
M A S T E R ’ S T H E S I S
I N

C O M P U T E R S C I E N C E

A U G M E N T I N G P R E D I C AT E
A N A LY S I S W I T H A U X I L I A RY

I N VA R I A N T S

T H O M A S S T I E G L M A I E R

S U P E RV I S O R S :

P R O F . D R . D I R K B E Y E R
C H A I R O F S O F T WA R E S Y S T E M S

M AT T H I A S D A N G L

O C T O B E R 9 , 2 0 1 6

A B S T R A C T

Predicate analysis is a common approach to software model check-
ing. Abstractions of programs are computed out of predicates found
with craig interpolation. The found interpolants are, however, in some
cases not ideal, and lead to long-running verification runs. To reduce
the reliance on interpolation this thesis evaluates the effects of using
separately computed, auxiliary, invariants instead.

Our work is based on the CPA concept, CPACHECKER and the Pred-
icate CPA. It is split into two major parts, on the one hand we intro-
duce a new algorithm for concurrent execution of several analysis in
CPACHECKER, as well as communication between such analysis, and on
the other hand we show how the Predicate CPA can be augmented
with additional formulas in several ways. We chose to evaluate: ap-
pending invariants to the precision of the analysis and conjoining in-
variants either to the path formula or to the abstraction formula. The
invariants we want to use are generated by some new approaches di-
rectly in CPACHECKER. They can be separated in two classes, on the one
hand, the on-the-fly and lightweight invariant generation heuristics
which try to find invariants for a certain given program location only,
and on the other hand complete analyses, which results are then used
for generating invariants for the whole program.

While the lightweight on-the-fly approaches did not yield the ex-
pected results, analyses using concurrently computed invariants per-
form strictly better than comparable analyses without invariants.

iii

TA B L E O F C O N T E N T S

I I N T R O D U C T I O N 1
1 M O T I VAT I O N 3
2 B A C K G R O U N D 5

2.1 Program Representation 5
2.2 Configurable Program Analysis 5

2.2.1 Formalism of a CPA 6
2.2.2 The Reachability Algorithm 8
2.2.3 Composite Program Analysis 10

2.3 CPAchecker . 11
2.3.1 Basic Architecture 11
2.3.2 Composite CPAs in CPACHECKER 12
2.3.3 Sequential Combination of Analyses 12
2.3.4 Counterexample-Guided Abstraction Refinement 12
2.3.5 The Predicate CPA 14
2.3.6 The Invariants CPA 16

2.4 Path Invariants . 17
2.5 k-Induction with Continuously-Refined Invariants . . . 18

2.5.1 Bounded Model Checking 18
2.5.2 k-Induction . 19

3 R E L AT E D W O R K 23
3.1 Model Checkers Using Invariants 23
3.2 Path Invariants . 24
3.3 Loop Acceleration . 25
3.4 Other Invariant Generators 25
3.5 Conditional Model Checking 26

II G E N E R AT I N G A N D U S I N G A U X I L I A R Y I N VA R I A N T S

I N C PA C H E C K E R 27
4 C O N C E P T U A L E X T E N S I O N S 29

4.1 Architecture before this Thesis 29
4.2 Reached Set-based Data Exchange between Analyses . 31
4.3 Parallel Analyses . 31
4.4 Architecture after this Thesis 34

5 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S 35
5.1 Invariant Injection Strategies 35

5.1.1 Using Invariants as Precision Increment 35
5.1.2 Appending Invariants to the Path Formula . . . 36
5.1.3 Appending Invariants to the Abstraction Formula 37
5.1.4 Combining Invariant Use-Cases 37

v

vi TA B L E O F C O N T E N T S

5.2 New Invariant Generation Approaches 39
5.2.1 Sharing Finished Reached Sets 39
5.2.2 Sharing Precisions 40
5.2.3 Lightweight Heuristics 40

5.3 Generalized Invariants handling in the Predicate CPA . 41
5.3.1 Invariant Generation 42
5.3.2 Invariant Retrieval 44

III E VA L U AT I O N A N D C O N C L U S I O N 45
6 E VA L U AT I O N 47

6.1 Evaluation Environment 47
6.2 Benchmark Programs . 48
6.3 Used Configurations . 48
6.4 Results . 49

6.4.1 Lightweight Heuristics 50
6.4.2 Parallel Analyses 58
6.4.3 Sequential Combination of Analyses 61

6.5 Conclusion of the Evaluation 64
7 R E S T R I C T I O N S A N D C H A L L E N G E S 65

7.1 Large Formulas . 65
7.2 External Invariant Generators 65

8 C O N C L U S I O N 67
8.1 Summary of this Thesis 67
8.2 Future Work . 68

L I S T O F F I G U R E S

1 CPACHECKER architecture [BK11] 11

2 Invariant generation in CPACHECKER (old) 29

3 Invariant generation for SMT-based analyses (new) . . . 34

4 A CFA for illustrating the usage of invariants 37

5 Managing invariants in the Predicate CPA 42

6 A quantile plot showing the best concurrent analysis
and the three baselines 58

7 Overview over the sequential combinations of analyses
and their information exchange 62

L I S T O F TA B L E S

1 Differences in using invariants at different locations in
the Predicate CPA . 38

2 Details on analyses using lightweight heuristics for gen-
erating auxiliary invariants and their baseline 50

3 Details on analysis using weakening or checking path
formula conjuncts with Z3 instead of MATHSAT 52

4 Details on analyses using checking interpolants on in-
variance and their baseline 53

5 Drastic increase of CPU time for analyses succeeding in
using invariants computed by checking interpolants . . 54

6 Details on analyses using path invariants for generating
auxiliary invariants and their baseline 56

vii

7 A selection of tasks and their results with path invariants 57

8 Details on all parallel analyses using invariants and their
baselines . 60

9 Details on all sequential combinations of analyses using
invariants and their baselines 63

L I S T O F A L G O R I T H M S

1 CPAAlgorithm [BHT08, BL13] 9

2 CEGAR(D, e0, π0) [BL13] 13

3 Continuous Precision Refinement and Invariant Genera-
tion [BDW15b] . 17

4 Iterative-Deepening k-Induction [BDW15a] 20

5 ParallelAlgorithm . 33

A C R O N Y M S

ABE Adjustable-Block Encoding

BMC Bounded Model Checking

CEGAR Counterexample-Guided Abstraction Refinement

CFA Control-Flow Automaton

CNF Conjunctive Normal Form

CPA Configurable Program Analysis with Dynamic Precision
Adjustment

LBE Large-Block Encoding

SBE Single-Block Encoding

SMT Satisfiability Modulo Theories

viii

Part I

I N T R O D U C T I O N

The following three chapters motivate the usage of invari-
ants and provide the necessary information about other in-
variant generation and usage approaches.

1
M O T I VAT I O N

Predicate analysis is one of the main approaches in software verifica-
tion. Its success is based on the recent improvements made to SMT

solvers which are mainly used as back-end for solving the formulas
created during the analysis.

Another huge enhancement, adjustable-block encoding [BKW10],
was invented in 2010 and is implemented in the CPACHECKER frame-
work as a part of the Predicate CPA. With this work we try to further
enhance the Predicate CPA by generating and using auxiliary invari-
ants. The invariants should make the analysis faster and less depen-
dent on the interpolation abilities of the SMT solvers. Interpolation is
nice to have and easy to use on the one hand, but inappropriate inter-
polants may lead to loops being unnecessarily unrolled and therefore
to longer run times. We try to circumvent this issue by heuristics and
separate analyses which generate invariants that can be used as a re-
placement for interpolation with SMT solvers.

One of the main contributions of this thesis is the development of
an algorithm to concurrently run several analyses on the same verifi-
cation task. Besides that, we formalize different invariant generation
and usage strategies,evaluate their impact on a predicate analysis, and
show their individual strengths and weaknesses. The concurrent exe-
cution of analyses comes hand in hand with the necessity of communi-
cation between these analyses. While there was some work on passing
information from an earlier running analysis to a later one [BLN+13]
no one has extended this to passing results from one concurrently run-
ning analysis to another one. This is, however, necessary for comput-
ing invariants with one analysis, which should then be used in another
analysis.

3

4 M O T I VAT I O N

S T R U C T U R E O F T H I S W O R K

This work is structured into three main parts, the first part contains all
background information and related work, including in-depth infor-
mation about the CPACHECKER framework and all kinds of projects us-
ing auxiliary invariants to enhance their analyses. The second part is
about our additions; we explain different invariant generation heuris-
tics, as well as how they can be used in the Predicate CPA. For more
flexibility, we do also create a new algorithm, which allows the concur-
rent execution of several analyses in one verification run. The third
and last part consists of the evaluation, giving detailed insights into
our experiments and the advantages and drawbacks we found. We
do also mention the restrictions and challenges we had, and finally
conclude this thesis with a summary and an outlook on how the pro-
cess of using invariants can be further extended and improved.

2
B A C K G R O U N D

In this chapter we introduce all theoretical concepts and tools which
are used for invariant generation in CPACHECKER. This includes the
framework CPACHECKER itself, as well as important analyses and algo-
rithms that are used for evaluation purposes later on.

2.1 P R O G R A M R E P R E S E N TAT I O N

A program is represented by a control-flow automaton (CFA) [BHT07].
This automaton consists of a set L of locations, which models the
program counter (pc), including the initial location l0 ∈ L and a set
of control-flow edges G ⊆ L ×Ops × L. 1 Ops is the set of program 1 The set G models the

executed program operations
for control-flow from one
location to another.

operations. Let X be the set of all program variables, the concrete state
c of a program assigns a value to each variable from the set X ∪ {pc}.
Let C be the set of all concrete states, and let every edge g ∈ G define
the transition relation

g−→⊆ C × {g} × C for transforming a concrete
state of a certain program location into a concrete state of another
program location. The complete transition relation →=

⋃
g∈G

g−→ is
created by unifying all edges. A subset r ⊆ C of concrete states is
called region. Now we can define reachability on a CFA.

D E F I N I T I O N 1 : R E A C H A B I L I T Y

If there exists a sequence of concrete states 〈c0, c1, ..., cn〉 and a region r
such that c0 ∈ r and ∀i : 1 ≤ i ≤ n =⇒ ci−1 → ci, we call the state cn

reachable from the region r.

2.2 C O N F I G U R A B L E P R O G R A M A N A LY S I S

The two main approaches in automated software verification are
model checking and program (data-flow) analysis [BHT07]. In con-
trast to software model checkers, suffering from state-space explosion
for large programs, data-flow analyses are usually path-insensitive.

