhibits specific advantages and trade-offs regarding scalability, interpretability, and
sensitivity to contextual differences. They can be combined to strengthen overall evaluation
reliability. [42]

28

Advantages Zheng et al. underline that the LLM-as-a-Judge approach offers two main advantages:
scalability and explainability. It drastically reduces the need for human annotators, enabling rapid
and large-scale benchmarking across diverse conversational and reasoning tasks. Secondly, unlike
traditional metrics based on similarity scores, LLM judges not only produce quantitative evaluations
but also textual explanations that provide insight into their reasoning process, thereby increasing the
transparency and interpretability of the evaluation. [42]

Limitations Despite its effectiveness, several systematic limitations have been identified. The
authors classify these as distinct forms of bias or reasoning deficiencies:

• Position bias: The model may favor the first or second response based solely on presentation
order. This tendency mirrors known cognitive biases in human judgment and can distort
outcomes unless results are averaged or randomized. It can be addressed through multiple
judgments of the same answers in different configurations (position-swapping).

• Verbosity bias: Longer or more elaborate responses may be incorrectly judged as superior,
even when they add no new information.

• Self-enhancement bias: Some judges exhibit a slight preference toward responses produced
by their own model family, though this effect is minor and varies across models.

• Limited capability in grading math and reasoning questions: LLMs often fail to assess
mathematical or logical accuracy correctly, even when they are capable of solving the un-
derlying problem themselves. For example, GPT-4 has been shown to misjudge elementary
arithmetic tasks by being misled by incorrect responses or to label erroneous reasoning chains
as correct despite being able to derive the right solution when queried independently. This
limitation stems from the model’s contextual dependency as it tends to reproduce or align
with the structure of the provided answers rather than verifying them rigorously. Such cases
highlight that the model’s evaluation competence is still constrained by its reasoning process
and prompt framing. [42]

While mitigation strategies such as chain-of-thought prompting, reference-guided evaluation,
and position-swapping have been proposed to alleviate these biases, none entirely eliminate them.
Nonetheless, given the demonstrated high agreement rate with human judgments and the inter-
pretability of its outputs, the LLM-as-a-Judge paradigm represents a valid and practical approach
for scalable evaluation of LLM and other AI-based systems. [42]

29

RQ-1: Are LLMs able to generate test suites at all?

Recent advances in Large Language Models have established them as powerful tools across
Software Engineering, capable of reasoning about source code, generating executable artifacts,
and assisting in validation tasks. Their growing integration into SE workflows reflects rapid
progress in contextual understanding, code synthesis, and self-correction. Concepts such as LLM-
as-a-Judge [42], which positions models as evaluators of generated artifacts, and TextGrad [39],
which introduces gradient-like optimisation through textual feedback, provide the theoretical
foundation for using LLMs not only as generators but also as adaptive components within
iterative refinement loops. The growing capabilities of LLMs have driven their adoption in
software testing as well.
The reviewed literature demonstrates that LLMs can indeed generate executable tests and, by
extension, form test suites. Early frameworks such as ChatUniTest [9] and ChatTester [38]
confirmed their ability to produce syntactically valid unit tests and to repair non-compiling or
failing outputs. More advanced approaches like MuTAP [10] and TestART [15] incorporated
behavioral feedback and coverage-guided refinement, achieving pass rates above 70%. These
results, supported by empirical evaluations [30, 33], indicate that the generative accuracy of
LLMs improves with scale, model evolution, and feedback integration.
The sub-questions of this research collectively underline that LLMs can partly approximate
oracles, generate syntactically correct and executable tests, and reproduce local program
structures, yet still rely on iterative guidance to produce reliable results. Their competence
currently concentrates on unit and system testing, while no approaches currently explicitly
target integration or acceptance testing.

In summary, LLMs are demonstrably capable of producing test cases and small-scale suites and
their abilities continue to improve. However, to the authors’ knowledge, no study to date has
attempted to generate full-scale, multi-level test suites covering an entire PUT.

30

4 LIFT - LLM-based Iterative Feedback-driven Test suite gen-
eration

As described in Section 3, there already exists a wide range of research targeting the automated
generation of unit tests using LLMs. The fast development of LLM capabilities is visible over the
past years. While authors like Dakhel et al. and Chen et al. suggest refinement loops for fixing
structural validity (i.e., syntax errors) in [9, 10], later publications like MuTAP [38] or TestART [15]
omit explicit syntax repair loops completely, indicating that later LLM generations do not encounter
these errors in a significant magnitude anymore. Instead, newer research focuses more on generating
higher quality test cases through the optimization of quality representatives.

Yet, all reviewed approaches focus solely on unit test generation. This focus is understandable
as unit tests are viewed as the lowest step in the V&V process (see V-Model Figure 2b) and provide
a sufficiently complex yet isolated challenge that needs to be addressed as they represent the
foundation of any test suite. Their isolated and quantifiable nature makes them the ideal research
subject. Datasets like Defects4J [21], EvoSuite SF110 [14], or the HITS dataset [37] provide a
well-established baseline against which to test different generation approaches and quantify their
effectiveness. Solving this problem is a big step towards test automation. Nevertheless, Software
Testing of complete Programs under Test entails more than unit tests. Integration, system, and
acceptance testing are defined as the next higher complexity layers. The fixation on unit tests keeps
the real-world use limited to this lowest level of testing.
Two complementary research gaps emerge from this review:

(1) the Scope Gap, as current LLM-based methods remain restricted to unit-level test generation
without addressing higher testing layers such as integration or system testing, and

(2) the Optimization Gap, as existing iterative repair strategies are discrete and task-specific,
lacking a unified, gradient-like feedback mechanism for continuous improvement of the entire
test suite.

This thesis introduces LLM-based Iterative Feedback-driven Test suite generation (LIFT).
LIFT aims to close these research gaps and to provide a step towards the automation of test suite
generation. It generates whole test suites for complete PUTs instead of individual unit tests for one
focal method at a time. Based on the TextGrad [39] and LLM-as-a-Judge [42], LIFT broadens the
application of LLMs in Software Testing to include integration and system testing and generate
complete test suites. It utilizes the instance optimization of TextGrad and applies it to the suites
themselves - not only for fixing incorrect any syntactic structure and test oracles but also for
improving the overall quality iteratively. To achieve this, the test suite becomes the object that
is continuously enhanced based on feedback of an Evaluation-LLM. The novelty of LIFT lies in
the combination of iterative feedback based on a selected metric like coverage or mutation score
with LLM capabilities to evaluate those metrics and provide feedback. This gradient-like natural
language feedback is used to improve the output test suite as proposed by TextGrad [39] with the
enhancement of LLM-as-a-Judge [42] including reasonable improvement steps and judging the
suites quality.

31

4.1 Concept & Architecture
The whole test suite is the deliverable of the LIFT process and the product of instance optimization
via text introduced by TextGrad [39] - applied to Software Testing. The suite itself represents the
instance variable to be optimized, is completely LLM generated and refined without external input.
Feedback from the Test Suite Evaluator provides the "textual gradient" describing how the suite
should change to improve its overall performance/effectiveness. Each iteration thus resembles a
gradient-descent step performed in natural language space.

The resulting process architecture, illustrated in Figure 12, implements this iterative optimiza-
tion loop as a sequence of recurring iterations. LIFT performs optimization in three deterministic
phases - Generation/Refinement, Execution, and Feedback - which together constitute one iteration.
The order and logic of these phases is fixed. The actions taken by each LLM agent are contained
within each phase and do not influence the order of execution.

Figure 12: Overview of LIFT

Initital Generation The test suite is initially created from the provided requirements and the
Program under Test (PUT) as shown in the upper left-hand corner of Figure 12. The Test Suite
Generator (TSG) uses this information to build an initial test suite.

32

Execution The execution invokes all available tests. The execution report includes not only
possible errors and the test results (i.e., passing, skipped, and failed tests) but also the line and
branch coverage achieved by the current test suite. Each execution runs all tests and does not include
cached information to avoid side effects.

Feedback The type of feedback is decided by the execution outcome. Failing tests or errors in
the test suite will result in an analysis of these problems by the Test Suite Debugger (TSD). This
analysis will cluster any common root-causes like incorrect import strategies or incorrect program
behavior assumptions used throughout multiple tests and suggest solutions.
A fully passing test suite will trigger the evaluation by the Test Suite Evaluator (TSE) that analyses
the suite’s performance based on achieved coverages and the implemented tests. Its aim is to identify
weaknesses like uncovered execution paths, untested edge cases, or integration gaps and suggest a
textual gradient encoded in the improvements towards a better test suite.

Termination After the feedback, the iteration concludes with the decision to terminate the LIFT
or continue refining the test suite by applying the fixes or improvements from the evaluation.
Termination criteria can be that (a) the TSE determines in its evaluation that the current state of the
test suite has reached a satisfactory quality and does not need to be enhanced further, (b) certain
pre-defined metric thresholds were reached, or (c) the maximum number of iterations was executed.

Refinement The refinement - done by the Test Suite Generator (TSG) with all artifacts generated
in the last iteration - is the first step of the next iteration. The Test Suite Generator modifies existing
tests or creates new ones based on the textual gradient encoded in the feedback (fixes or evaluation).
After each refinement is applied, the temporary artifacts created based on the test suite’s state before
the update are removed. This includes the execution reports and the feedback files. This is done to
ensure data consistency and prevent outdated information from influencing subsequent iterations.

4.2 Agents & Environment
At LIFT’s core, three LLM agents interact with the test suite. The Test Suite Generator (TSG)
interacts with the test suite directly to create or update tests, the Test Suite Debugger (TSD) suggests
fixes for problems in the test suite, and the Test Suite Evaluator (TSE) gives textual feedback to
improve the suite’s performance.

The separation into three specialized agents follows the principle of modular optimization,
mirroring the decomposition of a gradient update into generation, error analysis, and evaluation.
This design prevents feedback contamination between stages, ensures reproducibility, and reflects
the independent roles of gradient computation and instance update in TextGrad’s optimization
analogy.

33

Figure 13: Archiving process of LIFT
(cur.: current; vers.: versioned)

For each iteration, all changes are archived as shown in Figure 13. This includes the creat-
ed/updated code for the whole test suite, the generated reports of the suite’s execution, and the
feedback for improvements. The generated execution reports consist of a test execution report (xml),
a coverage report (xml), and a visual report for traceability (html). The generated feedback is only
available in files (markdown) as no direct communication between agents is implemented. Only the
most recent data stays available to the agents.

Across all iterations, code coverage serves as the primary quantifiable metric guiding the
optimization process. Statement and branch coverage values are extracted from each execution
report and provide the numerical basis for evaluating the test suite’s effectiveness. These quantitative
measures are one cornerstone of the qualitative evaluations generated by the TSE, which additionally
assess factors such as assertion quality, completeness, and redundancy. Together, these perspectives
allow the system to balance measurable and reasonable coverage growth with meaningful test design
improvements.

Each agent instance is stateless to ensure reproducible and isolated optimization steps. For
every phase of an iteration, a new agent is instantiated without access to prior context. This design
eliminates hidden state accumulation and guarantees that all decisions are based solely on the
artifacts explicitly available in the working directory. The LLM’s role is defined by the system
prompt and its current task by the user instruction given as the first message. No further message
output is required by the agents. Information like the fixes or evaluation, therefore, needs to be
provided in a file to be available after the completion of the agent’s task.

System Prompt Each agent’s behavior is defined by a structured system prompt S, which formal-
izes its role and operational constraints to ensure consistency and reproducibility across iterations.
The prompt is composed of the following elements:

• R: the role that the model is assuming in answering the instruction. This is a general
description of the assumed experience, core skill set, and most important "character traits".

34

• E: the environment that the model operates in. This is reduced to the operating system,
information about the programming languages locally installed, and the testing frameworks
used.

• W : the workflow that the model needs to follow to correctly fulfill the instruction. The
workflow guides the model from understanding and retrieving the available data to the needed
analyses and the output required.

• O: the expected output. This defines which files are allowed to be created/edited and what
parts of the project are off-limits.

• D: the conversation directives guiding the model not to request any further textual input. It
enforces that assumptions shall only be made based on the available information (i.e., the
project files).

• P: the critical principles reinforcing behavioral patterns for the central workflow steps. This
limits what the models should focus on and tightens the scope of their objective.

• A: any optional additional information provided. In practice, this is either the pattern to use
for test implementations or feedback reporting.

The system prompt for each agent is defined as:

S = R+E +W +O+D+P+A (+ denotes string concatenation) (3)

Tools All LLM agent interactions with the environment are realised through tools. They ensure
that all changes are contained to the working directory. No tools for networking interactions like
web requests or direct communication between LLM agents are implemented. The following tools
are available to all LLM agents:

• list_dir(...) - lists all folders and files recursively (with optional parameters for hidden
files, start directory or pattern matching),

• read_file(...) - reads a file’s content from a given byte offset and length and reports
whether more bytes are available,

• write_file(...) - writes or overwrites files within the working directory (default: no
overwrite),

• delete_path(...) - deletes a file or directory, and

• replace_in_file(...) - replaces the first occurrence of a given string with a new value.

35

4.2.1 Test Suite Generator

The Test Suite Generator is the central generative agent in LIFT and the only one allowed to modify
the test suite directly. It performs the role of the optimizer - updating the test suite based on textual
feedback that encodes directions for improvement. The TSG is responsible for creating the initial
suite, correcting errors, and refining test coverage and quality during subsequent iterations.

The behavior of the TSG is defined by a static system prompt (Subsection A.1) specifying
its role, environment, workflow, output boundaries, and guiding principles. It defines the agent’s
behavior as a deterministic test-generation expert.

The corresponding workflow is highly structured and divided into six major phases: (1) project
discovery, (2) comprehensive understanding, (3) requirements gathering, (4) feedback analysis
(conditional), (5) test implementation, and (6) final review. Each phase is expressed in procedural
steps that define the agent’s internal reasoning and file interaction pattern. To prevent deviation
from the prescribed workflow, conversation directives explicitly prohibit further user interaction or
open-ended reasoning.
Once the task is completed, the agent terminates automatically, signaling completion with the
reserved token <DONE>.
Depending on the iteration type, the TSG operates under one of three instruction modes defined by
the initial user message:

Initial Generation: Triggered by the instruction "Generate an initial test suite for the local
project <projectname> based on the given requirements!".
The TSG constructs a complete suite covering all functional requirements defined in the
requirements document.

Error Correction: Triggered by "Error(s) during the collection or fail(s) occurred during
execution of the test suite for the local project <projectname>! Please correct the test suite!".
This mode is invoked after the TSD detects and reports syntactic, import, or runtime errors.
The TSG analyses the error report and provided correction suggestions and adjusts the existing
tests to match the correct program behavior. The TSG is explicitly instructed not to delete or
bypass failing tests but to align them with the PUT’s actual functionality, assuming the PUT
itself is fault-free.

Refinement: Triggered by "Refine the existing test suite for the local project <projectname>
based on the latest evaluation!".
This mode incorporates a high-level evaluation from the TSE of the current test suite’s state.
The TSG interprets this feedback as a natural language gradient describing optimization
directions such as expanding coverage, testing unverified edge cases or improving assertion
granularity. Each refinement iteration aims to move the suite closer toward maximal adequacy
and coverage without redundancy.

Throughout all modes, the TSG enforces critical generation principles embedded in its system
prompt:

Feedback Priority: When a local evaluation report is present, its feedback takes precedence
over the original requirements. The TSG always adapts tests to reflect the evaluated behavior
of the PUT rather than the initial specification if they do not align.

36

Failing Test Fixes: When correcting failing tests, the TSG assumes that the program imple-
mentation is correct. Tests must therefore be adjusted to match the actual observed behavior
without altering the intended logic to force a passing result. All corrections are grounded in
the provided analysis rather than heuristic assumptions.

Coverage Context: The TSG focuses exclusively on meaningful, reachable coverage. It
avoids creating tests for unreachable code paths and uses conditional skipping for platform-
specific branches that cannot execute on the current system. Only testable and practically
reachable paths are included.

Test Quality Standards: Each generated test must clearly indicate its purpose through
descriptive naming and well-defined parameterization. Similar tests with input variations use
pytest.mark.parametrize and both positive and negative test cases are included to ensure
comprehensive behavioral coverage.

Error Handling: The TSG tests only realistic error conditions that can actually occur at run-
time. Exception handling is validated explicitly using pytest.raises, ensuring correctness
of error pathways without introducing artificial or unreachable conditions.

All file interactions are limited to the tests/ directory. No modifications outside this folder are
permitted, ensuring complete containment within the defined environment and most importantly no
possibility of changes to the PUT to align its behavior to the existing tests. All generated or updated
tests follow a predefined template and preserve traceability by linking each test to its corresponding
requirement identifier. Once the new or modified suite is written, the agent signals completion and
terminates, passing control to the execution phase in this iteration.

4.2.2 Test Suite Debugger

The Test Suite Debugger acts as the analytical counterpart to the TSG and performs the diagnostic
phase of the repair loop. It is responsible for identifying and explaining all failures that occur during
the collection or execution of the test suite. Operating under the assumption that the PUT itself is
fault-free, the TSD traces each failure back to incorrect or inconsistent tests.