By combining both approaches, the individual drawbacks (false
alarms through over-approximation, imprecision due to merging all
states for equal locations) can be reduced. On the one hand, the state

5

6 B A C K G R O U N D

space can be shrinked drastically by joining at least some states, and
on the other hand, the accuracy of the analysis can be increased by not
joining all states but only those with certain (common) attributes (e. g.,
loop heads).

The original definition of configurable program analysis [BHT07]
specifies four components influencing the effectiveness and efficiency
of the analysis, the components are called abstract domain, transfer rela-
tion, merge operator and stop operator. This definition has been extended
with an additional precision 2 per abstract state and also provides a2 A precision can, e. g., be

utilized for telling the analysis
which variables should be
tracked, or that variables

should only be tracked up to a
certain degree.

precision adjustment function. The abbreviation for the configurable
program analysis with dynamic precision adjustment (CPA) is usually
CPA+ yet we stick to calling it CPA [BHT08] for simplicity 3. More de-

3 We do only use CPA+ in this
thesis, so this name change

does not lead to conflicts.

tails on the parts of a CPA can be found in the next section.

2.2.1 Formalism of a CPA

A CPA [BHT08] D = (D, Π, , merge, stop, prec) consists of six pieces:
an abstract domain D, a set Π of precisions, a transfer relation , a
merge operator merge, a termination check stop and a precision ad-
justment function prec. These components will be described in the
following paragraphs:

• The abstract domain D = (C, E , J·K) consists of three subcompo-
nents. The first two are a set C of concrete states and a semi-
lattice E = (E,>,⊥,v,t) with

– a potentially infinite set E of elements, called abstract states,

– a top element > and a bottom element ⊥ with >,⊥ ∈ E,

– a preorder v ⊆ E× E,

– and a total function t : E× E→ E (the join operator).

The third part of the abstract domain is a concretization function
J·K : E → 2C which returns the set of concrete states represented
by an abstract state.

For soundness, the abstract domain has to follow two require-
ments:

1. J>K = C and J⊥K = ∅

2. ∀e, e′ ∈ E : Je t e′K ⊇ JeK∪ Je′K
(either the join operator is precise or it over-approximates)

2.2 C O N F I G U R A B L E P R O G R A M A N A LY S I S 7

• The set Π defines the possible precisions of the abstract do-
main D. Elements of Π are used by the analysis to keep track
of different precisions for different abstract states.

Let e be an abstract state and π a precision. We call a pair (e, π)

the abstract state e with precision π.

• The transfer relation ⊆ E×G× E×Π assigns to every abstract
state e ∈ E with precision π all possible new abstract states e′

with precision π for a CFA edge g ∈ G. If (e, g, e′, π) ∈ then we

write e
g
 (e′, π) and furthermore we write e (e′, π) if an edge g

exists with e
g
 (e′, π).

The transfer relation is required to over-approximate all opera-
tions for every fixed precision in order to be sound:

∀e ∈ E, g ∈ G, π ∈ Π :
⋃

e (e′,π)

q
e′

y
⊇

⋃
c∈JeK

{
c′|c g−→ c′

}

• The merge operator merge : E× E×Π → E merges the informa-
tion of two abstract states. Soundness is achieved by the follow-
ing requirement:

∀e, e′ ∈ E, π ∈ Π : e′ v merge(e, e′, π)

Depending on the abstract state e and the precision π the re-
sult of the merge operation can be anything between e′ and >
(the result may only be equal to or more abstract than the sec-
ond parameter). Furthermore the merge operator is not com-
mutative. While the merge operator is not equal to the join op-
erator t from the semi-lattice, it can be based on it. The two
most commonly used merge operators are mergesep(e, e′) = e′

and mergejoin(e, e′) = e t e′.

• The termination check stop : E× 2E ×Π → B checks whether the
set of abstract states R ⊆ E, given as second parameter, is cov-
ering the abstract state (given as first parameter) with precision
(given as third parameter). To ensure soundness, the termina-
tion check has to guarantee that if an abstract state e is covered
by the set of abstract states R, every concrete state represented
by e corresponds to an abstract state from R:

∀e ∈ E, R ⊆ E, π ∈ Π :

stop(e, R, π) = TRUE ⇒ JeK ⊆
⋃

e′∈R

q
e′

y

8 B A C K G R O U N D

Equivalently to the merge operator, the termination check is not
the same as the preorder v of the semi-lattice, but can be based
on it. An intuitive implementation of the stop operator is

stopsep(e, R) = (∃e′ ∈ R : e v e′)

(If one abstract state in R is equal to or more abstract than e (v),
we say that e is covered by R).

• The precision adjustment function prec : E×Π× 2E×Π → E×Π
creates, for a given abstract state e with precision π and a given
set of abstract states with precisions, a new abstract state ê with
precision π̂. During the precision change, the prec function may
also perform a widening of the abstract state, thus it is able to
decrease or increase the precision of abstract states.

The soundness requirement for precision adjustment is that the
set of concrete states represented by e is a subset of the set of
concrete states represented by ê.

∀e, ê ∈ E, π, π̂ ∈ Π, R ⊆ E×Π :

(ê, π̂) = prec(e, π, R)⇒ JeK ⊆ JêK .

2.2.2 The Reachability Algorithm

In the last section, all necessary components of a CPA were introduced.
These components are used by the reachability algorithm [BHT08],
which computes, for example, an over-approximation of the set of
reachable concrete states for a given initial abstract state with precision
and a given CPA. From now on, we will call the reachability algorithm
for a CPA CPAAlgorithm.

While running the CPAAlgorithm, two sets get updated perma-
nently, the set reached where all found reachable states are stored, and
the set waitlist where all abstract states, which have already been found
but were not yet processed (frontier), are stored.

The CPAAlgorithm computes a set of reachable abstract states with
accompanying precision from an initial abstract state with precision.
After computing the (intermediate) abstract successors with the trans-
fer relation, these successors are given to the precision adjustment
function. The outcome of the precision adjustment function is then
merged with every abstract state with precision from the set reached

using the given merge operator. If the resulting states are more ab-
stract than those states from the set reached they were merged with,
the states from reached are replaced with the new states. If the state

2.2 C O N F I G U R A B L E P R O G R A M A N A LY S I S 9

with precision resulting from the merge step is not covered by any
state in the set reached, it is added to both, the set reached and the set
waitlist.

To adapt the CPAAlgorithm for usage with CEGAR we have to
change the input parameters from one initial abstract state with preci-
sion to a set R0 of abstract states with precision. Additionally, a subset
W0 ⊆ R0 of frontier abstract states with precision is given as param-
eter [BL13]. Algorithm 1 is the resulting reachability algorithm. The
function isTargetState checks if a state is a target state 4. 4 A target state is a state where

the specification does not hold.
The specification can be
implicitly given through the
implementation of the CPA.

Input: a configurable program analysis with dynamic precision
adjustment D = (D, Π, , merge, stop, prec),
a set R0 ⊆ (E×Π) of abstract states with precision, and
a subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the set of elements of the semi-lattice of D

Output: the set reached and the set waitlist
Variables: a set reached of elements of E×Π,

a set waitlist of elements of E×Π
1 waitlist := W0
2 reached := R0
3 while waitlist 6= ∅ do
4 choose (e, π) from waitlist
5 waitlist := waitlist \{(e, π)}
6 for each e′ with e (e′, π) do
7 precision adjustment (ê, π̂) := prec(e′, π, reached)
8 if isTargetState(ê) then
9 return (reached∪{(ê, π̂)}, waitlist∪{(ê, π̂)})

10 for each (e′′, π′′) ∈ reached do
11 combine with existing abstract state
12 enew := merge(ê, e′′, π̂)
13 if enew 6= e′′ then
14 waitlist := (waitlist∪{(enew, π̂)})\{(e′′, π′′)}
15 reached := (reached∪{(enew, π̂)})\{(e′′, π′′)}

16 if ¬ stop(ê, {e|(e, ·) ∈ reached}, π̂) then
17 add new abstract state
18 waitlist := waitlist∪{(ê, π̂)}
19 reached := reached∪{(ê, π̂)}

20 return (reached, ∅)

Algorithm 1: CPAAlgorithm [BHT08, BL13]

10 B A C K G R O U N D

2.2.3 Composite Program Analysis

With the concept of a CPA we can now define analyses for tracking ex-
plicit values of variables throughout the control-flow, or we can track
the values of variables as intervals or even boolean formulas. All of
these analyses need to take care of the different locations of the CFA

and most probably also of the call-stack. For separation of concerns
we do now introduce the possibility to combine several CPAs into one
composite CPA:

C = (D1, ..., Dn, Π×, ×, merge×, stop×, prec×) with n ∈N

This way, we can split up the responsibilities of single CPAs and make
their purpose clearer 5 [BHT08]. Such a composite CPA consists of a5 We can, e. g., make one CPA

which is solely responsible for
tracking the location, and one

for tracking the call stack.

finite amount of CPAs and:

• a composite set of precisions Π×,

• a composite transfer relation ×,

• the composite merge operator merge×,

• the composite stop operator stop×, and

• the composite prec operator prec×.

Let i ∈ [1; n], the five composites above are expressions over the
components of the involved CPAs (Πi, i, mergei, stopi, preci, J·Ki , Ei,
>i,⊥i,vi,ti). There are also two new operators:

strengthen: ↓: ×n
i=1Ei → E1

comparison: �⊆ ×n
i=1Ei

Strengthening is an additional operator for a CPA which can be used
as part of a composite. Its purpose is to compute a stronger element
from the lattice set E1 by using the information from an element of the
lattice sets E2...En; ↓ (e1, ..., en) v e1 has to be fulfilled. The comparison
operator allows us to compare elements of different lattices.

For a composite analysis C = (D1, ..., Dn, Π×, ×, merge×, stop×)

the CPA D× = (D×, Π×, ×, merge×, stop×) can be constructed. The
product precision is defined by Π× = Π1 × ... × Πn and the com-
ponents of the product domain D× = D1 × ... × Dn = (C, E×, J·K×)
are defined by the product lattice E× = E1 × ... × En = (E1 × ... ×
En, (>1, ...,>n), (⊥1, ...,⊥n),v×,t×) with (e1, ..., en) v× (e′1, ..., e′n) iff
∀i ∈ n : ei vi e′i and(e1, ..., e2) t× (e′1, ..., e′n) = (e1 t1 e′1, ..., en tn e′n)
and the product concretization function J·K× in such a way, that
J(d1, ..., dn)K× = Jd1K1 ∩ ...∩ JdnKn is met.

2.3 C PA C H E C K E R 11

Figure 1: CPACHECKER architecture [BK11]

2.3 C PA C H E C K E R

CPACHECKER 6 is a software verification framework based on the con- 6 More information and the
sources can be found at
cpachecker.sosy-lab.
org/

cepts of CPA [BK11]. It is published under the Apache 2.0 license.
The program analysis is performed by the implemented CPAs. These
CPAs can be combined freely, either for usage in a composite analysis
(cf. Section 2.2.3) or for a sequential usage (cf. Section 2.3.3). C and
Java are the programming languages which CPACHECKER is able to an-
alyze. But while for Java the support is quite basic, the main focus lies
on the evaluation of C programs.

2.3.1 Basic Architecture

In Figure 1 the basic CPACHECKER architecture is shown. The high-
lighted parts are especially important for this thesis, for example the
Parallel Algorithm is even added in this thesis, but already in the fig-
ure to show where it is located compared to other CPACHECKER compo-
nents.

A simple verification run could work as follows: at first the source
code is parsed 7, then a CFA is created and afterwards the result is com- 7 We use the Eclipse CDT for

that purpose, it can be found at
eclipse.org/cdt/

puted by the CPAAlgorithm with the configured CPAs. The result is
then given to the user of CPACHECKER.

cpachecker.sosy-lab.org/
cpachecker.sosy-lab.org/
eclipse.org/cdt/

12 B A C K G R O U N D

2.3.2 Composite CPAs in CPACHECKER

The concept of a composite analysis, introduced in Section 2.2.3, en-
ables us to separate the different concerns of component analyses from
each other. The component CPAs can then be combined on demand.
Two important features for every analysis are tracking the call-stack
and the program counter. So, instead of repeatedly implementing
tracking of the location and the call-stack for every analysis, one can
now create separate CPAs for modeling the call-stack and tracking the
program counter.

2.3.3 Sequential Combination of Analyses

Sequentially combining several separate analyses is a concrete im-
plementation of conditional model checking [BHKW12] (cf. Sec-
tion 3.5). This approach is also implemented in CPACHECKER in the
RestartAlgorithm. Whenever the result of a verification run is not
safe or unsafe, the next configuration is started with the input condi-
tion FALSE and has to verify the program without any initial assump-
tions again. Furthermore it is possible to skip subsequential analyses
based on the outcome of earlier ones, for example if an analysis finds
out that the program contains concurrency, all analyses which do not
support concurrency can be omitted, prohibiting the model checker
from consuming time with analyses that do not provide the necessary
abilities.

2.3.4 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [CGJ+03] is
a technique that tries to overcome the state space explosion in model
checking by abstracting unnecessary information. This is done by it-
eratively refining the precision of the analysis each time an infeasible
counterexample is identified. The necessary information for refining
the precision can be extracted by several techniques out of the infea-
sible counterexample. Some possibilities are for example Craig inter-
polation [BK11], path invariants (cf. Section 2.4) or heuristics that ex-
tract the precision increment from program statements, e. g., assump-
tions.

While the original approach is only aimed at symbolic model
checking, CEGAR has been extended to also work with explicit-state
model checkers [BL13].

2.3 C PA C H E C K E R 13

Input: CPA with dynamic precision adjustment
D = (D, Π, , merge, stop, prec),
an initial abstract state e0 ∈ E with precision π0 ∈ Π, where
E denotes the set of elements of the semi-lattice of D

Output: verification result safe or unsafe
Variables: set reached ⊆ E×Π, set waitlist ⊆ E×Π,

error path σ = 〈(op1, l1), ..., (opn, ln)〉
1 reached := {(e0, π0)}
2 waitlist := {(e0, π0)}
3 while TRUE do
4 (reached, waitlist) := CPAAlgorithm(D, reached, waitlist)
5 if waitlist = ∅ then
6 return sa f e
7 else
8 σ := extractErrorPath(reached)

9 feasible error: report bug, else refine and restart
10 if isFeasible(σ) then
11 return unsa f e
12 else
13 π := π

⋃
refine(σ)

14 reached := (e0, π)
15 waitlist := (e0, π)

Algorithm 2: CEGAR(D, e0, π0) [BL13]

In Algorithm 2 a simple CEGAR algorithm working in combination
with a CPA is displayed. The method extractErrorPath extracts the
found counterexample out of the set reached. The feasibility of the
counterexample is tested with the method isFeasible. If the coun-
terexample is feasible we can stop the analysis and return the found
property violation to the user. When the counterexample is infeasible
we use the procedure refine to refine the precision of the analysis.

The CEGAR algorithm is implemented in CPACHECKER, and further
more has an additional option which delays the refinement until the
state space is fully explored with the current precision. When this hap-
pens the refinement starts and all error locations are handled at once.
The latter approach will be used later on for invariant generation.

14 B A C K G R O U N D

2.3.5 The Predicate CPA

The Predicate CPA [BKW10] is based on (boolean) predicate abstrac-
tion 8. Let P be a set of predicates over program variables, a for-8 While other abstraction

methods, such as cartesian
abstraction, are also possible,

the default abstraction method
is boolean predicate abstraction.

mula ϕ is a boolean combination of predicates from P . We call π a
precision for formulas with π ⊂ P . Π is a precision for programs
given by the function Π : L → 2P , which assigns a precision for for-
mulas to each program location. The strongest boolean combination
of predicates from precision π entailed by ϕ is called boolean predi-
cate abstraction (ϕ)π of a formula ϕ. The outcome of a predicate ab-
straction can be used as abstract state and represents a region of con-
crete program states. The computation of the predicate abstraction
can be done by satisfiability modulo theories (SMT) solvers. Therefore
we introduce a propositional variable vi for each predicate pi ∈ π

and then ask the SMT solver for satisfying assignments for the formula
ϕ ∧ ∧pi∈π(pi ⇐⇒ vi). The disjunction of all conjuncted satisfying
assignments is the result of the boolean predicate abstraction. Com-
puting the successor ϕ′ of ϕ is done by applying the abstract strongest
post operator for predicate abstraction with a program operation op.
The strongest post operator can be defined as ϕ′ = (SPop(ϕ))π, where
SP denotes the strongest post condition operator, which is applied first,
afterwards, the result is used for computing the boolean predicate ab-
straction.

The original predicate abstraction [BKW10] works either with
single-block encoding (SBE) or with large-block encoding (LBE) and
while SBE leads to a slower analysis, we need to preprocess the an-
alyzed program for LBE. Both approaches are unified in adjustable-
block encoding (ABE), an approach which choses dynamically whether
an abstraction should be computed [BKW10]. For adding this as a
feature to the traditional predicate abstraction, we store two separate
formulas in each state, an abstraction formula ψ and a path formula
ϕ. States at which an abstraction is done are called abstraction states,
all other states are called non-abstraction states. Both are disjunct types
of abstract states of this CPA. Program paths between two abstraction
computations may consist of many CFA edges where states for loca-
tions inside such paths are always non-abstraction states. For these
non-abstraction states the strongest post condition is stored in the
path formula of each state, while the abstraction formula remains un-
changed. At abstraction states, a new abstraction formula is computed.
The decision when to do abstraction is done by the block-adjustment
operator blk which returns FALSE if no abstraction should be computed
for a given pair of an abstract state e and a CFA location l, and TRUE oth-
erwise.

2.3 C PA C H E C K E R 15

By adjusting the block size on demand, we can have many con-
crete configurations lying in between SBE and LBE and even block sizes
larger than those produced with LBE are possible. The Predicate CPA
with ABE is defined as follows 9: 9 Please note that the location

is not modeled within this CPA
but is still needed, so having a
composite with a CPA for
location tracking is necessary.

• The abstract domain DP = (C, E , J·K) is given by the semi-lattice
E = (2π, TRUE, FALSE,v,t), where the partial order v⊆ E× E is
defined as e1 v e2 ⇐⇒ (e2 = T) ∨ (ψ1 ∧ ϕ1 ⇒ ψ2 ∧ ϕ2) and the
join operator t : E× E → E is defined as the least upper bound
of both operands, according to the partial order. The concretiza-
tion function is given by JeK = {c ∈ C | c |= ϕe}.

• The set Π of precisions contains the predicates used for predi-
cate abstraction. It is initially empty, and combined with CEGAR

upon finding infeasible errors, we compute the necessary pre-
cision increment to refute the infeasible counterexample using
Craig interpolation [Cra57].

• The transfer relation ⊆ E× G× E×Π computes the abstract
successor e′ = (ψ′, ϕ′) for an abstract state e = (ψ, ϕ) and a CFA

edge g = (l, op, l′) such that ϕ′ = SPop(ϕ) ∧ (ψ′ = ψ) holds.

• The merge operator merge : E× E×Π→ E is defined as follows
for two states e1 = (ψ1, ϕ1) and e2 = (ψ2, ϕ2):

e2 if this is an abstraction location

e2 if ψ1 6= ψ2

(ψ1, ϕ1 ∨ ϕ2) otherwise

• The stop operator is stopsep.

• The precision adjustment function prec : E×Π× 2E×Π → E×Π
creates for a given abstract state e with precision π and a given
set of abstract states with precisions a new abstract state ê with
precision π̂ depending on blk. The program location l, which is
necessary for blk, can be retrieved from another CPA that tracks
the location and is part of the composite analysis. While the com-
puted abstract state ê may be different to e, the precision stays the
same:ê = ((SPop(ϕ ∧ ψ))π, TRUE) if blk(e, l)

ê = e otherwise

16 B A C K G R O U N D

2.3.6 The Invariants CPA

In contrast to the Predicate CPA, the Invariants CPA [BDW15b] does
not use SMT solvers, but is based on expressions over intervals. The
important parts of this CPA will be introduced in the following para-
graph:

• The abstract domain of the Invariants CPA is based on expres-
sions over intervals. Abstract states in this domain are mappings
M : X → Expr from a set of program variables X to a set of arith-
metic expressions Expr, where Expr can consist of unary and
binary expressions U = {¬, ∼, −} and B = {+, ∗, /, %, =, <
, ,̂ |, ∨, &, ∧, �, �, ∪}, as well as program variables or disjunc-
tions of intervals I of the form [u, l] with u, l ∈ Z ∪∞. The (re-
cursive) definition is Expr ⊆ ((Expr× B× Expr)∪ (U× Expr)∪
X ∪ I).