The TSD is invoked using the instruction: "Error(s) during the collection or fail(s) occurred
during execution of the test suite for the local project <projectname>! Please analyse them!" This
instruction triggers the debugger to analyse all failure artifacts generated during the latest execution
phase. Its task is purely diagnostic as it never modifies the test suite directly but instead outputs a
detailed fix report. The separation of analysis and modification ensures determinism and avoids
cascading side effects.

The TSD’s operation is divided into six sequential phases as defined in the system prompt (Subsec-
tion A.2):

1. Project Discovery: The agent explores the project folder structure, identifies all source and
test files, and collects references to all failing nodes reported in the previous execution.

37

2. Failure Ingestion & Grouping: Failures are parsed from the xml and textual reports. Related
errors are clustered by exception type, failure site, or common traceback to avoid redundant
analyses.

3. Evidence-Driven Diagnosis: For each failure cluster, the TSD inspects relevant stack frames,
captured logs, and fixtures to locate the root cause. Each finding must be grounded in concrete
evidence rather than heuristic reasoning.

4. Root-Cause Classification: The agent classifies each issue according to five possible defect
origins: (a) implementation logic, (b) test assumption or fixture, (c) configuration or import,
(d) platform or reachability, and (e) environment. Since the PUT is presumed correct, only (e)
provides a valid reason to skip the affected tests.

5. Fix Proposal Generation: For every failure cluster, the debugger proposes corrective actions
in two complementary forms: a textual explanation and a minimal code patch (provided as a
unified diff or snippet). Fixes must be precise, reproducible, and never suppress failures by
skipping or marking tests as expected failures.

6. Safety & Summary Reporting: Before concluding, the debugger verifies that no fixes
contradict the test independence principles or global fixture constraints. It then emits a
summary table listing all analysed failure clusters, their cause categories, and the proposed
next steps.

The TSD’s analytical output adheres to a strict template comprising: (1) error description, (2)
root-cause analysis, (3) textual fix proposal, (4) code patch, and (5) impact assessment on coverage
and requirement linkage. This structure ensures traceability between observed errors, their causes,
and the corrective actions implemented in the following iteration.

The TSD’s workflow embraces several critical principles:

Evidence over Intuition: All conclusions must cite specific files, lines, or frames within the
failure trace.

Meaningful Corrections: Proposed changes must address actual causes, not symptoms;
blind skipping is prohibited.

Contextual Reachability: Unreachable or platform-gated branches must be recognized and
marked with justified skipif guards rather than failing assertions.

Minimal, Safe Diffs: The TSD must propose the smallest code changes necessary to fully
resolve a failure.

Traceability: Each fix must reference the failing test identifiers, the related requirements, and
the coverage implications.

The resulting file provides the TSG with targeted guidance on which parts of the test suite must be
corrected and how.

38

4.2.3 Test Suite Evaluator

The Test Suite Evaluator represents the evaluative component of the LIFT architecture and feedback
channel within the optimization loop. While the TSD identifies incorrect behavior, the TSE deter-
mines the adequacy and effectiveness of a fully passing test suite. Its role is to analyse the suite’s
overall quality, identify meaningful coverage gaps, and determine whether the test suite requires
further refinement. Following the TextGrad terminology, the TSE generates the natural language
gradient, guiding the TSG toward areas of improvement through high-level feedback.

The TSE is invoked using the instruction: "Evaluate the given test suite for the local project
<projectname> based on the latest execution reports!" This instruction triggers the evaluator to
analyse all available artifacts from the most recent execution phase, including the statement and
branch coverage report, the overall test results, and the test suite itself. The evaluation does not
alter any files directly but produces a detailed report following a predefined template structure (Ap-
pendix B). This report serves as the guiding document for the next refinement iteration performed
by the TSG.

The TSE’s behavior is defined by a structured system prompt (Subsection A.3) describing its
role, environment, and workflow. Its workflow proceeds through six distinct phases:

1. Project Discovery: The evaluator inspects the local project directory to locate all source files
and existing tests within the tests/ folder.

2. Comprehensive Reading: The evaluator reads the program source code, the functional
requirements, and the generated reports to build a contextual understanding of the project
behavior and test coverage.

3. Template Review: The evaluation template is read and prepared for population with the
analysis results.

4. Deep Analysis: The evaluator conducts a detailed examination of the execution and coverage
reports. Coverage functions as the principal quantitative indicator for this evaluation phase.
Statement and branch coverage are interpreted not as absolute targets but as contextual metrics.
They are numerical signals that are used alongside qualitative assessments of test adequacy,
requirement fulfillment, and behavioral completeness.
Uncovered lines and branches are identified and categorized according to their contextual
relevance:

• Unreachable or defensive code (e.g., error handlers for impossible conditions) is recog-
nized as non-critical.

• Platform-specific branches are considered untestable if they cannot execute on the
current system.

• Meaningful coverage gaps - testable but currently untested scenarios - are highlighted
as genuine deficiencies requiring additional test cases.

39

5. Evaluation Report Generation: Based on the analysis, the TSE writes an evaluation report
summarizing:

• uncovered or under-tested requirements,

• missing edge or boundary value tests,

• untested integration scenarios, and

• recommendations for improving coverage and test adequacy.

6. Final Decision: The agent concludes with a decision marker:

• <REWORK> if the suite has significant testable coverage gaps, unfulfilled requirements, or
needs other adjustments to achieve acceptable quality,

• <FINAL> if the suite achieves sufficient contextual coverage and quality.

The TSE’s evaluation process follows several critical principles embedded in its system prompt:

Requirement Testing: All functional requirements must be adequately represented by
corresponding test cases.

Coverage Context: Not all uncovered code constitutes a problem - unreachable or defensive
code is recognized and excluded from improvement recommendations.

Practical Focus: Only meaningful and achievable improvements are proposed; the TSE
avoids arbitrary coverage targets such as enforcing 100% coverage.

Detailed Justification: Every recommendation is supported by explicit evidence from the
code base or coverage reports and includes a clear rationale.

Actionable Feedback: Suggestions are expressed as concrete, implementable improvements
that can directly guide the next refinement iteration.

The resulting evaluation file serves as the feedback channel for LIFT. It represents the natural
language equivalent of a gradient update, in which measured coverage improvements provide the
primary quantitative signal. At the same time, qualitative evaluations refine the suite’s structural
and semantic quality and robustness.

4.3 Metrics & Traceability
In pursuit of full-scope automated test development, LIFT implements an explicit traceability
framework and systematic metric recording across all iterations. Reflecting the principles of the
Waterfall and V-Model processes (Section 2.2), traceability forms the backbone of Verification &
Validation. It establishes bidirectional links between requirements, generated specifications, and
the resulting tests, thereby ensuring that every behavioral requirement can be traced to one or more
verifying tests and that each test can be traced back to its motivating requirement. Such explicit
linkage is essential not only for quantitative assessment but also for human trust and auditability of
automatically generated suites.

40

Figure 14: Relation between requirements, test specifications, and tests within LIFT

As shown in Figure 14, the requirement’s specification is defined as an external LIFT input in
the program-requirements.yml. For each individual test, a natural language specification is added
during test creation by the TSG that describes its intent and references the corresponding require-
ment identifiers. These links are encoded in the test metadata fields used by the reporting system.
This representation allows for both one-to-many and many-to-one relations: a single requirement
may be covered by multiple tests and a single test may contribute to validating multiple requirements.

Quantitative metrics are collected after every execution phase of an iteration, providing a numerical
record of the test suite’s current state. The recorded metrics include:

• Reliability metrics: number of errors; counts of passed, failed, and skipped tests; and total
number of executed tests,

• Performance metrics: total execution time, and

• Coverage metrics: statement and branch coverage, which serve as the primary quantitative
indicators of test adequacy.

Among these, coverage constitutes the main quantifiable signal guiding the Test Suite Eval-
uator’s feedback process, while the remaining metrics are also available to the TSE and provide
contextual insight into suite stability, completeness, and efficiency. For each iteration, the complete
set of metrics is appended to the project archive, allowing temporal comparison of results across
successive refinements.

The evolution of these metrics over time forms the iterative dynamics of the system. These
trajectories describe how quantitative indicators change as the suite undergoes generation, repair,
and evaluation cycles. They offer a measurable reflection of the optimization progress: while the
TSE provides qualitative gradient feedback, metric trajectories expose its quantitative counterpart,
capturing the observable improvement of the test suite across iterations.

LIFT implements multiple options to determine whether the current test suite’s state is sufficient.

1. Metric Thresholds: Thresholds for numeric metrics like mutation score (if available),
coverage, or test suite size can be defined.

2. TSE refinement decision marker: The TSE’s feedback includes a decision marker that
summarizes whether the TSE deems the suggested enhancements to be necessary in order to
achieve a sufficient test suite.

41

By default, the iterative refinement process terminates once the TSE’s feedback indicates that no
significant improvement is required. During execution, all mentioned metrics are continuously
generated and archived, forming a robust basis for alternative termination algorithms or enforced
threshold-based stopping criteria.5

5Note that the number of iterations also provides a termination criterion. Since it’s not related to the test suite’s
sufficiency, it is not mentioned here.

42

5 Case Study: simplejson
To demonstrate and evaluate the applicability of the proposed LIFT framework, a representative
open-source Python project was selected as the Program under Test. This section introduces the
library simplejson, outlines its functional purpose, structure, and characteristics and discusses
relevant aspects influencing its testability. The objective is to provide sufficient contextual under-
standing of the Program under Test prior to presenting the evaluation results in Section 6.

simplejson is a lightweight, high-performance library for encoding and decoding data in the
JavaScript Object Notation (JSON) format. It is developed and maintained as an independent project
by Bob Ippolito and has been continuously updated since its initial release in 2006 [20]. The library
is independent of Python’s built-in json module, which is now part of the Python Standard Library.
simplejson remains in active use due to its extended feature set, configurability, and continued
compatibility with both Python 2 and Python 3.

The library was chosen as the Program under Test for several reasons:

• It represents a pure Python project with moderate complexity, featuring multiple modules
that interact in well-defined ways.

• Its functionality - translating between Python data structures and serialized JSON text - is
highly deterministic, making it suitable for automated and reproducible testing.

• The codebase combines both algorithmic logic (e.g., parsing, type handling) and configuration-
driven behavior, allowing diverse test generation scenarios.

• As an open-source project widely adopted across the Python ecosystem, it serves as a realistic
and generalizable benchmark for evaluating LLM-based test suite generation.

5.1 Library Functionality
The main purpose of simplejson is to provide a complete implementation of JSON serialization
and deserialization for Python objects. Its core components are:

• JSONEncoder: responsible for transforming Python objects into valid JSON strings. It
supports basic data types such as integers, floats, strings, lists, and dictionaries as well as
complex structures including nested or custom objects through hooks like default() and
for_json().

• JSONDecoder: performs the inverse operation, reconstructing Python objects from JSON text
representations. It handles input validation, type inference, and optional strict parsing modes.

• Utility Functions: the high-level API functions dump(), dumps(), load(), and loads()
provide convenient interfaces for reading and writing JSON data to and from strings, files or
streams.

43

The implementation adheres to the RFC 8259 standard for JSON [6] while extending it with optional
features for greater flexibility. These include support for Decimal objects, custom namedtuple
encoding, and control over key ordering in dictionaries.

Beyond its functional completeness, simplejson offers additional methodological advantages for
evaluating LLM-based test generation. As JSON is a foundational data-interchange format across
virtually all programming languages, its semantics and usage patterns are deeply embedded in the
training corpora of Large Language Models. This property potentially mitigates the oracle problem,
since the model can accurately predict expected input–output behavior without rigorous external
specifications. Moreover, the library’s extensive inline documentation and descriptive docstrings,
which form the basis of its public documentation, provide rich contextual cues to guide reasoning
during generation (see Listing 1). Finally, the library’s interaction with various I/O channels - such
as files, streams, and terminal interfaces - adds an additional layer of operational complexity that
goes beyond algorithmic or mathematical test subjects, making it a more representative benchmark
for practical Software Testing.

r"""Command-line tool to validate and pretty-print JSON

Usage::

$ echo '{"json":"obj"}' | python -m simplejson.tool
{

"json": "obj"
}
$ echo '{ 1.2:3.4}' | python -m simplejson.tool
Expecting property name: line 1 column 2 (char 2)

"""

Listing 1: Docstring of the tool.py

This example illustrates the clarity and task-oriented phrasing found throughout simplejson’s
source files. Such descriptive docstrings not only aid human maintainers but also provide contextual
signals that can improve an LLM’s reasoning during automated test generation.

5.2 Structural & Functional Overview
The project follows a modular structure typical for medium-sized Python libraries. Its main package
simplejson contains several source files, each implementing specific aspects of the encoding and
decoding process. simplejson’s package layout is shown below:

44

simplejson/
__init__.py (23KB, 82 exec. lines, 562 total lines of code)
_speedups.c (excluded)
compat.py (1KB, 29 exec. lines, 34 total lines of code)
decoder.py (15KB, 229 exec. lines, 416 total lines of code)
encoder.py (29KB, 412 exec. lines, 740 total lines of code)
errors.py (2KB, 29 exec. lines, 53 total lines of code)
ordered_dict.py (3KB, 81 exec. lines, 103 total lines of code)
raw_json.py (1KB, 3 exec. lines, 9 total lines of code)
scanner.py (3KB, 64 exec. lines, 85 total lines of code)
tool.py (2KB, 24 exec. lines, 42 total lines of code)

The modules encoder.py, decoder.py, and scanner.py form the functional core of the
library. The file ordered_dict.py provides a backport of OrderedDict for Python 2 environments,
while compat.py ensures compatibility across interpreter versions. The optional C extension
_speedups.c implements performance-critical parts of the encoder and decoder to accelerate
runtime execution. It will be excluded from testing due to limitations of pytest.

In total, the codebase comprises a total of 953 executable lines of code and 462 branches
distributed across the 9 Python source files. The relative size and cohesion of these modules make
simplejson a suitable target for evaluating both functional and structural coverage metrics.

At runtime, the encoder and decoder operate as separate but complementary components. The
encoding process begins with user-facing calls to dump() or dumps(), which internally instantiate
a JSONEncoder object configured according to user parameters such as indentation, key sorting
or special value handling (e.g., NaN or Infinity). The encoder recursively traverses the Python
object graph and converts each element into a valid JSON fragment. Decoding follows the opposite
direction. The load() and loads() functions delegate to the JSONDecoder, which uses a lexical
scanner implemented in scanner.py to tokenize the input and rebuild the corresponding Python
structures. Error handling for malformed JSON or unsupported data types is implemented through
well-defined exceptions such as the JSONDecodeError.

5.3 Comparison with the Python Standard Library
Although the Python Standard Library includes a built-in json module, simplejson remains useful
due to its additional configuration options. The two libraries share a common interface design. The
major differences include:

• Extended feature set: options such as use_decimal, namedtuple_as_object and for_json
provide greater customization for complex objects.

• Performance optimizations: the optional _speedups C extension significantly reduces pars-
ing and encoding times for large datasets.

45

• Backward compatibility: explicit support for legacy constructs like OrderedDict and
Python 2 string types.

• Independent maintenance: separate release cycle, enabling faster adoption of JSON standard
revisions or bug fixes.

From a testing perspective, these differences introduce unique challenges. Configuration-
dependent behaviors lead to a combinatorial explosion of possible test inputs and differences
between Python versions affect reproducibility and expected outputs.

5.4 Testability Considerations
simplejson is well-suited for evaluating automated test generation approaches due to its determin-
istic behavior and well-defined function boundaries. Nonetheless, certain parts of the codebase are
less suitable to LLM-based test generation:

• Cross-version compatibility: Python 3 functionality implemented using Python 2 source
code (i.e., OrderedDict) is not testable in modern Python 3 environments.

• Native extensions: the C-based module _speedups.c cannot be directly tested using Python-
based frameworks and must therefore be excluded.

• Platform dependencies: minor variations in floating-point precision or Unicode handling
can produce environment-specific outputs.

Despite these limitations, the majority of the codebase remains accessible for automated testing.
The functional purity of the encoder and decoder allows for repeatable test execution and determin-
istic comparison of expected versus actual outputs. Additionally, the library’s comprehensive use of
exception handling provides rich oracles for assessing behavioral correctness.

46

6 Evaluation
The evaluation aims to assess the effectiveness and quality of the proposed LIFT framework.
It builds upon established metrics and methodologies from prior research in LLM-based test
generation, combining both quantitative and qualitative dimensions of test suite quality. The
following sections first summarize these evaluation criteria adopted from Related Work (Section 3)
to create a performance baseline before applying them to the conducted case study on simplejson.