• The set of precisions Π contains precisions π = (Y, n, w) with
Y ⊆ X, a maximal expression nesting depth n ∈ N and a
boolean flag w ∈ B specifying whether widening should be
used. All abstract states have the same precision. In general,
the Invariants CPA is tracking all program variables, but most
of them are over-approximated while joining states. Y is a
selection of important program variables, which are not over-
approximated while joining states. n specifies the accuracy of
inter-variable relations. With w set to TRUE widening is used to
sacrifice accuracy for efficiency. This is especially important for
programs with many loop iterations.

• The merge operator merge : E× E×Π→ E is defined as follow-
ing for two states e1 and e2:

widen(e1, e2) if w ∧ ¬differπ(e1, e2)

union(e1, e2) if ¬w ∧ ¬differπ(e1, e2)

e2 otherwise

differ is a function that checks if the expressions over the im-
portant variables Y are equal in both states, if not, we do not
merge at all. A widening is done according to w, where widen-
ing means that for each variable only a single (potentially infi-
nite) interval is assigned. union is the union of all values for
each variable.

While the precision is fixed for a complete verification run it can
be configured to be continuously-refined by using Algorithm 3 as a
wrapper around Algorithm 1. With this wrapper algorithm, only safe

2.4 PAT H I N VA R I A N T S 17

programs can be found, for all other programs, the result will be un-
known 10. For example, the first iteration of doing an analysis with 10 Due to the fixed precision we

do not know if a bug was found
because of being to coarse or
because the bug actually exists.

the Invariants CPA is done with an empty set of important variables
Y, and an expression nesting depth n of 1. With each iteration we can
now increase n as well as inserting variables into Y. If at some time,
no state violating the specification is in the reached set (indicated by
the method containsTargetState) Algorithm 3 terminates and tells
the user that the program is safe.

An additional feature of Algorithm 3 is that one can extract invari-
ants from it. This is for example necessary for k-induction-based anal-
yses (cf. Section 2.5). getCurrentlyKnownInvariants is the name of
the corresponding function.

Input: a configurable program analysis with dynamic precision
adjustment D = (D, Π, , merge, stop, prec),
a set of initial abstract states E,
an initial precision π0

Output: TRUE if no target state is found
Variables: a set reached of elements of E×Π,

a precision π,
an invariant Inv

1 π := π0
2 Inv := TRUE

3 Loop
4 reached := CPAAlgorithm(D, {(e, π)|e ∈ E}, {(e, π)|e ∈ E})
5 if ¬containsTargetState(reached) then
6 return TRUE

7 Inv := Inv ∧ ∨
s∈reached

s

8 π := RefinePrec(π)

Algorithm 3: Continuous Precision Refinement and Invariant Gen-
eration [BDW15b]

2.4 PAT H I N VA R I A N T S

A path invariant [BHMR07] is an invariant created for a path pro-
gram — the smallest syntactic subprogram containing an infeasible
error path. A path program may contain loops and therefore often
represents a group of infeasible error paths that would be found upon
unrolling the loop. By computing invariants capable of refuting more
than one infeasible error path, a weakness of CEGAR, loops leading to
a potentially infinite amount of necessary refinements, 11 can be over- 11 This happens, e. g., by

choosing disadvantageous
precision increments, such that
loops have to be unrolled and
the infeasible error is found
again in each loop iteration.

come.

18 B A C K G R O U N D

By combining CEGAR with invariant generation and using the gen-
erated invariants, for example, as precision increment instead of in-
terpolants, we are able to reduce the number of necessary refine-
ments, and therefore lower the analysis time. This approach was
initially implemented in CPACHECKER as a term paper. 12 Although12 See stieglmaier.me/

uploads/invariants.
pdf for more details.

the approach worked, there were some conceptual issues, which
will be addressed in this masters thesis. The implementation of
path invariants in CPACHECKER for the Predicate CPA was done us-
ing Algorithm 3 without having multiple iterations, but stopping
after the first one. 13 The computed invariants are retrieved via13 Path invariants are

computed when they are
needed, so

continuously-refining the
precision of the analysis takes

too much time as it is not
running in parallel and has

potentially no end. By using
Algorithm 3 we can access the

method for retrieving
invariants which is the reason

for using it.

getCurrentlyKnownInvariants and appended to the precision of the
analysis instead of computing interpolants. Due to the restriction of
the invariant generation to a certain path of the program, the gener-
ated invariants do not hold for the complete program, but only for the
given path program, which prevents, for example, directly conjoining
path invariants to the abstraction formula in a Predicate CPA. Instead,
we can only add them to the precision of the analysis.

2.5 k - I N D U C T I O N W I T H C O N T I N U O U S LY- R E F I N E D I N VA R I -
A N T S

k-induction is a model-checking approach which extends traditional
bounded model checking (BMC) based strategies, such that they are
not only able to find bugs, but also to prove safety. BMC is used in k-
induction to unroll the program until a certain limit k for the length of
the path is reached. If an error is found the analysis is finished. If not
we try to verify the program by induction. When this fails, we increase
k and start over with BMC. CPACHECKER uses split-case k-induction 1414 Another approach is

combined-case k-induction,
where the base and the step case

of the induction are not
separated.

and therefore we focus on it for this work [BDW15a]. The following
sections provide more details about the theory of k-induction and how
it can be implemented in a model checker.

2.5.1 Bounded Model Checking

BMC is a technique for software falsification. By setting a limit k to the
length of the unrolling of a program, only counterexamples up to a
certain length can be found. SAT or SMT solvers can be used to check
the satisfiability of unrolled paths through a program. BMC in com-
bination with the Predicate CPA can be done by setting blk to do no
abstraction until a certain bound is met (instead of doing an abstrac-
tion, e. g., for all loop heads). Due to the given bound this approach is
not able to make statements about the safety of a program, but instead
only found errors can be reported.

stieglmaier.me/uploads/invariants.pdf
stieglmaier.me/uploads/invariants.pdf
stieglmaier.me/uploads/invariants.pdf

2.5 k - I N D U C T I O N W I T H C O N T I N U O U S LY- R E F I N E D I N VA R I A N T S 19

2.5.2 k-Induction

k-induction uses BMC to check for the presence of counterexamples re-
garding a certain safety property P. If no counterexamples exists in a
path unrolled up to a length k we try to verify the program by induc-
tion. Consider a program with a loop: if P holds for k = 1 this means
that no violation of the property P exists when unrolling exactly one it-
eration of the loop, however a counterexample in one of the following
loop iterations could still exist. The safety property P is given by:

P(l, f) = ¬(∃s ∈ reached : loc(s) = l ∧ f)

It depends on a location l and a formula f . 15 The property holds as 15 When searching for errors in
the program, l will be the error
location and f is simply TRUE.

long as no state s is reachable (i.e. exists in the set reached) such that
the location of s (loc(s)) is equal to the error location l.

If we are able to prove that for any given iteration through the
loop P is not violated, and P also holds in the following iteration, we
may be able to prove safety of the analyzed program. If the induc-
tiveness check fails, we can increase k and try again. This is called
iterative-deepening k-induction [BDW15a]. Algorithm 4 shows the iter-
ative deepening, and the separation of the base and the step case. In
the following paragraphs, the algorithm will be explained in more de-
tail.

B A S E C A S E The base case consists of running BMC with the current
bound k. As described in Section 2.5.1, this unrolls all paths through
the program from initial program states denoted by the predicate I up
to a maximum amount of loop iterations k. If the formula in line 3 of
Algorithm 4 is satisfiable there exists a counterexample with a length
of at most k.

F O R WA R D C O N D I T I O N If the base-case formula is unsatisfiable
we can check whether there exists a path with a length greater than k
or whether we have fully explored the state space of the program. This
check is called f orward_condition and can be found in line 6. If the
state space is fully explored, the program is safe 16 and the algorithm 16 Besides proving safety of

programs we can also check
predicates on inductiveness, cf.
the paragraph on checking
inductiveness of formulas.

terminates.

S T E P C A S E In the step case we check that after any sequence of
k loop iterations without a counterexample there is also no counterex-
ample in the loop iteration k+ 1. This check is necessary if the forward
condition is not satisfiable. By leaving out the step_case computation
we would be using only BMC with continuously increasing k, such

20 B A C K G R O U N D

Input: an initial value kinit ≥ 1 and an upper limit kmax for the
bound k,
a function inc : N→N with ∀n ∈N : inc(n) > n for
increasing the bound k,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T,
and a safety property P

Output: TRUE if P holds, FALSE otherwise
Variables: the formulas base_case, f orward_condition and step_case,

an invariant Inv, a bound k
1 k := kinit
2 while k ≤ kmax do

3 base_case := I(s0) ∧
k−1∨
n=0

(
n−1∨
i=0

T(si, si+1) ∧ ¬P(sn)

)
4 if sat(base_case) then
5 return FALSE

6 f orward_condition := I(s0) ∧
k−1∧
i=0

T(si, si+1)

7 if ¬sat(f orward_condition) then
8 return TRUE

9 step_casem :=
n+k−1∧

i=m
(P(si) ∧ T(si, si+1)) ∧ ¬P(sn+k)

10 repeat
11 Inv := getCurrentlyKnownInvariants()
12 if ¬sat(∃n ∈N : Inv(sn) ∧ step_casen) then
13 return TRUE

14 until Inv = getCurrentlyKnownInvariants()
15 k := inc(k)

16 return unknown
Algorithm 4: Iterative-Deepening k-Induction [BDW15a]

that safety of programs could be proved when the f orward_condition
holds. We want the analysis to not unroll the complete state space, and
hope that the inductive step succeeds at some point. This check will
however often fail when model checking of software is done, as the
state space — for which the property should hold — consists typically
not solely of relevant states, but also of unreachable states for which
the property does not hold.

For example, if we consider a loop with a loop counter which has
only positive values, by using induction we try to prove the property
for all values, not only positive ones, and therefore the check fails (the
necessary information — the loop counter has only positive values —
may not be available in the induction hypothesis, which leads to the
failing check). To overcome this problem, we can add auxiliary invari-

2.5 k - I N D U C T I O N W I T H C O N T I N U O U S LY- R E F I N E D I N VA R I A N T S 21

ants to the satisfiability check of the step case formula. This can be
seen from line 9 to line 14. 17 If the conjunction of the auxiliary in- 17 The repeat-until loop is

rerun as long as more precise
invariants can be found during
the satisfiability computation of
the step case.

variant and the step-case formula is unsatisfiable we have proved the
program to be safe, otherwise we are not able to draw a conclusion
about the safety of the program with the current value of k. By in-
creasing k (cf. line 15) and running Algorithm 4 again from line 2, we
try to prove the program iteratively again.

A U X I L I A RY I N VA R I A N T S Auxiliary invariants are a key feature
for using k-induction for software model checking. In the scope of
Algorithm 4 they can be generated concurrently, for example with Al-
gorithm 3 and then retrieved when they are needed for the step-case
computation. This analysis may be able to prove the safety of the pro-
gram itself but this is not the main purpose of the invariant genera-
tor.

C H E C K I N G T H E k - I N D U C T I V N E S S O F A F O R M U L A In addition
to proving safety of programs we can also check the inductiveness
of a given predicate candidate_invariant for a program by setting
l = invariant_location and f = ¬candidate_invariant for P(l, f). With
k = 1 we check 1-inductiveness of the given predicate, no auxiliary
invariants are needed for this.

3
R E L AT E D W O R K

A typical area where auxiliary invariants are used is software verifi-
cation with k-induction-based model checkers [BDW15a, AS06, KT11].
Other than that invariants can be combined with CEGAR [BHMR07] or
they are computed in a separate (potentially parallel) analysis solely
for the purpose of improving the main analysis [GKN15].

The invariant generation itself is a separate process which is in-
tegrated into the software verifiers. While there exist some poten-
tially usable invariant generators [GR09, EPG+07, AS06] they are ei-
ther written for other programming languages like Lustre [HCRP91]
or they are not yet mature enough for analyzing real-world C pro-
grams (cf. Section 3.4). The only reasonably working invariant gen-
eration for our case is provided by CPACHECKER itself, and was initially
implemented for continuously-refined invariants used together with
k-induction [BDW15a].

3.1 M O D E L C H E C K E R S U S I N G I N VA R I A N T S

In practice, PKIND 18 and some configurations of the CPACHECKER 18 PKIND is a model checker
based on k-induction.framework often need auxiliary invariants to make the analysis termi-

nate at all. This is due to a general problem with k-induction-based
verifiers: k-induction itself does not distinguish between reachable
and unreachable parts of the space space of a program [BDW15a] 19, 19 For more information on this

problem, see Section 2.5.but safety properties often do not hold in unreachable parts of the
state space.

Invariant generation running in parallel to the model checker was
introduced by PKIND. Their invariant generation is also based on
k-induction, which is used to check candidate invariants synthesized
out of predefined templates. To leverage the advantages of paral-
lelism, k-induction for invariant generation is set up to firstly check
0-inductivity and return the valid invariants, and then continuously
increase k returning the newest invariants found for each k [KT11]. A
comparable approach was also implemented in CPACHECKER and fur-
thermore another invariant generation strategy based on a data-flow
analysis was added [BDW15a].

23

24 R E L AT E D W O R K

2LS [BJKS15] is a tool that is based on BMC, k-induction and ab-
stract interpretation. The three verification approaches are combined
such that with abstract interpretation, invariants are generated out of
given templates, and these invariants are used for k-induction. If an er-
ror location is found to be reachable, it is double-checked with BMC.

SEAHORN [GKN15] is a program-verification framework imple-
mented in LLVM[LA04]. It converts LLVM bitcode to horn clauses
and then, uses the PDR / IC3 algorithm with the SMT solver Z3 [HB12]
to verify the safety of the program. Additionally the IKOS [BNSV14]
library can be used to generate invariants from the LLVM bitcode,
which are then also encoded as horn clauses and added to the program
that should be verified. According to their evaluation, the additional
invariants improve the verification process such that some tasks that
ran into timeouts before (without auxiliary invariants), can be success-
fully verified.

DAFNY [LM10] is a programming language which has built-in sup-
port for specifications. These specifications are part of the code and
they are used for verifying the correctness of the corresponding pro-
gram with the DAFNY static program verifier. This verifier is run as
part of the compiler, and only if the code was successfully verified, a
binary is created. The given specifications can be seen as invariants
given by the programmer. This is also the main difference to the afore-
mentioned tools: invariants are not computed automatically, but in-
stead they are given by the user. If the compiler is not able to prove
the given invariants, it stops and asks for a more concise specification,
for example, the split of one specification into several lemmata can
help the compiler check the specification.

In contrast to k-induction-based model checkers, where the invari-
ants are strictly needed, this work aims at creating and using invari-
ants with analyses that do not need them, comparably to SEAHORN.
They can then be used to replace interpolants up to a certain degree,
or to just have some additional formulas to strengthen states at certain
locations with the aim of speeding up the analysis. Unlike DAFNY we
do not need user-interaction but instead completely rely on automatic
invariant generators.

3.2 PAT H I N VA R I A N T S

Path invariants are another approach to creating lightweight invari-
ants. The idea is to not use whole programs for invariant generation,
which in most cases is very costly, but instead generating invariants
only for small subprograms, by combining invariant generation with

3.3 L O O P A C C E L E R AT I O N 25

CEGAR. If a found error location is known to be infeasible, a path pro-
gram — a semantically correct program, consisting only of the error
path and all (potentially unrolled) loops in it — is created, which is
then used for invariant generation [BHMR07]. The generated invari-
ants are only invariants for this specific path program and not for the
whole program, and thus they can generally not be used in all cases
where real invariants could be used (cf. Section 2.4).

A first approach on implementing path invariants in CPACHECKER

exists 20, its capabilities and the usability were greatly enhanced for 20 The implementation of path
invariants in CPACHECKER was
done by me during a seminar
on Software Verification, it can
be found at stieglmaier.
me/projects.html.

this master’s thesis.

3.3 L O O P A C C E L E R AT I O N

Finding compact but still sufficiently precise loop invariants is a strug-
gle for real-world C programs. In many cases, loops are unrolled
which gets more ineffective with increasing loop sizes. A technique
for summarizing loops is acceleration. At first, a closed-form represen-
tation of the loop-behavior is computed, which is then turned into an
accelerator — a code snippet, skipping intermediate loop states to the
loop end in one step. While in general, finding accelerators is as dif-
ficult as the verification problem itself, restricting the acceleration to
some special cases, for example, linear loops [JSS14], makes it a good
addition for program analyzers [MWK+15]. The accelerator is not an
invariant itself but supports the invariant synthesis done by program
analyzers. Loop acceleration can either be done as a preprocessing
which results in a new, instrumented, code file, or during the analysis
as it is done with Aspic and C2fsm [FG10].

Loop acceleration is a heuristic that is used to support program
analyzers just like we evaluate the usage of lightweight invariants for
this case. A combination of both approaches is future work.

3.4 O T H E R I N VA R I A N T G E N E R AT O R S

Besides the directly mentioned invariant generation approaches in the
last two sections, there exist several standalone tools generating invari-
ants for certain programming languages:

INVGEN [GR09] is an automatic linear-arithmetic invariant gener-
ator for imperative programs. Invariants are synthesized at each cut-
point location (for example at loop entries) out of templates, consisting
of parameterized linear inequalities over program variables. INVGEN

takes as input a set of transition relations written in Prolog syntax. C

stieglmaier.me/projects.html
stieglmaier.me/projects.html

26 R E L AT E D W O R K

is only supported partially by a frontend which converts a subset of C
— neither function calls, nor arrays and pointers are supported — to
the required input language.

DAIKON [EPG+07] is a dynamic detector of likely invariants. Be-
fore running the program it is instrumented and during the runtime
the computed values are observed. This results in invariants that hold
for the execution of this single run, by for example changing the user
input of the program the found invariants may change. In contrast
to INVGEN, this approach fully supports C, the only drawback is the
lacking support for non-determinism, another essential part of almost
every program (e. g., user input, sensor data) 21.21 This does also mean that the

found likely invariants are only
applicable for a given user

input.
There exist much more invariant generators using different tech-

niques, e. g., abstract interpretation [LB04] or abduction [DDLM13],
another one is based on assertions in the program [Jan07]. All these
approaches have in common that they are bound to a specific input
language, and the implementation of these approaches do mostly also
only support this language without any extensions, making them un-
usable for invariant generation of real-world C programs.

Invariants can also be generated with CPACHECKER by running an
analysis and afterwards analyzing the set of reached states. The dis-
junction of all states for a location builds the invariant for that lo-
cation if the analysis was sound and every possible state was ex-
plored [BDW15a]. This approach is language agnostic 22, easy to use22 The only limit for languages

we have is given by the
supported languages of

CPACHECKER, which are
currently C and Java. The

technique itself is applicable to
any language.

and fulfills all requirements needed for this work. It will be used and
extended within this master’s thesis.

3.5 C O N D I T I O N A L M O D E L C H E C K I N G

While in traditional model checking, the result of a verification run is
either safe or unsafe 23, in conditional model checking [BHKW12], the23 Unknown may be a valid

result, too, in case of timeouts
or other problems.

result is a condition Ψ under which the analyzed program satisfies a
given specification. This is helpful in case of failures, as the consumed
resources are not wasted, but instead the output conditions may speed
up subsequent verification runs. For example, when a timeout occurs,
the model checker could summarize the successfully analyzed part of
the program in the output condition by declaring that as long as the
program execution stays within this part, the program is safe. For a
complete analysis, safe is represented by Ψ = TRUE and unsafe is repre-
sented by Ψ = FALSE. While this approach has not much in common
with the original idea of invariants, it is quite close to path invariants
(information for a certain path of a program is computed by a one anal-
ysis and used by another analysis) and sequentially combined analy-
ses 24 will be used for invariant generation in this thesis.24 For these analyses Ψ will

always be FALSE, but some other
information computed in

earlier analyses is passed to the
next ones.

Part II

G E N E R AT I N G A N D U S I N G A U X I L I A RY
I N VA R I A N T S I N C PA C H E C K E R

The following two chapters give detailed information
about conceptual changes and additions that had to be
made, as well as a documentation of the most important
features that were added to CPACHECKER.

4
C O N C E P T U A L E X T E N S I O N S

In this chapter, we first give an overview over the current state of
invariant generation and usage in CPACHECKER. Then, we introduce
some new concepts to improve the handling of invariants and also
explain some additional approaches to invariant generation.

4.1 A R C H I T E C T U R E B E F O R E T H I S T H E S I S

Before this master’s thesis, auxiliary invariants were mainly used for
analyses doing k-induction in CPACHECKER. The only other use-case
were path invariants, which also rely on Algorithm 3 for generating
invariants. In Figure 2, the most important parts for generating and
retrieving invariants in CPACHECKER are displayed.