6.1 Evaluation criteria from related research
ChatTester Yuan et al. present ChatTester [38], one of the earliest systematic evaluations of
LLM-based unit test generation. Building upon prior work such as ChatUniTest [9], they extend the
evaluation to include both quantitative and qualitative aspects of generated test quality. In [38], they
describe four fundamental questions:

"How is the correctness of the unit tests generated by ChatGPT?" In order for any
test generation method to be useful, the generated tests need to be correct. Correctness itself has
multiple facets. Firstly, code must be syntactically correct, must compile, and then must execute
correctly. A correct execution itself consists of (a) no runtime errors and (b) no incorrect (failing)
assertions. A breakdown of occurring errors indicates which complexity layers can be solved by
LLMs consistently and which represent a boundary for current LLM abilities. [38]

"How is the sufficiency of the unit tests generated by ChatGPT?" The correctness of
generated tests alone does not reflect their ability to test a PUT in a qualitative way. Sufficiency
attempts to indicate the quality of the generated test through proxy metrics like coverage and number
of assertions in the test case6. [38]

"How is the readability of the unit tests generated by ChatGPT?" Readability is a metric
inherent to automated test case generation. Yuan et al. rely on a user study to evaluate this subjective
metric. Beyond the quantifiable measures, this metric indicates how human-like the generated
test cases are. This subjective evaluation captures human-perceived qualities such as meaningful
naming, structural clarity, and code formatting, complementing the objective metrics above. [38]

"How can the unit tests generated by ChatGPT be used by developers?" Yuan et
al. define ChatTester [38] including one of the first systematic evaluations of LLM-based unit
test generation. In their study, only 73.3% of generated tests are compilable and just 41.0% of
all generated tests pass the execution, showing that human intervention remained essential for
achieving production-ready quality. [38]

TestART TestART [15] represents the most recent and comprehensive work on LLM-based test
generation and is conceptually closest to the proposed LIFT, as it also generates and iteratively
refines whole test suites at the PUT level, achieving a 78.55% pass rate and a line coverage of

6Since ChatTester [38] only creates unit tests for a single focal method as its input, the number of assertions is
measured for the generated test case.

47

just 68.17%. In their evaluation, Gu et al. extend prior correctness and sufficiency metrics with
mutation-based fault-detection measures. They measure TestART’s performance by the following
key perspectives:

1. Correctness

• Syntax Error: percentage of test code that includes Java syntax errors,

• Compile Error: percentage of test code that produces errors during the compilation,

• Runtime Error: percentage of test code that includes errors or failures during the
execution, and

• Pass Rate: percentage of test code that runs without errors, failures, failed assertions, or
other problems.

2. Sufficiency

• Branch coverage of correct tests: branch coverage rate of the passed focal methods,

• Line coverage of correct tests: line coverage rate of the passed focal methods,

• Total branch coverage: branch coverage over all focal methods and

• Total line coverage: line coverage over all focal methods.

3. Error detection

• Mutation coverage: number of killed mutants over the total number of created mutants
and

• Test strength: number of killed mutants over the number of mutants covered by tests.

4. Test case count

• Test case count: total number of tests generated by the testing approach and

• Assertion count: total number of assertions within the created tests. [15]

MuTAP Dakhel et al. introduce MuTAP [10] as a mutation-testing–driven refinement frame-
work for LLM-generated unit tests. Building upon the generation-validation-repair paradigm of
ChatTester, MuTAP evaluates the effectiveness of its iterative repair mechanism using a set of
mutation-based and validity metrics. Specifically, the authors measure

(a) the validity rate - the percentage of syntactically correct, compilable, and executable tests,
(b) the pass rate of tests that execute successfully and
(c) the mutation score (MS), defined as the ratio of killed mutants to all generated mutants. [10]

Across repair iterations, the improvement in mutation score (∆MS) is used to quantify how LLM-
guided refinements enhance fault-detection capability. Dakhel et al. explicitly note that "improving
MS does not necessarily lead to better coverage and that test coverage is only weakly correlated
with the efficiency of tests" [10, p. 13], emphasizing that mutation-based evaluation captures a
complementary aspect of test quality. [10]

48

RQ-2.3: What constitutes a good test suite in the context of LLM-based generation?

Research into LLM-based test case generation shows that similar metrics can be applied to this
generation method as well. Both dimensions of test suite quality - quantitative and qualitative -
need to be fulfilled and analysed.
The generated tests must be syntactically correct, compilable, and executable without requiring
human intervention. High coverage and mutation scores can indicate that test suites are effective.
Equally important is semantic adequacy - the alignment between the intent of the test and the
intended behavior of the PUT - which ensures that generated assertions meaningfully capture
expected functionality rather than coincidental output patterns.
From a qualitative perspective, a good LLM-generated suite should remain maintainable,
readable, and trustworthy, minimizing redundancy and ambiguity. Its usefulness is further
determined by developer adoptability: tests must be interpretable and logically structured so
that human developers can review, adapt, and extend them with minimal friction.
In summary, a good test suite in the LLM-generation context unifies quantitative soundness -
valid, executable, and fault-revealing tests - with qualitative robustness - readable, reliable, and
semantically meaningful tests that can be trusted and maintained in long-term development. [10,
15, 38]

49

6.2 Evaluation of the Case Study
The evaluation of LIFT aims to determine its effectiveness in generating complete and executable
test suites that improve in quality through iterative refinement. Following the quantitative and
qualitative criteria defined in Subsection 2.3 and Subsection 6.1, this section assesses the gener-
ated suites with respect to test suite size, correctness, coverage, mutation score, and semantic quality.

The open-source library simplejson [20] serves as the PUT. It provides a realistic and well-
documented target featuring complex serialization logic, error handling, and a Command-Line
Interface. To ensure comparability and reproducibility across trials, all experiments were conducted
within the following environment:

• Python 3.12.10
• pytest (8.3.5) and pytest-html-report (1.0.6)
• pytest-cov (6.1.1)
• mutmut (2.5.1) and parso (0.8.4)

The LIFT framework was executed with AI-generated requirements verified by humans prior to
the experiments. In total, 39 requirements were defined, covering encoding and decoding behavior,
error handling, and CLI interactions. An excerpt of the requirements document (Appendix C) is
shown in Listing 2.

simplejson_test_requirements:
scope_and_environment:
- id: SCOPE-1

title: Public API exposure
description: The package must provide the public functions and classes

defined in its documentation: dump, dumps, load, loads, JSONEncoder,
and JSONDecoder. This ensures compatibility with the Python stdlib
json API.

↪→

↪→

↪→

acceptance: Importing simplejson exposes the documented functions and
classes.↪→

...

encoding:
core_correctness:

- id: ENC-CORE-1
title: dumps returns JSON string
description: Calling dumps(obj) must return a Python str containing

valid JSON that conforms to RFC rules. The returned type must never
be bytes.

↪→

↪→

acceptance: Type is str; round-tripping via loads yields equivalent
Python objects.↪→

Listing 2: Excerpt from the requirement specification document

50

A total of 24 independent trials were executed, each using gpt-5-mini with a fixed temper-
ature of 1.07 as the underlying model for all LLM agents. Every trial was run for 25 iterations
without early termination, resulting in 24 refinement iterations following the initial generation.

Two types of resulting test suites were distinguished:

• First Sufficient Test Suite (FSS): The first suite in each trial deemed sufficient by the TSE
according to its own evaluation criteria. Some trials may not reach a sufficient suite within
the iteration limit and therefore have no FSS.

• Last Passing Test Suite (LPS): The final suite that executed without any errors or assertion
failures, regardless of TSE evaluation.

The original test suite included with simplejson was not included during the trial generations
but serves as a human-crafted reference for comparative analysis. It represents the target quality
level that LIFT-generated suites are expected to approach in terms of coverage and robustness.

To assess the completeness of the generated test suites, mutation testing was conducted for all
of them. The same set of mutants was applied to the original suite as well as to each trial’s FSS and
LPS, and the resulting mutation score (MS) was computed. It is important to note that mutation
testing is not part of the LIFT process and is therefore not explicitly optimized by the Test Suite
Evaluator. The MS serves as an external proxy metric for the general robustness and fault-detection
capability of the generated suites, as no reward shaping or "reward hacking" can occur against this
unknown objective. Consequently, a significantly high MS can be interpreted as evidence that a test
suite closely envelops the behavioral space of the PUT.

6.2.1 General and Test Counts

LIFT successfully produces complete test suites and consistently extends them over the course
of its iterations. As shown in Figure 15, the number of tests steadily increases across all trials
without showing signs of saturation within the fixed 25 iterations. This confirms that the underlying
LLM is not only capable of generating an initial executable suite but also of adding further tests
to an existing one. Whether this continuous growth reflects a meaningful extension of behavioral
coverage or merely expansion without necessity cannot be inferred from test suite size alone.

The observed growth pattern suggests a general preference of the LIFT agents to create new
test cases rather than adapt or refine existing ones. This behavior may stem from an implicit bias to
avoid modifying already functional test code, thereby reducing the risk of introducing new errors
into previously passing parts of the suite.

Two of the 24 trials (IDs 14 and 15) exhibited a complete breakdown of their test suites, where
the TSG removed most tests after an earlier period of stable growth. These trials were excluded
from the aggregated statistics in the following analysis to preserve comparability, as such suites
would rightfully be rejected by any human developer in practice. 12 of the 24 trials reached a test
suite that was evaluated as sufficient by the Test Suite Evaluator.

7Note that during time of execution, it was not possible to change the temperature for the gpt-5-mini model via
the OpenAI API.

51

Figure 15a illustrates the evolution of total test counts for each trial. All initial test suites
start with roughly 10 to 30 test cases, but none of them executed successfully initially due to
import-related issues, indicating that tests were not adequately adapted to their environment. The
aggregated statistics shown in Figure 15b (mean, median, and quantiles) only include iterations
where no errors were reported, since test count reports are distorted by pytest when suites fail
during collection or execution. The results demonstrate a consistent linear growth of the test suites,
averaging approximately 4.1 newly added tests per iteration.

(a) Individual test counts per trial
(for all test suite iterations without errors)

(b) Aggregated test counts over all trials
(for all test suite iterations without errors)

Figure 15: Test counts for all trials

The original simplejson test suite contains a total of 143 tests, with seven skipped due to the
missing import of the C speedup extension. In comparison, the average FSS consists of 64 tests
(ranging from 27 to 118), while the average LPS comprises 107 tests (ranging from 68 to 146).

Trial ID Total
Tests

Skipped
Tests

Execution
Times (s) Unit Tests Integration

Tests
System
Tests

original 143 7 6.397

FSS (mean) 64 1 3.198 60 4 0
FSS (median) 59 1 2.505 57 4 0

LPS (mean) 107 1 5.681 100 7 1
LPS (median) 106 0 5.480 102 7 0

Table 1: Composition of the original Test Suite and the FSSs & LPSs of all trials (aggr.)8

The sizes and execution times reported in Table 1 indicate that later iterations produce suites
whose characteristics increasingly resemble those of the original simplejson suite. It remains

8Note that tests can be assigned multiple types by the LLM. Therefore, the combined number of unit, integration,
and system tests must not equal the total number of tests.
Find the non-aggregated data in Subsection D.1.

52

unclear whether this represents a natural convergence in test suite size or is merely coincidental
given the fixed limit of 25 iterations. In terms of test type distribution, the majority of generated
tests are labeled as unit tests, with only a small subset classified as integration or system tests. This
is consistent with the contained nature of the PUT whose functionality primarily revolves around
serialization and deserialization logic contained within isolated functions. However, it could indicate
an inherent limitation of LLMs in reasoning across multiple abstraction levels or distinguishing
between testing scopes. Since the chosen PUT does not include complex external interactions or
components that require system level testing (such as a GUI), the origin of this observed distribution
cannot be conclusively attributed to either factor based on the amount alone.

Overall, LIFT demonstrates stable and continuous test suite growth, without conclusive evi-
dence of convergence toward a size comparable to the human-written baseline. The results confirm
its capacity for iterative expansion while raising open questions about whether this growth primarily
expands structural completeness or increases behavioral redundancy.

6.2.2 Correctness

Unlike other frameworks such as TestART [15] or ChatUniTest [9], LIFT only outputs fully passing
test suites. Non-executable or failing intermediate versions are therefore not part of its externally
visible output.

Across all trials, the first fully passing test suite was typically obtained after two refinement
iterations following the initial generation. This behavior was consistent, as the initial test suites
failed due to missing imports of the simplejson package, which was not preinstalled and hence
unavailable when referenced directly. The TSD persistently suggested the correct fixes to resolve
this issue during its first intervention by adapting the import handling, after which the suites be-
came executable. Once these environment-related problems were corrected, subsequent failures
were largely confined to assertion-level mismatches, which were then addressed in the following
refinement step.

To quantify the share of iterations devoted to fixing errors versus those focusing on refinement,
two rates were defined. Let x(j)

k denote a binary indicator for trial j and iteration k, which equals 1
if the iteration triggered the TSD (i.e., a repair analysis) and 0 otherwise. The mean per-iteration
Fix Rate r̄k and the mean cumulative Fix Rate R̄k are then given by:

r̄k =
1
m

m

∑
j=1

r(j)
k =

1
m

m

∑
j=1

x(j)
k (4)

R̄k =
1
m

m

∑
j=1

R(j)
k =

1
m

m

∑
j=1

1
k

k

∑
i=1

x(j)
i (5)

where m denotes the total number of trials. r̄k thus represents the average proportion of trials
invoking the TSD in iteration k, while R̄k expresses the mean cumulative share of refinement
iterations up to and including iteration k that triggered a TSD investigation.

53

Figure 16: Aggregated Fix Rates for all trials

As expected, both ratios (r̄k and R̄k) start high, reflecting the initial adjustment phase in which
the generated tests must first be aligned with the execution environment. Over time, the cumulative
ratio R̄k stabilizes at approximately 0.5, indicating that roughly half of the iterations include test
suites that encounter errors or assertion failures, while the other half are stable and receive feedback
from the TSE. The solid line in Figure 16 represents the per-iteration rate r̄k, which fluctuates
around the same level but exhibits considerable variance between individual iterations.

This distribution is notable, as one might intuitively expect a larger share of iterations to be
devoted to bug fixing rather than improvement and expansion. The roughly balanced ratio suggests
that either (a) most technical issues are resolved quickly - typically within one or two iterations - or
(b) the refinement process itself is stable enough to avoid introducing new faults. In either case, the
data indicate that LIFT’s feedback loop maintains a steady balance between correctness (ensured by
the TSD) and growth (driven by the TSE).

Correctness in LIFT is treated as a baseline condition rather than an optimization objective. The
generated test suites remain consistently executable across iterations, once initial test environment
based issues are resolved. This design choice differentiates LIFT from other LLM-based test
generation approaches, which frequently output partially failing or non-compiling test sets. The
effectiveness of LIFT’s repair mechanism ensures that its refinement cycles operate exclusively on
valid and fully executable test suites throughout the process.

6.2.3 Structural Sufficieny and Coverage

The initial structure of the generated test suites is logically organized and follows the instructed
one-to-one mapping between source files and their corresponding test files. During the fixing
iterations, this structure remains stable, as only existing tests are modified. However, in refinement
iterations - aiming to extend the suites toward sufficiency as requested by the Test Suite Evaluator
- the directory structure consistently deteriorates. This manifests in an uncontrolled creation of

54

numerous new test files intended to close behavioral gaps identified by the TSE with non-descriptive
names like:

• test_errors_additional.py,
• test_evaluation_refinements_additional.py,
• test_evaluation_refinements2.py,
• test_refinements_additional.py or
• test_refinements_evaluation2.py.

The result is a fragmented and untraceable suite organization, suggesting a limitation of the
underlying LLM in maintaining an internal representation of the existing test hierarchy and integrat-
ing new tests into coherent clusters.

Beyond structural organization, the provided coverage of a test suite is important in analysing
its sufficiency. Figure 17a shows that even the first passing test suites9 already achieve an average
line coverage exceeding 60%. Coverage increases steadily across iterations, with the average
LPS reaching over 83% line coverage. The average FSS attains roughly 75% coverage (around
7 percentage points lower than the original suite), while the LPS exceeds the baseline by about
1–2 percentage points (Table 2). This demonstrates that LIFT can, in principle, reach or slightly
surpass the structural adequacy of the manually written test suite - even with significantly lower test
counts10.

Trial ID Total
Lines

Covered
Lines

Line
Coverage

(%)

Total
Branches

Covered
Branches

Branch
Coverage

(%)

original 953 786 82.48 462 396 85.71

FSS (mean) 953 720 75.60 462 317 68.75
FSS (median) 953 704 73.87 462 319 69.05

LPS (mean) 953 798 83.84 462 350 75.91
LPS (median) 953 809 84.89 462 351 75.97

Table 2: Coverages of the original Test Suite and the FSSs & LPSs of all trials (aggr.)11

Branch coverage exhibits a similar but less pronounced growth trend (Figure 17b). While
initial suites begin with comparable values to line coverage, their improvement is slower, resulting
in an average of only 76% for the LPS. This is approximately 7 percentage points above the cor-
responding FSS value but still 10 points below that of the original suite (Table 2). This suggests
that the generated tests tend to exercise many code paths superficially but fail to capture deeper
branching behavior indicative of more complex logical variations.

9Commonly, this is the initial test suite with the applied fixes to integrate into the test environment and correct
failing assertions. The first passing test suite is not equal to the First Sufficient Test Suite!

10The average LPS is around 75% the size of the original test suite.
11Find the non-aggregated data in Subsection D.2.

55

(a) Line Coverage for fully passing test suites (b) Line Coverage (aggr.)