There are several implementations of the InvariantGenerator
interface. First there is the CPAInvariantGenerator, a class that
uses a given CPA and Algorithm 1 without the possibility of adding
CEGAR or continously-refined invariants.

Then there is the AdjustableInvariantGenerator, which can
be wrapped around any CPAInvariantGenerator, and more im-
portantly, which can be used to adjust some conditions of the invari-
ant generation, for example, resetting the reached set to only con-
tain the initial state, and increasing the precision before restarting
the CPAAlgorithm. The AutoAdjustingInvariantGenerator is a
wrapper around an AdjustableInvariantGenerator. With this

Figure 2: Invariant generation in CPACHECKER (old)

29

30 C O N C E P T U A L E X T E N S I O N S

implementation, the given function to adjust the invariant generation
is called automatically upon a finished invariant generation run, and
then invariant generation is started again. This is done in a loop until
either the invariant generation is cancelled or the invariant generator
proved the safety of the program.

Besides the CPAInvariantGenerator, all invariant generator
implementations are package private and therefore hidden from users.
Using them is only possible via the CPAInvariantGenerator by
setting the corresponding configuration options. Moreover, invariant
generation can be either executed sequentially, or it can be run in par-
allel on a separate thread 25. The method isProgramSafe indicates25 For both options calling the

start method starts the
invariant generation.

if the invariant generator was able to prove the safety of a program.
In the case that safety was proved by the invariant generator, we can
stop the overall analysis and return that the program is safe. This is
not easily possible, as according to Algorithm 1 the returned value of
an analysis is its reached set, which either contains an error state (the
program is unsafe) or does not contain an error state (the program is
safe). From inside the CPA we can however not change the returned
reached set. This is only possible in the algorithm. Therefore, the only
possible option is to remove all currently contained error states from
the reached set of the CPA and additionally removing all states from
the waitlist. A weakness of this approach is, that the returned reached
set does not contain the information that the specification violations
in the the program are not reachable. And even worse the violations
would be found again if we do not manually remove all pending states
from the waitlist 26. Thus, we have an invalid reached set as result of26 Instead of the reached set of

the primary analysis it would
be better to return the reached
set of the invariant generator,
which is however not possible

with the current available
algorithms.

the analysis in the case we want to use the shortcut as soon as the
invariant generator proved safety.

Another drawback of the current invariant generation is the encod-
ing of the invariants. According to the InvariantSupplier inter-
face, an invariant is always a BooleanFormula 27. This restricts the

27 A BooleanFormula is always
an SMT formula, from our SMT

backend JavaSMT, cf.
github.com/sosy-lab/

java-smt

use of the invariant generator to analyses based on SMT formulas and
more importantly, the formulas need to be encoded in the same way
in both analyses, otherwise they cannot be combined. As an example,
it is sufficient to consider an analysis that works with bit-precise SMT

formulas, and an invariant generator that only approximates values
using unbounded integers. Even if the naming of the variables in the
formulas generated by the invariant generator is equal to the one of
the primary analysis, due to the different types, the invariants are un-
usable. While this is a quite obvious requirement, there are also some
hidden pitfalls, especially when it comes to pointer aliasing. In the
following two sections, we will introduce our conceptual additions to
overcome all mentioned problems, and also show our implementation
of these additions.

github.com/sosy-lab/java-smt
github.com/sosy-lab/java-smt

4.2 R E A C H E D S E T- B A S E D D ATA E X C H A N G E B E T W E E N A N A LY S E S 31

4.2 R E A C H E D S E T- B A S E D D ATA E X C H A N G E B E T W E E N A N A L -
Y S E S

As mentioned in the last section, due to the return type of the inter-
face InvariantSupplier, using auxiliary invariants in CPACHECKER

is strongly tied to SMT-based analyses. There, each analysis that is sup-
posed to use invariants generated with an InvariantGenerator im-
plementation needs to know internal information about the encoding
of the formulas to be able to use the invariants correctly.

By removing the InvariantSupplier completely, and instead
returning the generated reached set when get is called on an instance
of InvariantGenerator, we solve the problem of invariants being
only usable within SMT-based analyses 28. By retrieving all states for a 28 For better encapsulation the

return type of get will not be a
reached set but a wrapper
around one or more reached
sets. More information on this
can be found in Section 4.4.

certain location from the reached set, each consumer can then create
the invariant in any encoding — SMT-based or not — individually.

While in principle this solves all encoding related problems, and
makes invariants usable for all analyses in CPACHECKER, the handling
of the invariant encoding was just moved to another location. Before
our changes, implementations of the InvariantSupplier interface
had to take care of the encoding such that it matches the encoding of
the Predicate CPA 29. Now, because we do not have the invariant as a 29 The Predicate CPA was the

only analysis which used
invariants in combination with
k-induction.

BooleanFormula, but instead we have the reached set, we need to
do the transformation ourselves in an appropriate place. For that rea-
son, we added the FormulaInvariantSupplier, a wrapper class
for reached sets, which computes the invariant depending on given
parameters such as the location or the information about pointer alias-
ing.

The next section shows a further generalization of asynchronous
invariant generation in CPACHECKER that is also based on analyses ex-
changing reached sets. Synchronous invariant generation — before
the consuming analysis is run — is also possible. Therefore we extend
the sequential combination of analyses (cf. Section 2.3.3) such that the
reached set of an analysis that was run prior to another analysis can
be used in the later analysis.

4.3 PA R A L L E L A N A LY S E S

Besides the encoding and the limitation of invariants to having the
type BooleanFormula, another problem with the implementation of
the invariant generation in CPACHECKER is that if an invariant generator
proves safety we could potentially use its result as a shortcut, instead
of the result of the primary analysis. However from inside the CPA

32 C O N C E P T U A L E X T E N S I O N S

in a CPAAlgorithm it is not possible to return something else than the
reached set used by this CPA. Therefore we create an algorithm that
has the following abilities:

1. It wraps several analyses that will be executed in parallel.

2. It allows distributing finished reached sets 30 to other, running,30 Usually each analysis
results in one reached set. By

using a variation of
Algorithm 3 an analysis could
return more reached sets, with

increasing precision.

analyses.

3. It takes the first valid reached set 31 of its component analyses,

31 The validity of a reached set
depends on the soundness of the

analysis, e. g., for soundness
the waitlist has to be empty if

no target state is in the reached
set, because if the waitlist is not

empty we have not fully
explored the state space, and

can therefore not be sure that
further exploration does not
result in finding a reachable

specification violation.

returns it, and aborts all other analyses, because their results are
no longer important.

Item 1 and 2 provide the basic feature of having an asynchronously
running analysis, like it exists in CPAInvariantGenerator. Out of
the finished reached sets, invariants can be computed. The feature of
having continuously-refined invariants implemented within the class
AutoAdjustingInvariantGenerator is also available in the new
ParallelAlgorithm (cf. Algorithm 5). For ease of presentation, we
assume that all analyses are sound and precise and therefore no ex-
tra handling is required. In the implementation, soundness (no target
states missed) and precision (target states are really target states) of
an analysis are taken into consideration. If some conditions are not
matching, e. g., the analysis is unsound but no specification violation
was found, we ignore the result of this analysis and use the result of
another of the concurrently running analyses if available.

Instead of invariants, the reached sets out of which the invariants
can be extracted are given by the variable aggregated. The invari-
ants can be retrieved orthogonally to getCurrentlyKnownInvariants

from Algorithm 3. While in the CPAAlgorithm no specific retrieval
of reached sets is specified, we consider that calling this method will
be up to the CPAs and can, for example, be done in the transfer re-
lation. The method containsTargetState is the same as for Algo-
rithm 3. The methods cancel_other_threads and join are used for
canceling concurrently running analyses, and for waiting on each con-
currently running analysis to stop.

Overall, the refactoring of extracting the asynchronous invariant
generation into the more generic ParallelAlgorithm has two major
benefits. First, if safety can be proved with the invariant generator,
we can use it without the need of incomplete reached sets (cf. Sec-
tion 4.1). Second, the combination of several analyses (all of them can
potentially be used as invariant generators) in parallel was not possi-
ble before, but is now. This can, e. g., be used like a sequential combi-
nation of analyses, with the difference that these analyses are run in
parallel.

4.3 PA R A L L E L A N A LY S E S 33

Input: a list L of quadruples with the following components:

1. a configurable program analysis with dynamic precision
adjustment D = (D, Π, , merge, stop, prec),

2. a set R0 ⊆ (E×Π) of abstract states with precision,

3. a subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the set of elements of the semi-lattice of D,

4. and a boolean flag that shows if the analysis should be
continuously-refined

Output: the set reached and the set waitlist
Variables: a set reached of elements of E×Π,

a set waitlist of elements of E×Π,
thread-local versions of both variables,
a thread-safe set aggregated of sets reached for
communication between analyses

1 aggregated := {}
2 For each (CPA, R0, W0, re f ined) ∈ L do in parallel
3 if re f ined then
4 Loop
5 reached := CPAAlgorithm(CPA, R0, W0)
6 R0 := {(e, RefinePrec(π))|(e, π) ∈ R0}
7 W0 := {(e, RefinePrec(π))|(e, π) ∈W0}
8 if waitlist ⇐⇒ ∅ then
9 aggregated := aggregated∪ {reachedthread}

10 if ¬containsTargetState(reachedthread) then
11 reached := reachedthread
12 waitlist := waitlistthread
13 cancel_other_threads()
14 break

15 else
16 reachedthread := CPAAlgorithm(CPA, R0, W0)
17 if waitlist ⇐⇒ ∅ then
18 aggregated := aggregated∪ {reachedthread}
19 reached := reachedthread
20 waitlist := waitlistthread
21 cancel_other_threads()

22 join()
23 return (reached, waitlist)

Algorithm 5: ParallelAlgorithm

34 C O N C E P T U A L E X T E N S I O N S

Figure 3: Invariant generation for SMT-based analyses (new)

4.4 A R C H I T E C T U R E A F T E R T H I S T H E S I S

With the new concepts introduced in the last sections, some changes to
the software architecture of CPACHECKER become necessary. First, we
need to implement the ParallelAlgorithm 32 and a thread-safe means32 See Figure 1 for the

alignment of this algorithm in
CPACHECKER.

for exchanging reached sets, called AggregatedReachedSets in
this thesis. Additionally, we have added the possibility of passing
an AggregatedReachedSets object, from one analysis to the next,
in a sequential combination of analyses. Due to our changes the asyn-
chronous invariant generation can now be done as a parallel analy-
sis. Therefore we can remove this functionality and the classes that
are responsible for the (automatic) adjustment of the analysis from
the former InvariantGenerator implementation. The only feature
which is still available via the CPAInvariantGenerator is running
an analysis sequentially. This feature is different to a sequential combi-
nation of analysis because the CPAInvariantGenerator can be run
on the fly inside another analysis. This is, for example, important for
path invariants later on.