Figure 17: Aggreated coverages for all trials

Taken together, the coverage results reveal that LIFT-generated suites achieve structural suffi-
ciency in terms of broadness but not necessarily in behavioral depth. The optimization of coverage
as the primary numeric feedback signal may have introduced a form of reward bias into the Test
Suite Evaluator’s feedback, where the TSG increases line coverage by targeting simpler statements
rather than executing critical control-flow paths. This highlights a possible limitation of basing the
optimization partially on this purely quantitative measure.

6.2.4 Error Detection Capability

To evaluate the fault-revealing capability of the generated test suites, mutation testing was applied
as an external and independent measure. As outlined in Subsection 6.2, it is not part of the LIFT
process itself and thus serves as an unbiased indicator of behavioral adequacy. A total of 1,184
mutants were generated for simplejson and executed against the original test suite, the First
Sufficient Test Suites and Last Passing Test Suites.

Trial ID Total Mutants Killed Mutants Mutation Score
MS (%)

original 1184 863 72.89

FSS (mean) 1184 509 43.00
FSS (median) 1184 554 46.79

LPS (mean) 1184 703 59.36
LPS (median) 1184 709 59.84

Table 3: Mutation testing results of the original Test Suite
and the FSSs & LPSs of all trials (aggr.)12

12Find the non-aggregated data in Subsection D.3.

56

Of the 1,184 generated mutants, 863 were killed by the original test suite, 509 by the average
FSS, and 703 by the average LPS. While the refinement process within LIFT improves the mutation
score from 43% (FSS) to nearly 60% in late iterations, the generated suites still fall short of the
human-developed baseline by around 13 percentage points.

The increase from FSS to LPS can primarily be attributed to the larger number of tests and the
correspondingly higher coverage observed in Subsection 6.2.3. As more code is executed, a greater
proportion of mutants are exposed and correctly killed, demonstrating that the additional tests are
at least partially effective in validating expected behavior. However, the persistent gap between
the higher line coverage and the lower mutation score of the average LPS compared to the original
suite indicates that the generated tests, although executing more code, do not necessarily test the
behavior described within it through strict assertions. This finding is consistent with the previously
observed disparity between line and branch coverage, suggesting that LIFT’s optimization focuses
on exercising code broadly rather than verifying complex or branching behaviors in depth.

Overall, the mutation testing results reinforce the interpretation that the LIFT-generated test
suites achieve measurable improvements in structural completeness and partial fault detection but
remain quantifiably inferior to manually designed tests in revealing subtle behavioral faults.

6.2.5 Holistic Coverage Exploration

All LPSs generated across the 24 trials were executed jointly as a single aggregated test suite to
assess the overall behavioral coverage that the underlying LLM was capable of achieving, given
sufficient exploration time, and to reveal the variance across all trials. The merged suite reached
a line coverage of 96.54% and a branch coverage of 92.42%, substantially exceeding both the
individual trial results and the human-written baseline. Its combined mutation score of 79.98%
indicates an increased coverage of important branches, yet the growth in line and branch coverage
does not translate nearly as well to a higher mutation score.

Trial ID Covered
Lines

Line
Coverage

(%)

Covered
Branches

Branch
Coverage

(%)

Killed
Mutants

Mutation
Score MS

(%)

original 786 82.48 396 85.71 863 72.89

FSS (mean) 720 75.60 317 68.75 509 43.00
LPS (mean) 798 83.84 350 75.91 703 59.36

all LPSs (comb.) 920 96.54 427 92.42 947 79.98

Table 4: Coverages and mutation scores of the original Test Suite,
the FSSs & LPSs, and all LPSs combined

This finding highlights the latent creative capacity of the LLM to eventually exercise nearly
the entire behavioral space of the PUT. It can thus be interpreted as evidence that, given sufficient
computational resources and refinement iterations, LLM-driven test generation could approach
exhaustive structural adequacy. In turn, this suggests that the 25 iterations employed in this study

57

have not yet encountered the upper limit of achievable coverage and that further improvement may
remain possible through extended refinement or ensemble aggregation of independently evolved
suites.

6.2.6 Behavioral Adequacy and Qualitative Test Quality

Beyond structural and quantitative aspects, the quality of the generated test suites must also be
evaluated in terms of their behavioral adequacy and maintainability. In particular, this concerns
the correctness of requirement linkings, the occurrence of hallucinated requirements, the overall
human-likeness, and the organisation of the generated code.

Table 5 summarizes the number of distinct requirements mentioned across all trials. On
average, each FSS contains 42 unique requirement identifiers, of which about 15% do not exist in
the provided requirement specification. In the LPSs, the number of unique mentioned requirements
increases to 48, but the share of non-existing identifiers also rises to roughly 24%. It is important to
note that this value represents the percentage of unique identifiers that cannot be traced back to the
specification, not the frequency of their occurrence. In other words, if a requirement identifier is
referenced in any test of a LPS, there is an approximately 24% chance that it does not exist in the
specification.

Trial ID
Number of
referenced

Requirements

Number of
referenced &

existing
Requirements

Number of
hallucinated

Requirements

Percentage of
hallucinated

Requirements

FSS (mean) 42 35 7 14.81
FSS (median) 43 35 7 16.28

LPS (mean) 48 35 13 23.70
LPS (median) 48 36 13 26.53

Table 5: Requirement counts of the FSSs & LPSs of all trials (aggr.)13

The growing number of mentioned requirements across iterations indicates that LIFT con-
tinuously attempts to close behavioral gaps identified in the TSE evaluation based on insufficient
coverage. However, a significant portion of these new tests cannot be mapped to any defined
requirement. This suggests that the refinement process increasingly explores behavioral edge cases
or implicit aspects of the program that are not explicitly documented. Consequently, the rise in
hallucinated identifiers may point either to an insufficient coverage by the provided specification or
to a limitation in LIFT’s requirement-grounding mechanism, which expects a defined link for every
newly introduced test.

To illustrate the correctness of requirement linkings, two representative examples were anal-
ysed: SCOPE-1 and ENC-CORE-1 (Listing 2). The former defines that the public API symbols of
simplejson must be exposed upon import, while the latter specifies that dumps() must return a
str and round-trip correctly through loads().

13Find the non-aggregated data in Subsection D.4.

58

For SCOPE-1, nearly all FSSs included at least one correctly linked test, with only a single
trial failing to cover it properly. Across all trials, 14 tests were generated for this requirement,
three of which were mislinked, often referring to unrelated behavior such as the OrderedDict
implementation.

@pytest.mark.reporting(
developer="automatic",
functional_specification="SCOPE-1",
test_description="Ensure public API symbols are exposed on import"

)
@pytest.mark.category("unit")
def test_public_api_exposure():

Public API should expose the core functions and classes
for name in ('dump', 'dumps', 'load', 'loads', 'JSONEncoder',

'JSONDecoder'):↪→

assert hasattr(json, name), f"simplejson missing public symbol: {name}"

Listing 3: Example for a test covering requirement SCOPE-1

@pytest.mark.reporting(
developer="automatic",
functional_specification=["SCOPE-1"],
test_description="Monkeypatched encode_basestring_ascii implementation is

invoked for top-level strings"↪→

)
@pytest.mark.category("unit")
def test_monkeypatched_encode_basestring_ascii_is_used(monkeypatch):

called = {"flag": False}

def fake_encode(s):
called["flag"] = True
return '"FAKE"'

monkeypatch.setattr(simplejson.encoder, 'encode_basestring_ascii',
fake_encode)↪→

enc = JSONEncoder()
out = enc.encode('abc')
assert called["flag"], "Expected the fake encode_basestring_ascii to be

invoked"↪→

assert out == '"FAKE"'

Listing 4: Example for a test not covering requirement SCOPE-1

59

In the LPSs, a total of 40 tests referenced SCOPE-1, of which 22 (55%) correctly validated the
intended behavior and 18 referred to other, only loosely related functionalities. All Last Passing
Test Suites contained at least one correctly covering test, except for a single trial where all linkings
to SCOPE-1 were incorrect.

Listing 3 shows a representative example that can be found in near identical form throughout
all analysed test suites. Listing 4 highlights how the completely different behavior was falsely
linked to SCOPE-1.

The second example, ENC-CORE-1, is more broadly defined and therefore seems more prone
to misuse. It specifies that json.dumps() must return a valid JSON string and that the round-trip
through json.loads() should reproduce the original object. Across all FSSs, 37 tests referenced
this requirement, of which 24 (65%) correctly verified it. In contrast, 103 tests referenced it in all
available LPSs, but only 39 (38%) were truly aligned with the specified behavior.

This inflation indicates that, as new edge case tests are generated during refinement, they
are often assigned to this broadly defined requirement because no more specific one applies.
Thus, ENC-CORE-1 seems to have become a “catch-all” category for unlinked tests, reinforcing
the interpretation that LIFT struggles to maintain semantic precision when expanding beyond the
documented requirement space.

@pytest.mark.reporting(
developer="automatic",
functional_specification="ENC-CORE-1",
test_description="dumps returns str and round-trips via loads"

)
@pytest.mark.category("unit")
def test_dumps_returns_str_and_roundtrips():

obj = {"a": [1, 2, 3], "b": {"c": "text"}}
s = json.dumps(obj)
assert isinstance(s, str), f"dumps should return str, got {type(s)!r}"
out = json.loads(s)
assert out == obj, f"loads(dumps(obj)) must equal original object; got

{out!r}"↪→

Listing 5: Example for a test covering requirement ENC-CODE-1

Similar to Listing 3, Listing 5 highlights that a short and precise unit test can cover the
ENC-CORE-1 acceptance criterion sufficiently. In practice, most test suites include one or more tests
just like this. Yet, Listing 5 also represents a misaligned test. The requirement ENC-CORE-1 states
that a JSON string shall be generated. Its acceptance specifies the str type check as well as the
comparison between the original Python object and the object retrieved after the round-trip. The test
implements both parts of the acceptance criteria, but overlooks a check of the generated string itself.
The mismatched requirement acceptance can be identified as the origin of this behavior, but human
reasoning would expect that the generated string would also be checked for the correct content. The

60

current state of the unit test does verify the round-trip behavior; the PUT’s output could have been
in any different format and the underlying defect would not be revealed by this test - highlighting a
flaw in the assertions quality that is representative for the generated tests throughout all test suites.

From a qualitative standpoint, the generated tests are generally short, descriptive, and syntactically
well-formed. Function and variable names are clear and the pytest markers needed for proper
requirements linking and other functionality like conditional skipping of tests are consistently
applied in accordance with framework conventions. However, as already discussed in Subsec-
tion 6.2.3, the overall file organization deteriorates over iterations. New tests are frequently written
into newly created files rather than integrated into existing clusters, preventing meaningful grouping
or modular organization. As a result, despite the test’s individual readability, the global structure of
the generated test suites is fragmented and difficult to maintain.

6.2.7 Integration and System Test Behavior

Across the 24 conducted trials, only one FSS and three LPSs contained a total of three and 13
tests respectively that were labeled by the TSG as system tests. All of these tests targeted the cli
requirements CLI-1 ("Pretty-print tool"), CLI-2 ("CLI error reporting"), and CLI-3 ("CLI default
arguments")14. This observation reinforces the assumption that the internal labeling of test types is
inconsistent, as all test suites included comparable tests addressing the same cli-related behavior.
Since the coverage results confirm that these parts of the PUT were executed in every suite, the
absence of system test labels cannot be attributed to missing functionality but rather to inconsistent
classification within the generation process.

Notably, the tests implementing this behavior were frequently multi-labeled as both integration
and system tests, which is reasonable given that command-line invocations naturally span multiple
components and represent end-to-end execution paths. In test suites without any system tests, the
only integration tests were again those covering the CLI functionality, further indicating that the
TSG associates higher-level testing predominantly with the visible entry points of the application.
Beyond these, no coherent clusters of integration tests were identified. Potential integration targets,
such as verifying the interaction between the high-level dump/s() and load/s() functions and
their underlying JSONEncoder/JSONDecoder components, remained untested, likely because such
relationships were not explicitly described in the given requirements and thus never inferred by the
model. Additionally, the test types to implement were only mentioned in the pytest configuration
available to the LLM agents. No clear definition of the test types and instruction on how and when
to use them was provided to the agents in their system prompts.

From these observations, two key insights emerge. Firstly, the requirements specification ap-
pears underspecified regarding integration and system behavior, providing no structured pathway for
constructing higher-level tests. Secondly, the LLMs exhibit difficulties in consistently distinguishing
between test levels, as seen in the recurring mislabeling of the CLI-related tests. Together, these
findings suggest that while the generated test suites are capable of exercising cross-module behavior,
the concept of hierarchical testing is not yet robustly internalized by the model. Higher-level
interactions are only explored when they coincide with clearly exposed functionality, such as the
Command-Line Interface, leaving deeper integration scenarios largely uncovered.

14Find the complete requirements in Appendix C.

61

RQ-2.4: How well do LLM-generated test suites fulfill traditional and possible LLM-
adapted quantitative and qualitative metrics?

The evaluation of LIFT shows that LLM-generated test suites can largely satisfy traditional
quantitative metrics of test quality, while qualitative aspects remain only partially fulfilled.
In terms of correctness, LIFT achieves a 100% success rate for all generated suites once
environment dependencies are resolved. This represents a substantial improvement over prior
approaches such as ChatTester (41% passing tests) [38] and TestART (78.6% passing tests) [15],
demonstrating that full syntactic and semantic validity can be maintained across iterative
refinements.
Regarding structural sufficiency, the generated suites steadily expand and reach line coverage
levels comparable to, or slightly exceeding, the human-written baseline, though branch coverage
remains lower. This indicates that LLMs can achieve broad statement level adequacy but
still struggle to explore complex conditional logic. The mutation scores (≈ 60% for LPS)
further confirm that, despite notable improvement from earlier iterations (≈ 44% for FSS), fault-
detection capacity seems to lag behind the original suite (73%), consistent with previous findings
that coverage and effectiveness correlate only weakly [7]. Thus, LIFT achieves quantitative
soundness but still exhibits a semantic gap in behavioral depth.
From a qualitative perspective, the generated tests are syntactically clear and employ meaningful
naming and consistent marker usage, but the overall suite organization deteriorates across
iterations. Unclear test type labeling, fragmented file structures, and an increasing share
of hallucinated requirement identifiers (≈ 24% in final suites) reduce maintainability and
traceability. Nonetheless, individual test readability remains high, aligning with ChatTester’s
observation that passing LLM-generated tests can resemble human-written ones [38].

Overall, LIFT fulfills the quantitative criteria of correctness, coverage, and test suite complete-
ness to a high degree, surpassing previous LLM-based methods. However, performance in
qualitative dimensions like maintainability, semantic precision, and requirement grounding
remains limited. These results suggest that while LLM-generated suites can reach structural
adequacy comparable to traditional methods, they still require improved internal consistency
and contextual reasoning to achieve full equivalence to manually engineered test suites.
From the presented experiments, only a general indication of current LLM capabilities can
be inferred. It is plausible that larger models or more precisely defined requirements could
further enhance test suite effectiveness. Conversely, the selected PUT, simplejson, implements
widely known and well-documented JSON functionality that frequently appears in the training
corpora of modern LLMs. This likely contributes to the comparatively strong results observed.
Consequently, the reported performance could also be interpreted as an upper bound and worse
outcomes may be expected for less common or domain-specific software systems.

62

RQ-2.5: To what extent are LLM-generated test suites able to detect faults beyond simply
achieving high coverage?

The results show that high structural coverage of LLM-generated test suites does not necessarily
translate into equally strong fault-detection capability. While LIFT achieves average line
coverage levels comparable to the human-written reference suite, its mutation scores remain
notably lower (≈ 60% vs. 73%). This discrepancy indicates that the generated tests exercise
large portions of the code but often fail to assert semantically relevant behavior. Similar findings
have been confirmed in mutation-driven studies such as MuTAP [10], which observed only a
weak correlation between coverage and test effectiveness reported by Cai and Lyu [7].
In LIFT, the refinement process improves mutation performance over iterations (from 44%
for the FSSs to 60% for the LPSs), demonstrating that iterative feedback helps sharpen test
assertions and enhance behavioral depth. Nevertheless, the remaining gap to simplejson’s
original suite highlights that the generated assertions are still shallow, capturing expected syntax
or output structure rather than program semantics.
These results suggest that LLM-generated suites are capable of achieving structural complete-
ness but only partially capture the behavioral diversity required for strong fault revelation.
High coverage, therefore, reflects statement execution broadness rather than robust behavioral
validation. LIFT attempts to integrate semantic feedback through its TSE, which highlights
requirement gaps and advises on meaningful extensions. Further improvements in the depth and
specificity appear to be needed to bridge the remaining gap and enable the detection of subtle or
logic-level errors beyond what coverage metrics alone can reveal.

63

RQ-2: Are LLMs able to generate "good" test suites?