Figure 3 shows how invariants for SMT-based analyses can be com-
puted. The structural alignment of the ParallelAlgorithm can be
found in Figure 1. In addition to the functionality shown in Algo-
rithm 5, the implementation is able to exclude certain reached sets
from the AggregatedReachedSets, such that they are only used as
direct return values of the ParallelAlgorithm if applicable. The same
applies to the sequential combination of analyses, where one can con-
figure that later analyses use reached sets of the earlier executed anal-
yses.

5
A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H
I N VA R I A N T S

Before this master’s thesis, invariants were used in CPACHECKER only
for k-induction and path invariants 33. The implementation of path in- 33 Path invariants are a

Predicate CPA specific feature.variants was not complete and had issues related to the problems with
the CPAInvariantGenerator and InvariantSupplier as stated
in Section 4.1. In the following, we describe the various options for
utilizing invariants for enhancing the Predicate CPA. First, we focus
on locations where invariants can be added, then, new approaches to
invariant generation are described. In the last section of this chapter,
we introduce a generalized handling of invariants for the Predicate
CPA.

5.1 I N VA R I A N T I N J E C T I O N S T R AT E G I E S

In Section 2.3.5 the Predicate CPA was introduced. Its states consist of
two formulas, a path formula ϕ and an abstraction formula ψ. Addi-
tionally, each state has a precision π, which consists of predicates that
are used to compute the abstraction formula at abstraction locations
specified by the blk operator. The three components, precision, path
formula, and abstraction formula, are potential candidates for adding
invariants. The following sections provide more detailed insights on
the advantages and drawbacks of adding (potentially-) invariant for-
mulas 34 to each of these parts. 34 Differences in formula

encoding (mainly due to
pointers, or variables not
tracked in the consumer
analysis) may lead to having
potentially invariant formulas
instead of definite invariants.

5.1.1 Using Invariants as Precision Increment

The precision π of the Predicate CPA contains predicates that are used
for computing the abstraction formula during precision adjustment.
During a normal analysis, the precision is initially empty, and predi-
cates are added in the refinement step of the CEGAR algorithm (cf. Al-
gorithm 2). The new predicates, called precision increment, are usu-
ally computed by interpolation, but they can also be generated in other
ways, for example by heuristically mining them from the CFA 35. In this 35 Assume statements could,

e. g., be used as predicates.approach, we add invariants as precision increment. This is the safest
way of using potentially-invariant formulas compared to the other

35

36 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S

two injection options, as it is not important that the added formula
actually is an invariant for the running analysis. When computing the
new abstraction formula ψ′ = (ϕ ∧ ψ)π with the precision π we can
use arbitrary predicates pi as precision objects 36. These predicates are36 We do also need a

propositional variable vi for
each pi, cf. Section 2.3.5.

only part of the new abstraction formula if ϕ ∧ ψ ∧∧pi∈π(pi ⇐⇒ vi)

has satisfying assignments containing the predicates. Thus, adding in-
valid predicates to the precision has no negative effect on the accuracy
of the analysis. Overall, adding invariants as predicates to the preci-
sion is safe, but comes with the drawback that performance may suffer,
as the all-sat computation becomes more expensive with growing size
of the precision. The performance drawback depends on the used in-
variants: if they are strong enough to refute the counterexample found
with CEGAR without further predicates, then the performance should
not be differing much from only using interpolation, as the size of the
precision does not increase more than it would be increasing by doing
interpolation.

5.1.2 Appending Invariants to the Path Formula

The path formula ϕ is computed in the transfer relation of the Predi-
cate CPA by using the strongest post operator SPop such that the suc-
cessor abstract state e′ = (ψ′, ϕ′) for an abstract state e = (ψ, ϕ) and
a CFA edge g = (l, op, l′) is given by ϕ′ = SPop(ϕ) and ψ′ = ψ. Dur-
ing precision adjustment, if a block abstraction should be done, the
path formula is reset to TRUE and the abstraction formula is computed.
Conjoining an invariant inv to the path formula before computing the
abstraction results in the formula ψ′ = (ϕ ∧ ψ ∧ inv)π due to the as-
sociativity of the logical and. Due to the immediate abstraction the
invariant has only a very small chance of affecting the analysis. There-
fore, we also conjoin the invariant to the new path formula after the
abstraction 37. Thus, instead of resetting the path formula to TRUE we37 The necessity of this step is

explained later on in the
example in Section 5.1.4.

reset it to the invariant in this case. This implies that the conjoined
formula needs to be an invariant, a potential invariant is not enough,
as otherwise we create an incorrect formula. An obviously incorrect
example is to add FALSE as invariant, which makes the whole formula
FALSE, and therefore leads to wrong results for the analysis. In contrast
to that, adding TRUE, which is always an invariant, does not change the
abstraction computation, just as intended. As stated in the introduc-
tion of this section, we do not have drastically wrong invariants such
as FALSE, but there may be some encoding issues 38. In the evaluation,38 Path invariants are also not

applicable here, this is
discussed in Section 5.2.1.

we will see that in most cases, it is safe to use the invariants generated
by CPACHECKER for appending it to the path formula, too. Additionally,
this approach doesn’t have the performance drawback that may result
from incrementing the precision with invariants.

5.1 I N VA R I A N T I N J E C T I O N S T R AT E G I E S 37

Figure 4: A CFA for illustrating the usage of invariants

5.1.3 Appending Invariants to the Abstraction Formula

Lastly, we can append computed invariants to the abstraction formula
directly ψ′ = (ϕ ∧ ψ)π ∧ inv. In this approach, it is critical that the
conjoined formula is an invariant. There is no filtering of invalid pred-
icates, and also no abstraction of the path formula that abstract from
potentially invalid formulas such that we still have valid formulas af-
terwards 39. If we are sure that we have invariants, this is the approach 39 Adding non-invariant

formulas to the path formula is
still unsound, but might not be
noticed due to the described
effect.

that is the least detrimental for performance, as neither the size of the
path formula nor the size of the precision increases, both of which
might have negative impact on the performance of the satisfiability
query used for the abstraction.

5.1.4 Combining Invariant Use-Cases

The approaches on utilizing invariants in the Predicate CPA intro-
duced in the last three sections can also be combined. For example,
appending invariants to the path formula is not helpful if the precision
does not contain the necessary predicates. By adding an invariant to
the path formula and the precision, we can therefore increase the ac-
curacy of the analysis. In the following we will show the differences
on an example.

Consider the control flow shown in Figure 4, the global precision
π = {i < 10} and the location invariant i = 2 for location 2. blk con-
siders locations in front of conditions as being abstraction locations.
We start with the state e0 = (TRUE, TRUE) and compute the strongest
postcondition for the path formula for the transition of location 1 to 2,
the successor is then given by e1 = (TRUE, i = 2). Location 2 is right be-
fore two assume edges, and according to blk we treat it as the end of
a block. Thus, we have to compute the abstraction before continuing.
Now we have several options: we can refrain from using invariants
at all (No Inv), we can add the invariants to the precision (Prec), we

38 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S

Table 1: Differences in using invariants at different locations in the Predicate
CPA

Strategy New Abstract State Possible Transitions

No Inv (i < 10, TRUE) 2→ 3, 2→ 4
Prec (i = 2∧ i < 10, TRUE) 2→ 3
PF (i < 10, i = 2) 2→ 3
AF (i < 10∧ i = 2, TRUE) 2→ 3
Prec + PF (i = 2∧ i < 10, i = 2) 2→ 3
Prec + AF (i = 2∧ i < 10∧ i = 2, TRUE) 2→ 3
PF + AF (i < 10∧ i = 2, i = 2) 2→ 3
Prec + PF + AF (i = 2∧ i < 10∧ i = 2, i = 2) 2→ 3

can append them to the path or abstraction formulas (PF, AF), or any
combination of these.

Table 1 shows the different strategies, the path formula and the ab-
straction formula after the abstraction, and the feasible transitions in
the CFA. By simplifying the given formulas, some predicates could be
omitted, but this is an expensive task for the SMT solvers, so we do not
simplify them here to show the potential redundancy caused by using
invariants. What can be seen is that any of the previously described
invariant-usage approaches is sufficient to prevent the analysis from
taking an invalid transition. For PF, this is only the case because we
use the invariant as the new path formula instead of TRUE. Otherwise,
the information that i = 2 would be lost due to the coarse precision,
and the analysis would behave as if no invariants are used. Addi-
tionally, it does not make sense to use combinations of one of these
approaches with AF, because this always results in duplicate clauses
in the new formula. In case of PF + AF this is not obvious, because
the duplicate formula will only come at the next abstraction, when the
old abstraction already contains the invariant, and the path formula
which gets conjoined to the abstraction formula does also contain it.
In contrast to PF + AF, the combination of adding invariants to the
precision and conjoining them to the path formula makes sense, oth-
erwise one cannot be sure that the invariant conjoined to the path for-
mula provides any benefit, because the precision might be too coarse.
Using this combination is close to AF as it is very likely that the in-
variant predicate from the precision holds and is therefore used in the
abstraction formula afterwards, this can also be seen in Table 1, the
only difference is that for Prec + PF the new path formula starts with
the invariant instead of TRUE.

Overall, the approaches Prec, PF, Prec + PF and AF seem to be
most promising, where PF should be worse than Prec + PF due to

5.2 N E W I N VA R I A N T G E N E R AT I O N A P P R O A C H E S 39

the issues discussed in the last paragraph. Prec is the best option
when only potentially-invariant formulas are used. For the other ap-
proaches, we need to be sure that we have real invariants. In the eval-
uation, we will have a look at all possible combinations of invariant
usage strategies and compare their performance.

5.2 N E W I N VA R I A N T G E N E R AT I O N A P P R O A C H E S

In Chapter 4 the generalization of asynchronous invariant generation
was introduced. In this section we explain all invariant generation ap-
proaches that are used later on in the evaluation. All of them are im-
plemented in CPACHECKER and do not rely on external invariant gen-
erators. The approaches are divided into three parts: first we focus
on invariants computed out of reached sets. Second we move on to
sharing precisions. The third part consists of lightweight invariant-
generation heuristics that are tied to the usage of the Predicate CPA.