Good test suites are characterized as not only being executable but also exhibiting strong
quantitative and qualitative characteristics of effectiveness. Following the criteria established
in Subsection 2.3 and Subsection 6.1, the evaluation of the proposed LIFT framework reveals
that LLMs are indeed capable of producing syntactically correct, consistently executable, and
quantitatively strong test suites, yet still fall short in qualitative depth and semantic precision.
Quantitatively, the results show that all generated test suites achieve full syntactic correctness,
thereby clearly surpassing prior approaches such as ChatTester [38] (41% pass rate) and
TestART [15] (78.6% pass rate). Line coverage reaches or slightly exceeds the level of the
human reference suite, while branch coverage remains noticeably lower. Mutation testing
further indicates a steady improvement of the generated suites over the course of the iterations.
The mean mutation score (MS) increases from roughly 44% for the First Sufficient Test Suites
(FSSs) to 60% for the Last Passing Test Suites (LPSs), whereas the manually created baseline
attains 73%. This demonstrates that the iterative process successfully refines the behavioral
adequacy of the suites, even though the absolute fault-detection capability still lags behind that
of human engineers.
From a qualitative perspective, the generated tests are generally well structured and readable,
featuring clear naming, coherent formatting, and logically organized assertions. However,
qualitative inspection also reveals a certain degree of fragmentation, mislabeling of the test type,
and inconsistency across iterations. While individual tests appear plausible and purposeful, their
aggregation into a cohesive and maintainable suite remains challenging. In particular, the final
iterations exhibit a non-negligible proportion of hallucinated requirement identifiers (≈ 24%)
and occasional redundancy among test cases. Consequently, the suites show a high degree of
syntactic maturity but limited semantic grounding, as many tests focus on executing code paths
rather than verifying meaningful behavioral properties.
Taken together, these findings suggest that LLMs can already generate test suites that are
quantitatively good in the traditional sense of test quality. Their ability to reason about the
underlying program logic and to design assertion-rich, semantically meaningful tests, however,
remains limited - as already indicated by Fan et al. [12]. The gap between structural and
behavioral adequacy thereby delineates the current frontier of LLM-based testing. Future
advancements in model reasoning, prompt design, and feedback integration mechanisms may
help bridge this gap and enable LLMs to reach parity with human-crafted test suites in both
quantitative and qualitative terms.

In summary, LLMs are demonstrably capable of producing good test suites when assessed by
structural metrics and syntactic soundness. Yet, they remain qualitatively imperfect - lacking
the semantic depth, consistency, and maintainability that define a truly human-engineered
suite. Nonetheless, the observed trajectory of improvement highlights their growing potential
and underlines the promise of iterative, feedback-driven approaches such as LIFT to further
enhance the quality and completeness of automatically generated test suites, already surpassing
traditional automated approaches.

64

6.3 Threats to validity
The validity of the obtained results depends on the soundness of the experimental design and the
generalizability of its observations. Following established guidelines in Software Engineering
research [27, 34], potential threats to validity are discussed along two primary dimensions: internal
validity, addressing influences that may distort the causal interpretation of the results, and external
validity, concerning the extent to which the findings can be generalized beyond the studied context.
The following subsections outline the main limitations identified for this work and describe their
expected impact on the interpretation of the results.

6.3.1 Internal Validity

The internal validity of this study may be affected by several design and methodological constraints
that can influence the interpretation of its results. One primary threat arises from the exclusion
of broken trials from the final analysis. While this decision ensures that only complete data are
evaluated, it potentially biases results toward stability, as failing trials that collapsed prematurely are
omitted entirely. Including these trials will result in reduced success rates and increased variance
across trials, yet would more accurately reflect the underlying volatility of the system. This selective
exclusion thus represents a trade-off between data integrity and representativeness.

A second source of threat stems from the imposed limit of 25 iterations per trial. Although the
results indicate continuous progress throughout this range, it remains uncertain whether all trials
would eventually converge toward a sufficient test suite (FSS) if allowed to continue. This limitation
constrains conclusions about long-term convergence and might mask late-stage stabilization patterns
that would emerge under extended optimization runs.

Furthermore, the sufficiency criterion defined in the Test Suite Evaluator prompt lacks formal
specification. The concept of a "sufficient" test suite is inherently qualitative and relies on the
model’s internal judgment rather than a consistent metric. This imprecision contributes to unstable
or inconsistent stopping conditions and contradicts the proclaimed overall reliability of LLM-as-
a-Judge evaluation methods [16, 42], yet is in line with the reported instability of single answer
grading [42, p. 4]. Consequently, the determination of completion may vary arbitrarily across trials,
affecting comparability and internal consistency.

The apparent abstraction level of the behavioral requirements represents a further threat to
internal validity, since many requirements are expressed at a high level of granularity. The TSE
may identify untested behavioral gaps that are not explicitly stated in any single requirement. This
seems to result in requirement hallucinations, where the model introduces tests that can not be
linked to any high-level requirement correctly. According to Pressman, such specification gaps can
induce untraceable error sources in validation activities, as they blur the boundary between intended
and emergent functionality [27]. Similarly, Sommerville highlights that inadequate requirement
precision directly undermines the verifiability of system behavior [34].

Additionally, the unclear definition of the test type required to test a requirement, combined
with the absence of explicit specification of test types in the system prompts of the TSG and TSE,
appears to lead to mislabeling of test levels. Therefore, the real composition of the test suites
remains hidden.

65

Finally, the selection bias introduced by aggregating only successful iterations (i.e., excluding
error-/failure-producing test suite iterations) poses another threat. While this approach prevents
erratic data points from skewing aggregate measures, it may also underrepresent phases of instability
or exploration that are intrinsic to iterative optimization. This effect is mitigated by focusing on
the last produced test suite state (LPS) of each trial, which reflects a relevant output of the LIFT
process. Nonetheless, the cumulative effect of these threats should be considered when interpreting
overall trends and causal attributions within the evaluation.

6.3.2 External Validity

The external validity of the study is limited by several factors that constrain the generalizability of
its findings beyond the experimental setting. First and foremost, all experiments were conducted
on a single Program under Test (simplejson). While this library provides a well-defined and
self-contained domain for observing test suite evolution, the results may not directly transfer to
projects of a different nature, size, or complexity. As Pressman emphasizes, software processes and
quality outcomes are strongly context-dependent, varying significantly across application domains
and development environments [27]. Future studies should therefore replicate the LIFT process
across multiple PUTs to validate the robustness of the observed patterns.

A related limitation arises from the structural simplicity of the chosen PUT. The simplejson
library primarily exposes functional units with limited inter-module interaction, which restricts the
generation of higher-level test cases, such as integration or system tests. More complex systems
would naturally involve richer dependencies, shared state, and multi-component behavior elements
that could better reveal the boundaries of LLM-based testing capabilities. Extending the evaluation
to projects with broader architectural diversity would thus enhance the generality of the findings.

Another constraint concerns the technological stack. All experiments were executed within a
Python environment, which differs substantially from statically typed or compiled ecosystems such
as Java or C#. These languages employ distinct build, dependency, and testing infrastructures that
may affect both toolchain behavior and LLM comprehension of code semantics. The cross-language
transferability of the approach, therefore, remains uncertain. To address this, future replications
should examine compiled languages and heterogeneous environments, thereby testing whether
LIFT’s results hold across different Software Engineering ecosystems.

Finally, scalability remains a central external limitation. The token limits inherent to current
LLM architectures impose an upper bound on the size of analysable PUTs, constraining the evalua-
tion to relatively small or moderately complex projects. Consequently, the ability of LIFT to operate
on large-scale repositories, industrial codebases, or multi-repository systems remains unverified.
Future research should therefore investigate larger PUTs and leverage different models and model
families with extended context windows or specialized retrieval mechanisms to assess whether the
observed behavior persists at scale.

Overall, while the presented results provide a strong proof of concept, their external validity is
inherently limited to small, Python-based projects. Broader replication across systems, languages,
and model architectures is required to substantiate general claims about the generalizability of
LIFT’s performance and behavior.

66

7 Future Work
The LIFT approach presented in Section 4 and the achieved results in Subsection 6.2 demonstrate
the feasibility of iterative test suite generation and highlight several avenues for further exploration.
Future work should aim to enhance both the robustness and generalizability of the approach while
addressing the identified threats to internal and external validity.

Firstly, the external validity can be strengthened by evaluating the framework on a broader
set of Programs under Test. While the current study focused on a single library (simplejson),
replication across projects of varying domains, sizes, and languages will be crucial to establish
generalizability. Extending LIFT to other ecosystems, such as Java or C#, would also test its
adaptability to compiled environments, thereby directly addressing the limitations imposed by the
current Python-only setup.

Second, future work should investigate scalability with respect to both project complexity and
model size. Current experiments were constrained by model context length and token limits, which
limited the size of analysable repositories and the amount of conversational history available to the
agents. Employing models with extended context windows or retrieval-augmented architectures
could enable processing of larger codebases and preserve iterative learning across generations.
Providing the LLM with structured access to prior iterations could allow for cumulative reasoning
and long-term refinement capabilities that mirror gradient accumulation in numerical optimization.

Third, internal validity may be improved through a refined experimental design. The current
implementation employs a unified generator system prompt agent with instruction-based differ-
entiation between initial and refinement phases. Separating these roles into distinct agents with
specialized prompts and system instructions could stabilize iterative behavior. Additionally, the
introduction of more sophisticated, task-specific tool interfaces for code navigation, test execution,
and feedback interpretation will likely help the LLM to reason more effectively about code changes
and test outcomes.

Furthermore, prompt engineering remains a key lever for performance improvement. This
could include better ways to handle misalignment in requirements linking and under complex
assertion quality. Adding instructions to specifically check for these occurrences and introducing
the option to not link tests to any requirement if checked behavior is emergent and unspecified could
improve traceability.

Lastly, the experimental setup can be extended with more complex conversation management
strategies. Instead of providing the complete message history within the agent, future implementa-
tions may selectively include only the latest file state or a summary of relevant changes. This would
mitigate context overload while preserving continuity of reasoning. Conversely, pre-loading key
files at the beginning of a conversation could allow the agent to avoid repeated re-establishment
of its understanding of the environment and the PUT. This would eliminate the Project Discovery
Phase repeated by each agent for each iteration and could save tokens.

Overall, these directions not only aim to improve the technical capabilities of LIFT but also to
mitigate several of the threats identified in Subsection 6.3. Broader replication, refined iteration
management, and enhanced context handling will contribute to greater reliability, scalability, and
generalizability.

67

8 Conclusion
The increasing integration of Large Language Models (LLMs) into Software Engineering tasks has
opened new possibilities for automation in quality assurance, particularly within Software Testing.
Recent research demonstrates that LLMs are not only capable of generating syntactically correct
code but can also create meaningful test cases for a variety of programming tasks [15, 38]. Building
on these advances, this thesis explores the capability of LLMs to autonomously construct and refine
complete test suites for real-world software projects.

The thesis positions itself within the ongoing evolution of LLM-driven testing approaches, high-
lighting key developments such as TextGrad (Subsection 3.3) and LLM-as-a-Judge (Subsection 3.4).
TextGrad introduces the concept of textual gradients, framing LLM feedback as a differentiable
optimization process, while LLM-as-a-Judge establishes the models’ ability to evaluate and critique
their own or other models’ outputs. Both concepts demonstrate an emerging form of iterative
self-improvement that extends beyond static code generation.

Building on these foundations, this work introduces LLM-based Iterative Feedback-driven
Test suite generation (LIFT) (Section 4), a novel framework that applies the principles of textual
differentiation and self-evaluation to the automated generation of whole test suites. The aim is to
examine whether LLMs can progress from one-shot test generation toward an iterative process
capable of producing complete, executable, and improving test suites without human intervention.
Through this, the thesis contributes to a deeper understanding of the current capabilities and
limitations of LLMs within the domain of Software Testing, and provides empirical insights into
their potential as autonomous testing agents.

Main Findings The findings of this thesis in addition to prior research [10, 15] confirm that LLMs
are capable of autonomously generating complete and executable test suites, positively answering
RQ-1 - "Are LLMs able to generate test suites at all?". LIFT successfully produced syntactically
valid and runnable test suites that interacted meaningfully with the underlying Program under
Test. This supports earlier results reported by Yuan et al. in [38], Chen et al. in [9], and Gu et al. in
[15], who demonstrated the ability of LLMs to produce executable unit tests for diverse projects
and languages. Similarly, approaches such as MuTAP [10] have shown that the combination of
generation and automatic repair can further enhance the reliability of LLM-produced tests. The
consistent generation of functional test code observed in this work confirms that LLMs have reached
a level of maturity that allows them to produce not only individual tests, but entire runnable suites.

The answer to RQ-2 - "Are LLMs able to generate "good" test suites?" is more nuanced.
Through iterative feedback, LIFT demonstrated a steady improvement in test suite size and measur-
able quality metrics. On average, both line and branch coverage increased throughout the observed
iterations, reaching an average line coverage of 75.60% for First Sufficient Test Suites (FSSs)
and 83.84% for Last Passing Test Suites (LPSs) as well as branch coverages of 68.75% and
75.91% respectively. Mutation testing revealed improvements on par with other approaches, yet
the LIFT-generated suites only achieve lower mutation scores compared to their human-written
counterpart.

Nevertheless, the results also reveal limitations in qualitative refinement. While the framework
consistently extends existing suites with new tests, it shows a tendency to prioritise quantity
over diversity and to replicate similar behavioral patterns. In some cases, hallucinated inputs or

68

redundant assertions suggest that the refinement process lacks a genuine understanding of semantic
adequacy.

Despite these limitations, the observed progress across iterations demonstrates that the textual
feedback mechanism enables meaningful incremental improvement without manual guidance. This
positions LIFT as the first framework to apply the concept of textual differentiation to the domain
of Software Testing. By combining self-evaluative feedback with automated test execution and
mutation-based validation, LIFT establishes an empirical foundation for LLM-driven test-suite
evolution. It therefore contributes two major advances:

1. the design of an iterative, feedback-driven test generation framework based on textual gradi-
ents and

2. the demonstration that LLMs can autonomously evolve complete and executable test suites.

Limitations and Future Work The results presented in this thesis are subject to several limita-
tions that constrain their generalisability. The most prominent threat to internal validity arises
from the exclusion of broken or incomplete trials in the final analysis, which may lead to a slight
overestimation of average performance. In addition, the inherent stochasticity of LLM behavior
can affect reproducibility, as small prompt or sampling variations can yield divergent outcomes.
The external validity of the results is limited by the choice of a single PUT and a Python-only
environment. While the selected project provides a representative yet manageable code base, it does
not reflect the full diversity of software systems, languages or testing frameworks found in practice.
Furthermore, the token limitations of the employed models constrained both the project size and the
depth of iterative context that could be preserved, restricting the scalability of the approach.

Future work should address these limitations by extending the experimental scope to include a
wider range of projects, programming languages, and testing paradigms. Scaling to larger PUTs
and more capable LLMs with extended context windows could allow for richer interaction histories
and deeper iterative refinement. Another promising direction is the definition of specialised tool
functions within LIFT and the sharpening of agent roles through prompt engineering. Integrating
persistent conversational memory could further improve coherence between iterations and reduce
redundant or hallucinated test cases.

To the author’s knowledge, this is the first work not only to attempt to generate full test suites
but also analyse their quality holistically. The evaluation points towards a future direction of
research. As LLMs become more capable in fulfilling numerical metrics like coverage or mutation
scores, the next important challenge is to ensure that the created tests are meaningful and not
superficial. Future research into an automated analysis of this quality dimension seems to be a
cornerstone of upcoming advances in the field of LLM-based test generation.

In summary, this thesis demonstrates that LLMs can already act as autonomous agents capable
of producing and iteratively refining executable test suites. While the current state of technology
still imposes practical limitations, the achieved results indicate a trajectory towards increasingly
independent, self-improving testing systems. The proposed LIFT framework represents an
initial but significant step in this direction, bridging the gap between generative code synthesis and
systematic software validation. As future models grow in reasoning ability and context capacity,
their integration into established Software Engineering processes will further blur the boundaries
between human-guided and machine-driven testing, moving the field closer to genuinely autonomous
software quality assurance.

69

References
[1] M. Alenezi and M. Akour. “AI-Driven Innovations in Software Engineering: A Review of

Current Practices and Future Directions”. In: Applied Sciences 15.3 (Jan. 2025), p. 1344.
ISSN: 2076-3417. DOI: 10.3390/app15031344. URL: https://www.mdpi.com/2076-3417
/15/3/1344 (visited on 09/17/2025).

[2] K. Beck et al. Manifesto for Agile Software Development. Manifesto for Agile Software
Development. 2001. URL: https://agilemanifesto.org/ (visited on 09/20/2025).

[3] L. Belzner, T. Gabor, and M. Wirsing. “Large Language Model Assisted Software Engineer-
ing: Prospects, Challenges, and a Case Study”. In: Bridging the Gap Between AI and Reality.
Ed. by B. Steffen. Vol. 14380. Cham: Springer Nature Switzerland, 2024, pp. 355–374. DOI:
10.1007/978-3-031-46002-9_23. URL: https://link.springer.com/10.1007/978-3
-031-46002-9_23 (visited on 10/21/2025).

[4] B. W. Boehm. “A Spiral Model of Software Development and Enhancement”. In: Computer
21.5 (May 1988), pp. 61–72. ISSN: 0018-9162. DOI: 10.1109/2.59. URL: http://ieeexpl
ore.ieee.org/document/59/ (visited on 09/20/2025).

[5] P. Bourque and R. E. Fairley, eds. SWEBOK: Guide to the Software Engineering Body of
Knowledge. Version 3.0. Los Alamitos, CA: IEEE Computer Society, 2014. ISBN: 978-0-
7695-5166-1.

[6] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC Editor, Dec.
2017. DOI: 10.17487/RFC8259. URL: https://www.rfc-editor.org/info/rfc8259.

[7] X. Cai and M. R. Lyu. “The Effect of Code Coverage on Fault Detection under Different
Testing Profiles”. In: ACM SIGSOFT Software Engineering Notes 30.4 (July 2005), pp. 1–7.
ISSN: 0163-5948. DOI: 10.1145/1082983.1083288. URL: https://dl.acm.org/doi/10
.1145/1082983.1083288 (visited on 10/30/2025).

[8] T. T. Chekam et al. “An Empirical Study on Mutation, Statement and Branch Coverage Fault
Revelation That Avoids the Unreliable Clean Program Assumption”. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). May 2017, pp. 597–608. DOI:
10.1109/ICSE.2017.61. URL: https://ieeexplore.ieee.org/document/7985697
(visited on 09/10/2025).

[9] Y. Chen et al. ChatUniTest: A Framework for LLM-Based Test Generation. May 7, 2024.
DOI: 10.48550/arXiv.2305.04764. arXiv: 2305.04764 [cs]. URL: http://arxiv.org
/abs/2305.04764 (visited on 10/06/2025). Pre-published.

[10] A. M. Dakhel et al. Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing. Aug. 31, 2023. DOI: 10.48550/arXiv.2308.16557. arXiv: 2308.16557
[cs]. URL: http://arxiv.org/abs/2308.16557 (visited on 09/10/2025). Pre-published.

[11] Divyani Shivkumar Taley. “Comprehensive Study of Software Testing Techniques and
Strategies: A Review”. In: International Journal of Engineering Research and Technology
(IJERT) V9.08 (Sept. 4, 2020), IJERTV9IS080373. ISSN: 2278-0181. DOI: 10.17577/IJERT
V9IS080373. URL: https://www.ijert.org/comprehensive-study-of-software-tes
ting-techniques-and-strategies-a-review (visited on 09/17/2025).

https://doi.org/10.3390/app15031344
https://www.mdpi.com/2076-3417/15/3/1344
https://www.mdpi.com/2076-3417/15/3/1344
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-031-46002-9_23
https://link.springer.com/10.1007/978-3-031-46002-9_23
https://link.springer.com/10.1007/978-3-031-46002-9_23
https://doi.org/10.1109/2.59
http://ieeexplore.ieee.org/document/59/
http://ieeexplore.ieee.org/document/59/
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.1145/1082983.1083288
https://dl.acm.org/doi/10.1145/1082983.1083288
https://dl.acm.org/doi/10.1145/1082983.1083288
https://doi.org/10.1109/ICSE.2017.61
https://ieeexplore.ieee.org/document/7985697
https://doi.org/10.48550/arXiv.2305.04764
https://arxiv.org/abs/2305.04764
http://arxiv.org/abs/2305.04764
http://arxiv.org/abs/2305.04764
https://doi.org/10.48550/arXiv.2308.16557
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557
http://arxiv.org/abs/2308.16557
https://doi.org/10.17577/IJERTV9IS080373
https://doi.org/10.17577/IJERTV9IS080373
https://www.ijert.org/comprehensive-study-of-software-testing-techniques-and-strategies-a-review
https://www.ijert.org/comprehensive-study-of-software-testing-techniques-and-strategies-a-review

70

[12] A. Fan et al. Large Language Models for Software Engineering: Survey and Open Problems.
Nov. 11, 2023. DOI: 10 .48550 / arXiv. 2310 . 03533. arXiv: 2310 .03533 [cs]. URL:
http://arxiv.org/abs/2310.03533 (visited on 09/10/2025). Pre-published.

[13] M. S. Farooq et al. “Behavior Driven Development: A Systematic Literature Review”. In:
IEEE Access 11 (2023), pp. 88008–88024. ISSN: 2169-3536. DOI: 10.1109/ACCESS.20
23.3302356. URL: https://ieeexplore.ieee.org/document/10210040/ (visited on
11/08/2025).

[14] G. Fraser and A. Arcuri. “A Large-Scale Evaluation of Automated Unit Test Generation
Using EvoSuite”. In: ACM Transactions on Software Engineering and Methodology 24.2
(Dec. 23, 2014), pp. 1–42. ISSN: 1049-331X, 1557-7392. DOI: 10.1145/2685612. URL:
https://dl.acm.org/doi/10.1145/2685612 (visited on 11/02/2025).

[15] S. Gu et al. TestART: Improving LLM-based Unit Testing via Co-evolution of Automated
Generation and Repair Iteration. Mar. 31, 2025. DOI: 10.48550/arXiv.2408.03095. arXiv:
2408.03095 [cs]. URL: http://arxiv.org/abs/2408.03095 (visited on 09/24/2025).
Pre-published.

[16] J. He et al. LLM-as-a-Judge for Software Engineering: Literature Review, Vision, and the
Road Ahead. Oct. 28, 2025. DOI: 10.48550/arXiv.2510.24367. arXiv: 2510.24367 [cs].
URL: http://arxiv.org/abs/2510.24367 (visited on 11/02/2025). Pre-published.

[17] J. Hoffmann et al. Training Compute-Optimal Large Language Models. Mar. 29, 2022. DOI:
10.48550/arXiv.2203.15556. arXiv: 2203.15556 [cs]. URL: http://arxiv.org/abs
/2203.15556 (visited on 11/08/2025). Pre-published.

[18] X. Hou et al. Large Language Models for Software Engineering: A Systematic Literature
Review. Apr. 10, 2024. DOI: 10.48550/arXiv.2308.10620. arXiv: 2308.10620 [cs]. URL:
http://arxiv.org/abs/2308.10620 (visited on 10/31/2025). Pre-published.

[19] J. Humble and D. G. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. 7th printing 2013. A Martin Fowler Signature Book. Upper
Saddle River, NJ: Addison-Wesley, 2011. 463 pp. ISBN: 978-0-321-60191-9.

[20] B. Ippolito. Simplejson/Simplejson. Aug. 17, 2025. URL: https://github.com/simplejso
n/simplejson (visited on 08/22/2025).

[21] R. Just and D. Jalali. Rjust/Defects4j. Oct. 17, 2025. URL: https://github.com/rjust/de
fects4j (visited on 10/21/2025).

[22] A. Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. May 25, 2023. DOI:
10.48550/arXiv.2303.17651. arXiv: 2303.17651 [cs]. URL: http://arxiv.org/abs
/2303.17651 (visited on 09/10/2025). Pre-published.

[23] A. S. Namin and J. H. Andrews. “The Influence of Size and Coverage on Test Suite Effective-
ness”. In: Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis. ISSTA ’09: International Symposium on Software Testing and Analysis. Chicago
IL USA: ACM, July 19, 2009, pp. 57–68. ISBN: 978-1-60558-338-9. DOI: 10.1145/1572
272.1572280. URL: https://dl.acm.org/doi/10.1145/1572272.1572280 (visited on
10/05/2025).

https://doi.org/10.48550/arXiv.2310.03533
https://arxiv.org/abs/2310.03533
http://arxiv.org/abs/2310.03533
https://doi.org/10.1109/ACCESS.2023.3302356
https://doi.org/10.1109/ACCESS.2023.3302356
https://ieeexplore.ieee.org/document/10210040/
https://doi.org/10.1145/2685612
https://dl.acm.org/doi/10.1145/2685612
https://doi.org/10.48550/arXiv.2408.03095
https://arxiv.org/abs/2408.03095
http://arxiv.org/abs/2408.03095
https://doi.org/10.48550/arXiv.2510.24367
https://arxiv.org/abs/2510.24367
http://arxiv.org/abs/2510.24367
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
https://doi.org/10.48550/arXiv.2308.10620
https://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
https://github.com/simplejson/simplejson
https://github.com/simplejson/simplejson
https://github.com/rjust/defects4j
https://github.com/rjust/defects4j
https://doi.org/10.48550/arXiv.2303.17651
https://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.1145/1572272.1572280
https://doi.org/10.1145/1572272.1572280
https://dl.acm.org/doi/10.1145/1572272.1572280

71

[24] NASA. NASA Systems Engineering Handbook. NASA, 2018. URL: https://www.nasa.gov
/wp-content/uploads/2018/09/nasa_systems_engineering_handbook_0.pdf.

[25] S. Nugroho, S. H. Waluyo, and L. Hakim. “Comparative Analysis of Software Development
Methods between Parallel, V-Shaped and Iterative”. In: International Journal of Computer
Applications 169.11 (July 17, 2017), pp. 7–11. ISSN: 09758887. DOI: 10.5120/ijca20179
14605. arXiv: 1710.07014 [cs]. URL: http://arxiv.org/abs/1710.07014 (visited on
09/18/2025).

[26] D. Paul et al. REFINER: Reasoning Feedback on Intermediate Representations. Feb. 4, 2024.
DOI: 10.48550/arXiv.2304.01904. arXiv: 2304.01904 [cs]. URL: http://arxiv.org
/abs/2304.01904 (visited on 09/10/2025). Pre-published.

[27] R. S. Pressman. Software Engineering: A Practitioner’s Approach. 7th ed. Dubuque, IA:
McGraw-Hill, 2010. 895 pp. ISBN: 978-0-07-337597-7.

[28] W. W. Royce. “Managing the Development of Large Software Systems (1970)”. In: Ideas
That Created the Future. Ed. by H. R. Lewis. The MIT Press, Feb. 2, 2021, pp. 321–332.
ISBN: 978-0-262-36317-4. DOI: 10.7551/mitpress/12274.003.0035. URL: https://dir
ect.mit.edu/books/book/5003/chapter/2657056/Managing-the-Development-of-
Large-Software-Systems (visited on 09/18/2025).

[29] R. Santos et al. Are We Testing or Being Tested? Exploring the Practical Applications of
Large Language Models in Software Testing. Dec. 8, 2023. DOI: 10.48550/arXiv.2312
.04860. arXiv: 2312.04860 [cs]. URL: http://arxiv.org/abs/2312.04860 (visited on
09/10/2025). Pre-published.

[30] M. Schäfer et al. An Empirical Evaluation of Using Large Language Models for Automated
Unit Test Generation. Dec. 11, 2023. DOI: 10.48550/arXiv.2302.06527. arXiv: 230
2.06527 [cs]. URL: http://arxiv.org/abs/2302.06527 (visited on 09/10/2025).
Pre-published.

[31] J. Sevilla. Training Compute of Frontier AI Models Grows by 4-5x per Year. Epoch AI.
May 28, 2024. URL: https://epoch.ai/blog/training-compute-of-frontier-ai-mo
dels-grows-by-4-5x-per-year (visited on 11/02/2025).

[32] J. Shin et al. Domain Adaptation for Code Model-based Unit Test Case Generation. July 30,
2024. DOI: 10.48550/arXiv.2308.08033. arXiv: 2308.08033 [cs]. URL: http://arxiv
.org/abs/2308.08033 (visited on 10/31/2025). Pre-published.

[33] M. L. Siddiq et al. “Using Large Language Models to Generate JUnit Tests: An Empirical
Study”. In: Proceedings of the 28th International Conference on Evaluation and Assessment
in Software Engineering. June 18, 2024, pp. 313–322. DOI: 10.1145/3661167.36612
16. arXiv: 2305.00418 [cs]. URL: http://arxiv.org/abs/2305.00418 (visited on
10/31/2025).

[34] I. Sommerville. Software Engineering. Tenth edition. Always Learning. Boston Columbus
Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London:
Pearson, 2016. 1 p.

https://www.nasa.gov/wp-content/uploads/2018/09/nasa_systems_engineering_handbook_0.pdf
https://www.nasa.gov/wp-content/uploads/2018/09/nasa_systems_engineering_handbook_0.pdf
https://doi.org/10.5120/ijca2017914605
https://doi.org/10.5120/ijca2017914605
https://arxiv.org/abs/1710.07014
http://arxiv.org/abs/1710.07014
https://doi.org/10.48550/arXiv.2304.01904
https://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
https://doi.org/10.7551/mitpress/12274.003.0035
https://direct.mit.edu/books/book/5003/chapter/2657056/Managing-the-Development-of-Large-Software-Systems
https://direct.mit.edu/books/book/5003/chapter/2657056/Managing-the-Development-of-Large-Software-Systems
https://direct.mit.edu/books/book/5003/chapter/2657056/Managing-the-Development-of-Large-Software-Systems
https://doi.org/10.48550/arXiv.2312.04860
https://doi.org/10.48550/arXiv.2312.04860
https://arxiv.org/abs/2312.04860
http://arxiv.org/abs/2312.04860
https://doi.org/10.48550/arXiv.2302.06527
https://arxiv.org/abs/2302.06527
https://arxiv.org/abs/2302.06527
http://arxiv.org/abs/2302.06527
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://doi.org/10.48550/arXiv.2308.08033
https://arxiv.org/abs/2308.08033
http://arxiv.org/abs/2308.08033
http://arxiv.org/abs/2308.08033
https://doi.org/10.1145/3661167.3661216
https://doi.org/10.1145/3661167.3661216
https://arxiv.org/abs/2305.00418
http://arxiv.org/abs/2305.00418

72

[35] H. K. V. Tran et al. “Quality Attributes of Test Cases and Test Suites – Importance &
Challenges from Practitioners’ Perspectives”. In: Software Quality Journal 33.1 (Mar. 2025),
p. 9. ISSN: 0963-9314, 1573-1367. DOI: 10.1007/s11219-024-09698-w. arXiv: 2507.063
43 [cs]. URL: http://arxiv.org/abs/2507.06343 (visited on 10/05/2025).

[36] J. Wang et al. Software Testing with Large Language Models: Survey, Landscape, and
Vision. Mar. 4, 2024. DOI: 10.48550/arXiv.2307.07221. arXiv: 2307.07221 [cs]. URL:
http://arxiv.org/abs/2307.07221 (visited on 09/10/2025). Pre-published.

[37] Z. Wang et al. HITS: High-coverage LLM-based Unit Test Generation via Method Slicing.
Aug. 21, 2024. DOI: 10.48550/arXiv.2408.11324. arXiv: 2408.11324 [cs]. URL:
http://arxiv.org/abs/2408.11324 (visited on 10/21/2025). Pre-published.

[38] Z. Yuan et al. No More Manual Tests? Evaluating and Improving ChatGPT for Unit Test
Generation. May 19, 2024. DOI: 10.48550/arXiv.2305.04207. arXiv: 2305.04207 [cs].
URL: http://arxiv.org/abs/2305.04207 (visited on 09/10/2025). Pre-published.

[39] M. Yuksekgonul et al. TextGrad: Automatic "Differentiation" via Text. June 11, 2024. DOI:
10.48550/arXiv.2406.07496. arXiv: 2406.07496 [cs]. URL: http://arxiv.org/abs
/2406.07496 (visited on 09/10/2025). Pre-published.

[40] P. Zhang et al. Test Suite Effectiveness Metric Evaluation: What Do We Know and What
Should We Do? Apr. 19, 2022. DOI: 10.48550/arXiv.2204.09165. arXiv: 2204.09165
[cs]. URL: http://arxiv.org/abs/2204.09165 (visited on 10/05/2025). Pre-published.

[41] Y. Zhang and A. Mesbah. “Assertions Are Strongly Correlated with Test Suite Effectiveness”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE’15: Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering. Bergamo Italy:
ACM, Aug. 30, 2015, pp. 214–224. ISBN: 978-1-4503-3675-8. DOI: 10.1145/2786805
.2786858. URL: https://dl.acm.org/doi/10.1145/2786805.2786858 (visited on
10/05/2025).

[42] L. Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. Dec. 24, 2023.
DOI: 10.48550/arXiv.2306.05685. arXiv: 2306.05685 [cs]. URL: http://arxiv.org
/abs/2306.05685 (visited on 10/06/2025). Pre-published.

https://doi.org/10.1007/s11219-024-09698-w
https://arxiv.org/abs/2507.06343
https://arxiv.org/abs/2507.06343
http://arxiv.org/abs/2507.06343
https://doi.org/10.48550/arXiv.2307.07221
https://arxiv.org/abs/2307.07221
http://arxiv.org/abs/2307.07221
https://doi.org/10.48550/arXiv.2408.11324
https://arxiv.org/abs/2408.11324
http://arxiv.org/abs/2408.11324
https://doi.org/10.48550/arXiv.2305.04207
https://arxiv.org/abs/2305.04207
http://arxiv.org/abs/2305.04207
https://doi.org/10.48550/arXiv.2406.07496
https://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2406.07496
https://doi.org/10.48550/arXiv.2204.09165
https://arxiv.org/abs/2204.09165
https://arxiv.org/abs/2204.09165
http://arxiv.org/abs/2204.09165
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.1145/2786805.2786858
https://dl.acm.org/doi/10.1145/2786805.2786858
https://doi.org/10.48550/arXiv.2306.05685
https://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

I

A LIFT System Prompts

A.1 Test Suite Generator System Prompt

Your Role
You are a Python Test Suite Generation Expert with 15 years of experience specializing in

creating comprehensive pytest test suites for Python projects. You create and refine test
suites for a given Python project based on behavioral requirements against this project
and the feedback of experts evaluating the behavior of the test suite. If the feedback and
requirements contradict each other, follow the given feedback and neglect the requirements.

↪→

↪→

↪→

↪→

Current Environment
- OS: Win10 x64
- Python: 3.12.10
- pytest: 8.3.5

Your Workflow
1. **Project Discovery Phase**

- Understand the current folder structure
- Identify all Python source files in the project
- Locate existing test files (if any) in `tests/` directory

2. **Comprehensive Understanding Phase**
a) **Source Code Analysis**:
- Read all Python source files to understand functionality
- Understand data flow and dependencies between modules

b) **Test Environment Configuration**:
- Read `pytest_html_report.yml` to understand test configuration
- Note any special fixtures, plugins, or settings
- Identify test discovery patterns and conventions
- Remember the test categories

3. **Requirements Gathering Phase**
- Read `program-requirements.yml` to understand the program requirements
- Understand the requirements for the program behavior
- Identify, how to test each requirement (test type, acceptance requirement, etc.)
- Link the `functional_specs` of the `pytest_html_report.yml` to the requirements in the

`program-requirements.yml`↪→

4. **Feedback Analysis Phase** (Conditional - for refinement iterations)
a) **Observations (xml-reports in `/reports`)**:
- Identify syntax errors, import errors or fixture problems
- Understand assertion failures and their causes
- Note any environment-specific issues

b) **Failure Analysis (`reports/fixes.md`)**:
- Identify the error locations needing fixes
- Understand the root cause and the proposed changes

c) **External Feedback (`reports/evaluation.md`)**:
- Read the evaluation report thoroughly
- Understand specific improvements requested

II

- Collect needed changes for better coverage

5. **Test Implementation Phase**
a) **Fix Critical Issues First** (if any):
- Correct all failing tests based on generated reports
- Fix syntax/import errors preventing test execution
- Ensure all tests can run without errors or failures
- NEVER remove or skip existing tests if they have errors or failures (you MUST NOT AVOID

them)↪→

b) **Cover Program Behavior**:
- Implement tests for each behavioral requirement
- Each requirement needs to be covered by one or multiple tests
- Each test can cover one or multiple requirements
- Add positive path tests to confirm expected functionality
- Add boundary value and edge case tests derived from requirements
- Add negative/error case tests using `pytest.raises` for defined error conditions
- Use `pytest.mark.parametrize` for input variations

c) **Create/Enhance Test Coverage**:
- Add edge case and optional parameter tests
- Test default values and parameter toggles
- Add error condition tests that are realistically reachable
- Guard platform-specific code with `pytest.mark.skipif` when not applicable on Win10

d) **Test Organization**:
- Structure tests logically (ONE test file per source file)
- Place shared fixtures in `tests/conftest.py`
- Keep fixtures minimal, scoped to function unless needed otherwise
- ALL test need to follow the `TEST TEMPLATE` defined below
- Link the covered requirements (`id` field) to the tests (`functional_specification`

field)↪→

- Add a short description of the test behavior/goal (`test_description` field)
- Mark each test with the applicable category (`category` field)

e) **Quality Checks**:
- Ensure tests are independent and can run in any order
- Avoid mutating global/module state across tests
- Use precise assertions with specific expected values
- Ensure helpful error messages in assertion failures
- Keep tests performant and avoid unnecessary delays
- Follow existing `pytest_html_report.yml` configuration

f) **Feedback Integration Loop** (Conditional - if `reports/evaluation.md` exist):
- Apply all feedback items directly in tests (tests must match actual behavior)
- Add or expand coverage as requested in evaluation
- Re-run test suite and confirm all issues are fixed
- Update requirement-to-test mapping comments when adding coverage

6. **Final Review**
- Verify all feedback points have been addressed
- Ensure no tests were accidentally deleted or broken
- Confirm test files follow pytest conventions
- Check that all critical paths have test coverage

III

Expected Output
You MUST ONLY create/modify/delete files in the `tests/` folder. No other files shall be

created, modified or deleted.↪→

ONLY use the `pytest` package for your testing.

Conversation Directives
You will not interact with the user. After the initial user request, no further input will be

provided.↪→

Don't provide any textual reasoning for your actions. Base any assumptions you make only on
the input provided.↪→

When you deem your task to be finished, you MUST send a message ONLY containing `<DONE>`.

Critical Test Generation Principles
1. **Feedback Priority**: When `reports/evaluation.md` exists, addressing its feedback takes

precedence over original requirements↪→

2. **Failing Test Fixes**: When fixing failing tests, remember:
- The project implementation is assumed correct
- Tests must be adjusted to match actual project behavior
- Don't change test logic to make it pass incorrectly
- Base your corrections on the provided analysis

3. **Coverage Context**: Focus on meaningful coverage:
- Don't attempt to test unreachable code
- Skip platform-specific code that won't run on the current platform
- Focus on testable, reachable paths

4. **Test Quality Standards**:
- Test names should clearly indicate what is being tested
- Use parametrize for similar tests with different inputs
- Include both positive and negative test cases

5. **Error Handling**:
- Test error conditions that can actually occur
- Use pytest.raises for exception testing

TEST TEMPLATE
Each test needs to follow this template:
```python
@pytest.mark.reporting(

developer="automatic",
functional_specification=<covered requirement(s) id (str or list[str])>,
test_description=<short description of the test behavior/goal (str)>

)
@pytest.mark.category(<test category like "unit", "integration", "system" (str or list[str])>)
def <descriptive test name>(<parameters>):

<test logic>
```


IV

A.2 Test Suite Debugger System Prompt

Your Role
You are a Python Test Debugger with extensive experience diagnosing Python/pytest failures.

You ingest artifacts from test runs and produce, for each failure, (1) a clear error
description, (2) a root-cause analysis grounded in evidence, and (3) actionable fixes —
both as prose and as code patches/snippets.

↪→

↪→

↪→

You MUST assume that the program under test is correct. You will trace aerrors/failures back
to wrong tests.↪→

Current Environment
- OS: Win10 x64
- Python: 3.12.10
- pytest: 8.3.5

Workflow
1. **Project Discovery Phase**

- Understand the current folder structure
- Identify all Python source files in the project
- Locate existing test files (if any) in `tests/` directory
- Identify all failures described in the reports (artifacts in `reports/`)

2. **Ingest & Group Failures**
- Parse failing nodes (file::test::param), error types, messages, and tracebacks
- Cluster related failures (same exception site/root cause) to avoid duplicate work

3. **Evidence-Driven Diagnosis**
- For each cluster, examine stack frames, captured logs, fixtures, and the relevant test

code↪→

- Cross-check implementation and configuration (plugins/marks/skipif)
- Consider platform/reachability: distinguish untestable or platform-gated branches from

real gaps↪→

4. **Root-Cause Analysis**
- Identify whether the defect resides in:^
(a) implementation logic,
(b) test assumptions/fixtures,
(c) configuration/import/discovery,
(d) platform/reachability or
(e) environment

- Provide minimal, reproducible reasoning (point to exact lines/conditions) with links to
files/lines when possible↪→

- Assume the tested code is correct and errors are only because of incorrect ways of testing

4. **Fix Proposals (Text + Code)**
- **Primary fix**: propose the most direct, correct change. Include a minimal patch

(unified diff or precise snippet)↪→

- **Test updates**: if expectations were incorrect (e.g., spec drift), propose corrected
assertions/fixtures/marks — never "paper over" failures (no blind skipping/xfail to
hide defects)

↪→

↪→

- If a path is truly untestable on this platform, justify and recommend a `skipif` guard
instead of brittle workarounds↪→

V

5. **Safety & Quality Checks**
- Do not remove or blanket-skip failing tests
- Prefer precise fixes that respect real behavior
- Keep changes minimal, deterministic, and performant; maintain fixture scope hygiene and

test independence↪→

- Prefer parametrization and explicit assertions in suggested test changes

6. **Output & Verdict**
- Emit a per-error report using the template below
- Conclude with a concise summary table of all clusters, their status, and next actions

Expected Output
You MUST ONLY create the `reports/fixes.md` with the filled contents of the template. No other

files shall be created, modified or deleted.↪→

You MUST NEVER change any tests or tested code yourself!

Conversation Directives
You will not interact with the user. After the initial user request, no further input will be

provided.↪→

Don't provide any textual reasoning for your actions. Base any assumptions you make only on
the input provided.↪→

When you deem your task to be finished, you MUST send a message ONLY containing `<DONE>`.

Critical Principles
1. **Evidence over Intuition** - root cause must cite concrete lines/frames/artifacts
2. **Meaningful Corrections** - prefer real fixes over masking symptoms; justify any skip/xfail
3. **Contextual Reachability** - recognize platform-specific/unreachable code when deciding on

test expectations↪→

4. **Minimal, Safe Diffs** - smallest change that fully resolves the failure and preserves
behavior elsewhere↪→

5. **Traceability** - tie each fix back to the failing test(s), requirement IDs, and coverage
implications↪→

Per-Error Analysis Template (use exactly this structure)
```markdown
# Error Cluster: <short name> — <exception type>
**Failing Tests:** <list of nodeids or count>
**Primary Traceback Site:** <file.py:line (function)>

**1) Error Description**
<Plain-English summary of what failed and where. Quote the key traceback line(s).>

**2) Root Cause Analysis**
- **Cause Type:** <implementation | test/fixture | config/import | platform/reachability |

environment>↪→

- **Evidence:** <specific lines/frames/conditions; link or quote minimal snippets>
- **Why It Fails Now:** <logic/contract mismatch, regression, wrong default, flaky timing,

etc.>↪→

**3) Proposed Fix (Text)**
<Explain the change and why it is correct; note side effects/risks and affected

requirements/tests.>↪→

**4) Proposed Fix (Code)**



VI

```diff
<unified diff or minimal edited snippet showing the exact change(s)>
```

**5) Test Impact**
- **Update/Add Tests:** <what to add/change (assertions, parametrization, fixtures, marks)>
- **Coverage Note:** <does this close a meaningful gap or mark untestable/skipif>
```


VII

A.3 Test Suite Evaluator System Prompt

Your Role
You are a Test Suite Evaluation Expert with 15 years of experience specializing in assessing

the quality and effectiveness of pytest test suites for Python projects. You shall
identify whether the test suite is well-developed or needs enhancements. If improvements
are needed, you shall provide a detailed description of missing test cases/coverage. Your
most valued skill is your ability to identify whether a test suite needs reasonable
refinement or is satisfactory in its current state.

↪→

↪→

↪→

↪→

↪→

Current Environment
- OS: Win10 x64
- Python: 3.12.10
- pytest: 8.3.5

Your Workflow
1. **Project Discovery Phase**:

- Understand the current folder structure
- Identify all Python source files in the project
- Locate existing test files in `tests/` directory

2. **Comprehensive Reading Phase**:
- Read all project source files to understand the implementation
- Read the program requirements (`program-requirements.yml`) to understand the program

behavior↪→

- Read all test files to understand the test coverage
- Read the execution and coverage reports (`reports/`) to identify possible problems and

understand code coverage metrics↪→

3. **Template Review**: Read the `evaluation_template.md` that you will fill with your
findings.↪→

4. **Deep Analysis Phase** (CRITICAL):
a) **Coverage Analysis with Context**:
- Identify uncovered lines/branches from the coverage report
- **CRITICAL**: Evaluate whether uncovered statements are actually testable:

* Some statements may be unreachable in the current setup (e.g. error handlers for
conditions that can't occur)↪→

* Platform-specific code that won't execute on the current platform
* Defensive programming statements that protect against impossible states
* Debug/logging statements that may not need coverage

- Focus on MEANINGFUL coverage gaps that represent actual missing test scenarios
- Distinguish between "can't be covered" vs "should be covered but isn't"

b) **Missing Test Cases Identification**:
- Identify edge cases not tested
- Check for boundary value testing
- Verify error handling paths are tested (where reachable)
- Look for integration scenarios not covered
- Ensure that all requirements are sufficently covered

5. **Write Evaluation**: Create `reports/evaluation.md` based on the `evaluation_template.md`
with:↪→

VIII

- Coverage gaps with context about whether they're actually testable
- Specific, actionable recommendations for improvements
- Clear justification for the final verdict

6. **Final Decision**: End with a message stating:
- `<REWORK>` if the test suite has significant testable coverage gaps OR doesn't cover all

program requirements sufficently↪→

- `<FINAL>` if the test suite is satisfactory (all tests pass AND coverage is adequate
considering context)↪→

Expected Output
You MUST ONLY create the `reports/evaluation.md` with the filled contents of the

`evaluation_template.md`. No other files shall be created, modified or deleted.↪→

Conversation Directives
You will not interact with the user. After the initial user request, no further input will be

provided.↪→

Don't provide any textual reasoning for your actions. Base any assumptions you make only on
the input provided.↪→

When you deem your task to be finished, you MUST send a message ONLY containing either
`<REWORK>` or `<FINAL>` as described above.↪→

Critical Evaluation Principles
1. **Requirement Testing**: ALL requirements have to be tested sufficently.
2. **Coverage Context**: Not all uncovered code is a problem. Consider whether uncovered

statements are actually reachable/testable in the current environment.↪→

3. **Practical Focus**: Recommend only meaningful, achievable improvements. Don't demand 100%
coverage if some code is genuinely untestable.↪→

4. **Detailed Justification**: Every finding must be supported with specific examples from the
code/reports and suggested improvements.↪→

5. **Actionable Feedback**: Provide concrete, implementable suggestions rather than vague
observations.↪→

IX

B LIFT Evaluation Template

Test-Suite Evaluation

1. Coverage Snapshot

Statement Coverage: `<nn.%>`
Branch Coverage: `<nn.%>`

```text
<Explain which uncovered statements are:
- Actually testable and represent gaps
- Unreachable in the current environment (e.g., platform-specific code, error handlers for

impossible conditions)↪→

- Not requiring coverage (e.g., debug statements, defensive programming)>
```

2. Execution Summary

Item	Count	% of Total
Total Tests Executed	`<N>`	100 %
Passing Tests	`<N>`	`<nn.%>`
Failing Tests	`<N>`	`<nn.%>`
Skipped / Ignored	`<N>`	`<nn.%>`

Total Runtime: `<hh:mm:ss>`

3. Analysis of Requirements Coverage

<!-- If all requirements are covered sufficently, state "All requirements covered" -->

<For EACH requirement with missing coverage, provide the following structure:>

Requirement `<id>`
Title: `<title>`
Acceptance: `<acceptance>`

Covered Behavior:
`<Describe which part of the accptance is already covered by which test.>`

Missing Behavior:
`<Describe which part of the acceptance is currently uncovered by any test. Add important

information like values to test.>`↪→

4. Areas for Improvement

X

Missing Test Coverage (Testable Gaps)
- `<Specific module/function lacking tests that COULD be tested>`
- `<Edge cases not covered>`
- `<Error handling paths not tested (that are reachable)>`

Untestable Code (Acceptable Gaps)
- `<Code that cannot be tested in current environment with explanation>`
- `<Platform-specific code not executable>`
- `<Defensive checks for impossible states>`

Test Quality Issues
- `<Tests with unclear assertions>`
- `<Tests missing important edge cases>`
- `<Slow or flaky tests needing refactor>`

5. Future Work

Verdict: `<REWORK | FINAL>`

Justification:
```text
<Clear explanation of the decision:
- If REWORK: List specific critical testable gaps that must be addressed
- If FINAL: Confirm all tests pass and coverage is adequate given the context and mention

possible improvements>↪→

```


XI

C Requirements Document for simplejson

simplejson_test_requirements:
scope_and_environment:
- id: SCOPE-1
title: Public API exposure
description: The package must provide the public functions and classes defined in its

documentation: dump, dumps, load, loads, JSONEncoder, and JSONDecoder. This ensures
compatibility with the Python stdlib json API.

↪→

↪→

acceptance: Importing simplejson exposes the documented functions and classes.
- id: SCOPE-2
title: Pure-Python functionality
description: The package includes an optional C extension for performance. However, all

functionality must work without the extension to guarantee portability across
environments.

↪→

↪→

acceptance: All documented behaviors succeed with or without the C extension.

encoding:
core_correctness:

- id: ENC-CORE-1
title: dumps returns JSON string
description: Calling dumps(obj) must return a Python str containing valid JSON that

conforms to RFC rules. The returned type must never be bytes.↪→

acceptance: Type is str; round-tripping via loads yields equivalent Python objects.
- id: ENC-CORE-2
title: dump writes JSON to file-like
description: Calling dump(obj, fp) must serialize obj to a text stream by invoking

fp.write(str). The output must match the string returned by dumps.↪→

acceptance: Writing to an in-memory text stream produces correct JSON content.

options_and_defaults:
- id: ENC-OPTS-1
title: ensure_ascii
description: By default (True), all non-ASCII characters must be escaped as \uXXXX

sequences. When False, characters may appear unescaped in the output string.↪→

acceptance: Unicode character is escaped by default, unescaped with ensure_ascii=False.
- id: ENC-OPTS-2
title: skipkeys
description: If False (default), attempting to serialize a dict with a non-basic key

(e.g., tuple, object) raises TypeError. If True, such key-value pairs must be
omitted silently.

↪→

↪→

acceptance: Tuple key raises TypeError by default; omitted when skipkeys=True.
- id: ENC-OPTS-3
title: check_circular
description: If True (default), encoder must detect self-referential objects and raise

an error. If False, circular references will cause recursion depth errors or
undefined behavior.

↪→

↪→

acceptance: Self-referential list encodes with detection enabled; fails otherwise.
- id: ENC-OPTS-4
title: indent formatting
description: If indent is None (default), output is compact with minimal whitespace. If

an integer, that many spaces are used per level. If a string, the string is
repeated per level.

↪→

↪→

XII

acceptance: With indent set, output contains newlines and indentation; with None, it
does not.↪→

- id: ENC-OPTS-5
title: separators
description: Separators define tuple of (item_separator, key_separator). Default is (',

', ': ') if indent is None, else (',', ': '). Custom values must override spacing.↪→

acceptance: Verify exact output matches chosen separators.
- id: ENC-OPTS-6
title: sort_keys and item_sort_key
description: If sort_keys=True, object members must be sorted by key name. item_sort_key

provides a callable to determine custom sort order, which overrides sort_keys.↪→

acceptance: Dict keys are sorted alphabetically or according to custom callable.
- id: ENC-OPTS-7
title: default function and for_json
description: If an object is not serializable, the default(obj) callable must be invoked.

If for_json=True, objects with a for_json() method must use its return value.↪→

acceptance: Custom object encodes via default or via its for_json() result.
- id: ENC-OPTS-8
title: use_decimal for encoding
description: If True (default), decimal.Decimal objects must serialize as numeric

literals with full precision. If False, they are converted to floats.↪→

acceptance: Decimal('1.1') encodes as "1.1" with use_decimal=True.
- id: ENC-OPTS-9
title: namedtuple_as_object
description: If True (default), namedtuple objects must encode as JSON objects using

_asdict(). If False, they encode as lists.↪→

acceptance: Namedtuple serializes as object with field names.
- id: ENC-OPTS-10
title: tuple_as_array
description: If True (default), tuple values must serialize as JSON arrays. If False, a

TypeError is raised.↪→

acceptance: (1,2) serializes as [1,2].
- id: ENC-OPTS-11
title: iterable_as_array
description: If True, arbitrary objects implementing __iter__ must encode as JSON

arrays. If False (default), only list/tuple/known containers are supported.↪→

acceptance: Custom iterable serializes as array when enabled.
- id: ENC-OPTS-12
title: bigint_as_string and int_as_string_bitcount
description: If bigint_as_string=True or int_as_string_bitcount=n, integers with

magnitude >= 2**n must encode as strings. This prevents precision loss in
JavaScript and similar environments.

↪→

↪→

acceptance: Large integers beyond threshold encoded as strings.
- id: ENC-OPTS-13
title: NaN and Infinity handling
description: If allow_nan=False (default), encoding float('nan'), float('inf'), or

float('-inf') raises ValueError. If allow_nan=True, they encode as
NaN/Infinity/-Infinity (non-standard JSON). If ignore_nan=True, such values encode
as null.

↪→

↪→

↪→

acceptance: Validate each behavior mode with explicit test values.
- id: ENC-OPTS-14
title: JSONEncoderForHTML
description: Specialized encoder escapes &, <, >, U+2028, and U+2029 for safe embedding

in HTML/JavaScript contexts, regardless of ensure_ascii.↪→

XIII

acceptance: Encoded output contains safe escape sequences for all listed characters.

decoding:
core_correctness:
- id: DEC-CORE-1
title: loads returns Python objects
description: loads(str) must parse valid JSON text into the correct Python objects

(dict, list, int, float, bool, None). Behavior must match the stdlib json module.↪→

acceptance: Canonical JSON examples decode to expected objects.
- id: DEC-CORE-2
title: load consumes entire stream
description: load(fp) must read until EOF and fail if trailing content remains after a

valid JSON document. It does not allow extra characters beyond whitespace.↪→

acceptance: Input with trailing data raises error.

options_and_defaults:
- id: DEC-OPTS-1
title: object_hook and object_pairs_hook
description: If provided, object_hook is called with each decoded dict. If

object_pairs_hook is provided, it receives ordered pairs and takes precedence.
Both enable custom type mapping.

↪→

↪→

acceptance: JSON object is transformed into a custom type by the hook.
- id: DEC-OPTS-2
title: parse_float, parse_int, parse_constant
description: These parameters allow replacing the parsing function for floats, ints, and

special constants (NaN, Infinity, -Infinity). They must be invoked during parsing.↪→

acceptance: parse_float=Decimal returns Decimal objects for floats.
- id: DEC-OPTS-3
title: use_decimal for decoding
description: If True, acts as shorthand for parse_float=Decimal. Guarantees lossless

parsing of decimal values.↪→

acceptance: "1.1" decodes to Decimal('1.1') when enabled.
- id: DEC-OPTS-4
title: NaN and Infinity decoding
description: With allow_nan=False (default), NaN/Infinity/-Infinity literals in input

must cause failure. With allow_nan=True, they parse into Python float equivalents.↪→

acceptance: Invalid by default; valid floats if enabled.
- id: DEC-OPTS-5
title: strict control character handling
description: With strict=True (default), control characters in strings must be escaped

or an error is raised. If strict=False, unescaped control characters are permitted.↪→

acceptance: Verify failure under strict=True and acceptance under False.
- id: DEC-OPTS-6
title: BOM handling
description: A leading UTF-8 BOM in input must be ignored during decoding. JSON text

must decode successfully even if prefixed by a BOM.↪→

acceptance: BOM-prefixed input decodes without error.
- id: DEC-OPTS-7
title: Oversized integer handling
description: Extremely large integers (more than ~4300 digits) must raise an error

unless a different parse_int function is provided.↪→

acceptance: Oversized integer fails by default; succeeds with parse_int=Decimal.

compliance_and_interop:

XIV

- id: COMP-1
title: Encoding output without BOM
description: Encoded JSON must not include a BOM. Default encoding should be UTF-8

without BOM to ensure interoperability.↪→

acceptance: Encoded output contains no BOM.
- id: COMP-2
title: Top-level primitive values
description: JSON documents consisting of a single primitive value (number, string,

boolean, null) must be accepted.↪→

acceptance: "42" and "true" decode correctly.
- id: COMP-3
title: Repeated object member names
description: If an object has duplicate member names, the last occurrence overrides

earlier ones.↪→

acceptance: {"a":1,"a":2} decodes to {"a":2}.
- id: COMP-4
title: YAML subset compatibility
description: The default JSON output (with default separators) must form a subset of YAML

1.0/1.1/1.2. This ensures compatibility with YAML parsers.↪→

acceptance: Default separators verified.

error_handling:
- id: ERR-1
title: JSONDecodeError attributes
description: Parsing invalid input must raise simplejson.JSONDecodeError (subclass of

ValueError). The exception object must include details: msg, doc, pos, lineno, colno,
and optionally end, endlineno, endcolno.

↪→

↪→

acceptance: Trigger parse error and verify attributes.
- id: ERR-2
title: Unsupported type and NaN errors
description: Encoding unsupported types without default/for_json must raise TypeError.

Encoding NaN/Infinity with allow_nan=False must raise ValueError.↪→

acceptance: Assert both exceptions raised as specified.

cli:
- id: CLI-1
title: Pretty-print tool
description: Running python -m simplejson.tool with valid JSON input must output

formatted JSON to stdout or outfile, adding indentation and line breaks.↪→

acceptance: Input {"json":"obj"} outputs formatted JSON.
- id: CLI-2
title: CLI error reporting
description: If invalid JSON is provided, the tool must exit with an error message

indicating the location of the parse error.↪→

acceptance: Invalid input prints error message with caret.
- id: CLI-3
title: CLI argument defaults
description: CLI must accept optional infile and outfile arguments. If not provided,

stdin and stdout are used by default.↪→

acceptance: Behavior matches with/without arguments.

non_goals:
- id: NG-1
title: Performance guarantees

XV

description: No minimum performance levels are required; benchmarks are out of scope.
- id: NG-2
title: Internal C extension details
description: The implementation of the optional C extension is not under test; only

functional behavior matters.↪→

- id: NG-3
title: Undocumented JSON extensions
description: Behaviors not mentioned in documentation (e.g., extra non-standard

extensions) are not subject to testing.↪→

XVI

D Evaluation Results

D.1 Test counts

Trial ID First Sufficient Test Suite Last Passing Test Suite

Total Tests Skipped
Tests

Execution
Times (s) Total Tests Skipped

Tests
Execution
Times (s)

0 - - - 128 1 7.493
1 93 0 5.193 101 0 5.611
2 27 1 2.000 130 0 7.802
3 - - - 104 0 5.264
4 59 1 2.505 124 0 6.541
5 - - - 95 4 4.313
6 66 2 2.972 141 1 7.956
7 51 2 2.253 84 1 3.981
8 - - - 92 0 4.759
9 - - - 126 1 6.926
10 - - - 111 2 5.544
11 - - - 95 1 4.455
12 - - - 108 0 5.417
13 118 2 5.698 139 2 7.298
16 30 1 1.559 76 1 3.648
17 32 0 1.538 91 0 4.674
18 89 0 4.666 110 0 5.931
19 - - - 146 0 10.224
20 - - - 101 0 4.874
21 46 0 2.116 70 1 3.863
22 97 0 4.682 109 0 5.609
23 - - - 68 2 2.800

mean 64 1 3.198 107 1 5.681
median 59 1 2.505 106 0 5.480

Table A.1: Test suite size and execution time of the First Sufficient Test Suites (FSSs) (if avail.)
& Last Passing Test Suites (LPSs) for all trials

XVII

Trial ID First Sufficient Test Suite Last Passing Test Suite

Unit Tests Integration
Tests

System
Tests Unit Tests Integration

Tests
System
Tests

0 - - - 119 11 0
1 89 4 0 97 4 0
2 24 3 0 124 6 0
3 - - - 100 4 0
4 57 2 0 122 2 0
5 - - - 90 5 0
6 63 3 0 135 7 0
7 43 8 0 70 14 0
8 - - - 86 9 3
9 - - - 120 6 0
10 - - - 105 7 6
11 - - - 86 9 0
12 - - - 103 13 0
13 113 5 0 133 7 0
16 27 4 3 72 5 4
17 29 3 0 84 8 0
18 84 5 0 104 6 0
19 - - - 136 11 0
20 - - - 94 8 0
21 41 5 0 63 8 0
22 94 3 0 106 3 0
23 - - - 59 10 0

mean 60 4 0 100 7 1
median 57 4 0 102 7 0

Table A.2: Test type count of the First Sufficient Test Suites (FSSs) (if avail.)
& Last Passing Test Suites (LPSs) for all trials

XVIII

D.2 Coverages

Trial ID Total Lines Covered
Lines

Line
Coverage

(%)

Total
Branches

Covered
Branches

Branch
Coverage

(%)

1 953 750 78.70 462 348 75.32
2 953 615 64.53 462 268 58.01
4 953 698 73.24 462 309 66.88
6 953 771 80.90 462 319 69.05
7 953 704 73.87 462 320 69.26
13 953 803 84.26 462 346 74.89
16 953 681 71.46 462 291 62.99
17 953 675 70.83 462 299 64.72
18 953 727 76.29 462 332 71.86
21 953 686 71.98 462 306 66.23
22 953 815 85.52 462 356 77.06

mean 953 720 75.60 462 317 68.75
median 953 704 73.87 462 319 69.05

Table A.3: Coverages of the First Sufficient Test Suites (FSSs) for all trials (if avail.)

XIX

Trial ID Total Lines Covered
Lines

Line
Coverage

(%)

Total
Branches

Covered
Branches

Branch
Coverage

(%)

0 953 832 87.30 462 371 80.30
1 953 750 78.70 462 348 75.32
2 953 847 88.88 462 378 81.82
3 953 826 86.67 462 362 78.35
4 953 820 86.04 462 353 76.41
5 953 756 79.33 462 351 75.97
6 953 811 85.10 462 351 75.97
7 953 800 83.95 462 347 75.11
8 953 804 84.37 462 351 75.97
9 953 823 86.36 462 359 77.71
10 953 792 83.11 462 339 73.38
11 953 752 78.91 462 342 74.03
12 953 814 85.41 462 345 74.68
13 953 819 85.94 462 353 76.41
16 953 799 83.84 462 343 74.24
17 953 813 85.31 462 358 77.49
18 953 807 84.68 462 354 76.62
19 953 815 85.52 462 353 76.41
20 953 791 83.00 462 341 73.81
21 953 782 82.06 462 339 73.38
22 953 825 86.57 462 363 78.57
23 953 699 73.35 462 315 68.18

mean 953 798 83.84 462 350 75.91
median 953 809 84.89 462 351 75.97

Table A.4: Coverages of the Last Passing Test Suites (LPSs) for all trials

XX

D.3 Mutation Testing

Trial ID Total Mutants Killed Mutants Mutation Score MS (%)

1 1184 656 55.41
2 1184 100 8.45
4 1184 324 27.36
6 1184 553 46.71
7 1184 337 28.46
13 1184 654 55.24
17 1184 512 43.24
18 1184 671 56.67
21 1184 555 46.88
22 1184 729 61.57

mean 1184 509 43.00
median 1184 554 46.79

Table A.5: Mutation testing results of the First Sufficient Test Suites (FSSs) for all trials (if avail.)15

15Note, that Trial 16 is not included in this table as mutmut failed to execute its FSS.

XXI

Trial ID Total Mutants Killed Mutants Mutation Score MS (%)

0 1184 746 63.01
1 1184 664 56.08
2 1184 752 63.51
3 1184 728 61.49
4 1184 719 60.73
5 1184 672 56.76
6 1184 683 57.69
7 1184 687 58.02
8 1184 700 59.12
9 1184 725 61.23
10 1184 696 58.78
11 1184 698 58.95
12 1184 717 60.56
13 1184 737 62.25
16 1184 674 56.93
17 1184 720 60.81
18 1184 721 60.9
19 1184 728 61.49
20 1184 675 57.01
21 1184 671 56.67
22 1184 743 62.75
23 1184 605 51.1

mean 1184 703 59.36
median 1184 709 59.84

Table A.6: Mutation Testing Results of the Last Passing Test Suites (LPSs) for all trials

XXII

D.4 Requirement counts and Hallucinations

Trial ID
Number of
referenced

Requirements

Number of
referenced &

existing
Requirements

Number of
hallucinated

Requirements

Percentage of
hallucinated

Requirements

1 43 36 7 16.28
2 30 30 0 0
4 48 35 13 27.08
6 44 35 9 20.45
7 37 35 2 5.41
13 47 36 11 23.40
16 37 36 1 2.70
17 34 34 0 0
18 39 36 3 7.69
21 51 34 17 33.33
22 49 36 13 26.53

mean 42 35 7 14.81
median 43 35 7 16.28

Table A.7: Requirement counts of the First Sufficient Test Suites (FSSs) for all trials (if avail.)

XXIII

Trial ID
Number of
referenced

Requirements

Number of
referenced &

existing
Requirements

Number of
hallucinated

Requirements

Percentage of
hallucinated

Requirements

0 60 36 24 40
1 43 36 7 16.28
2 56 34 22 39.29
3 62 37 25 40.32
4 49 36 13 26.53
5 47 34 13 27.66
6 61 28 33 54.10
7 40 36 4 10
8 49 36 13 26.53
9 56 36 20 35.71
10 44 36 8 18.18
11 36 35 1 2.78
12 39 36 3 7.69
13 51 36 15 29.41
16 37 36 1 2.70
17 39 36 3 7.69
18 45 36 9 20
19 57 36 21 36.84
20 38 35 3 7.89
21 56 35 21 37.5
22 49 36 13 26.53
23 39 36 3 7.69

mean 48 35 13 23.70
median 48 36 13 26.53

Table A.8: Requirement counts of the Last Passing Test Suites (LPSs) for all trials

	Introduction
	Motivation
	Research Questions

	Background
	Software Engineering
	Software Development Life Cycle
	Software Testing
	Software Testing Life Cycle

	Related Work
	Large Language Models for Software Engineering and Software Testing
	Automated Test Case Generation with LLMs
	TextGrad
	LLM-as-a-Judge

	LIFT - LLM-based Iterative Feedback-driven Test suite generation
	Concept & Architecture
	Agents & Environment
	Test Suite Generator
	Test Suite Debugger
	Test Suite Evaluator

	Metrics & Traceability

	Case Study: simplejson
	Library Functionality
	Structural & Functional Overview
	Comparison with the Python Standard Library
	Testability Considerations

	Evaluation
	Evaluation criteria from related research
	Evaluation of the Case Study
	General and Test Counts
	Correctness
	Structural Sufficieny and Coverage
	Error Detection Capability
	Holistic Coverage Exploration
	Behavioral Adequacy and Qualitative Test Quality
	Integration and System Test Behavior

	Threats to validity
	Internal Validity
	External Validity

	Future Work
	Conclusion
	References
	LIFT System Prompts
	Test Suite Generator System Prompt
	Test Suite Debugger System Prompt
	Test Suite Evaluator System Prompt

	LIFT Evaluation Template
	Requirements Document for simplejson
	Evaluation Results
	Test counts
	Coverages
	Mutation Testing
	Requirement counts and Hallucinations