5.2.1 Sharing Finished Reached Sets

By generalizing the idea of continuously-refined asynchronous invari-
ant generation in Section 4.4, we now have the possibility to use fin-
ished reached sets not only from CPAInvariantGenerator for invari-
ant generation. For example, we can have a sequential combination
of analyses where the first analysis is very coarse. Due to infeasible
counterexamples, we can not use the result of this analysis, but we can
use its reached set for generating invariants for the next analysis, such
that some of the computational effort of the first analysis was not com-
pletely wasted. By combining analyses with different strengths this
way, we might be able to prove safety of programs where it would not
be provable otherwise. With parallel analyses, reached sets can only
be exchanged in a meaningful way, if one of the parallel analyses is
continuously refined 40, such that we have a quickly terminating anal- 40 Even running a fast analysis

in parallel, which is not
continuously refined, does not
make much sense. This analysis
could then simply be used in a
sequential combination and
provide the computed reached
set already at the beginning to
the consumer analysis.

ysis whose reached set can be provided to the other running analyses.
Both approaches will be analyzed exhaustively in the evaluation.

A special case, neither completely sequential nor parallel, are
path invariants. They are computed sequentially, not before the con-
sumer analysis is executed, but in between instead. Path invari-
ants [BHMR07] for the Predicate CPA were introduced in CPACHECKER

as part of a seminar work. They suffered from encoding problems
described in Section 4.1 but this was not recognized, because path
invariants can only be used as precision increment (cf. Section 2.4.
For this thesis, path invariants were rewritten and integrated with the

40 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S

other invariant generation approaches. For generation of path invari-
ants we run an analysis restricted to the counterexample path inside
the current analysis via the CPAInvariantGenerator. Afterwards,
the invariants are retrieved location-wise and used as precision incre-
ment.

While sharing reached sets is a generic approach that can be used
by any analysis, some additional code is necessary such that an other
analysis can take advantage of the given reached sets. For the Predi-
cate CPA it is important that the invariants are SMT formulas. Creat-
ing an SMT formula out of a state in a reached set is not implemented
for all CPAs available in CPACHECKER. Thus we are restricted to the
analyses working on states we can use, which are those, implement-
ing the interface FormulaReportingState in CPACHECKER. By us-
ing the FormulaInvariantsSupplier introduced in Section 4.2 we
can then obtain invariants out of reached sets containing states of this
kind.

5.2.2 Sharing Precisions

For sequential combinations of analyses, we do not only have the pos-
sibility to use the reached set of the earlier analyses in the later ones,
but we can also dump the precision of the earlier analysis and use this
precision in later analyses. This is, however, bound to certain CPAs as
the precision is a CPA-specific object. Still, a fast primary analysis dis-
covering some initial predicates for a later, slower but more precise,
analysis could make sense. This approach does not rely on having
real invariants, but it is related to adding invariants to the precision as
described in Section 5.1.1.

5.2.3 Lightweight Heuristics

In this section we focus on invariant generation via heuristics. These
heuristics are not guaranteed to find invariants, so their applicability
greatly depends on the computational overhead they have in case no
invariants are found. For this thesis, three different heuristics were
invented which are described in the following paragraphs.

C H E C K I N G I N T E R P O L A N T S W I T H k - I N D U C T I O N Slicing an in-
feasible counterexample path into distinct — still infeasible — path
prefixes and then selecting the prefix which should be used for refine-
ment is a technique to guide the refinement [BLW15]. We do not se-
lect one prefix out of the computed prefixes, but instead we take all

5.3 G E N E R A L I Z E D I N VA R I A N T S H A N D L I N G I N T H E P R E D I C AT E C PA 41

of them and check each on 1-inductivity with k-induction. The non-
determinism of the SMT solver allows us to compute even more pre-
fixes by creating interpolants more often for the same formula. The
amount of unique interpolants found depends on the amount of pos-
sible solutions, so we chose to have three interpolation runs for the
same formula as default. This number can be changed via a configu-
ration option. The invariants discovered this way, can then be used to
either increment the precision or conjoining them to the path formula
or to the abstraction formula.

I N D U C T I V E W E A K E N I N G O F PAT H F O R M U L A S Formula slicing
is a technique for finding an invariant by weakening a given loop pre-
condition based on the effects of the loop transitions [KM16]. The
weakening process is guided by counterexamples-to-induction by an
SMT solver. This approach is implemented in CPACHECKER. A complete
analysis configuration is available with the name formula-slicing. We
use this technique as a blackbox and provide the necessary input: the
path formula before the loop start and the loop transitions. The result
when using this blackbox is an invariant which we can use. In the
worst case, the invariant is simply TRUE, so besides additional runtime
we have no bad side-effects and the generated invariants can be used
to either increment the precision, or conjoining them to the path or
abstraction formula.

C H E C K I N G C O N J U N C T S O F PAT H F O R M U L A S O N I N D U C T I V I T Y

Equally to weakening the path formula by removing clauses until the
formula is inductive, we have added a heuristic that at first transforms
the path formula into conjunctive normal form (CNF) 41 and then splits 41 Our CNF conversion tool

does support to not create a full
CNF but to only have it on
higher levels such that the
exponential explosion of this
transformation can be omitted.

the formula into its conjuncts. The conjuncts are separately checked
on 1-inductivity with k-induction. The invariants discovered this way,
can then be used to either increment the precision, or appending them
to the path or abstraction formula.

5.3 G E N E R A L I Z E D I N VA R I A N T S H A N D L I N G I N T H E

P R E D I C AT E C PA

In the last sections several different invariant generation and usage
strategies for the Predicate CPA were introduced. To simplify us-
age and provide a clean interface, all invariant generation approaches
are centralized in the class PredicateCPAInvariantsManager
(cf. Figure 5).

This class aims at providing all necessary features and hiding all
invariant-generation related details. It does also handle the computa-

42 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S

Figure 5: Managing invariants in the Predicate CPA

tion of invariants from reached sets of other analyses. The generation
of invariants is strictly separated from the retrieval of invariants in
order to increase the performance. In earlier implementations, invari-
ants for a certain location were generated lazily as soon as they were
requested. However, this is not possible for all invariant generation
strategies we have. Additionally, when considering conjoining invari-
ants to the path formula or the abstraction formula during precision
adjustment, this happens very often, and thus takes a lot of time 42.42 Abstractions are computed

as indicated by blk, this is
usually much more often than,

e. g., refinements are computed.
Our solution is to switch from the lazy generation approach to

a more eager one: Now invariants are computed during refinement.
The reasons for this solution are:

• the usually small amount of refinements, leading to few invari-
ant generations but also guiding invariant generation to the im-
portant locations of the program 43, and43 Computing invariants for

program locations not leading
to an error takes time that does

not need to be spent.
• the availability of information necessary for invariant computa-

tion, for example path invariants can only be computed during
refinement as they need an infeasible counterexample path and
information about the contained loops.

The following two sections provide detailed information about in-
variant generation and its usage.

5.3.1 Invariant Generation

Invariant generation in the Predicate CPA is split into three parts. First,
we have the invariants computed out of reached sets of other, con-
currently or sequentially running, analyses (we call them global in-
variants here), and at second, we have the invariants computed by
the heuristics mentioned in the previous sections. The third part are

5.3 G E N E R A L I Z E D I N VA R I A N T S H A N D L I N G I N T H E P R E D I C AT E C PA 43

path invariants which are handled separately from the other invariant-
generation approaches as their invariants cannot be used for conjoin-
ing them to the path or abstraction formula. The methods described
in the following paragraph can also be seen in Figure 5.

Global invariants do not need further computation besides taking
the reached sets and conjoining all states per location. Thus, updating
them is easy and can be done by calling updateGlobalInvariants.
This method is necessary to avoid changes to the global invariants be-
tween several invariant retrievals, for example, when retrieving invari-
ants for adding them to precisions along an infeasible counterexample
path, we want the invariants to come from the same reached set(s),
and not from different ones. Due to the probably concurrently added
new reached sets we need to decouple the updates on stored reached
sets in the AggregatedReachedSets object from the reached sets
used for invariant generation.

For locally computing invariants with one or more of the men-
tioned heuristics, the method findInvariants has to be called.
There are several configuration options for this:

• The heuristics that should be used can be specified as a list, with
the option cpa.predicate.invariants.generationStrategy.

• The heuristics in the list are executed in the given order, either
until a heuristic succeeds in generating an invariant, or if all
given heuristics should be used depending on the configuration
option cpa.predicate.invariants.useAllStrategies.

• A time limit for invariant generation can be given with the op-
tion cpa.predicate.invariants.timeForInvariantGeneration.

• Besides the mentioned options there may also be separate op-
tions for each of the heuristics such as the analysis that should
be used for the generation of path invariants.

Invariants generated in this way are cached for later usage, subse-
quent calls of findInvariants resulting in different invariants do
not replace earlier results but are conjoined to them.

In contrast to that, path invariants can only be generated and re-
trieved at once, with the method findPathInvariants. Because
they only hold for the specific given path, they are not cached but can
only be used directly for the path they were generated for.

44 A U G M E N T I N G P R E D I C AT E A N A LY S I S W I T H I N VA R I A N T S

5.3.2 Invariant Retrieval

Retrieving invariants is done via the method getInvariantFor, re-
ceiving a location and the necessary information about pointer alias-
ing 44 as input. Depending on the configuration, invariants are re-44 Variables that are aliased by

pointers are encoded in a
special way, this encoding has

to be added to the generated
invariants.

trieved from other reached sets (if available) and conjoined to the lo-
cally computed invariants by a heuristic. Calling getInvariantFor
several times in a row for the same location and with the same pointer
aliasing information is guaranteed to return the same invariants if
none of the invariant-generation methods introduced in the last sec-
tion were called in the meantime. For also having the information
about the usage strategies available and configurable at one location
in the Predicate CPA and not spread over several classes, we added
the methods appendToAbstractionFormula, addToPrecision,
and appendToPathFormula which indicate if invariants should be
used for the given purpose.

Part III

E VA L U AT I O N A N D C O N C L U S I O N

Within the next three chapters, we provide an exhaus-
tive evaluation of different invariant generation strategies,
showing their advantages and disadvantages. Further-
more, we give information about the problems we encoun-
tered. Lastly, we conclude the thesis by summarizing what
we have accomplished, and giving and outlook on possible
improvements for the future.

6
E VA L U AT I O N

In this chapter, the invariant generation and usage strategies intro-
duced earlier will be evaluated regarding their performance. We use
different kinds of programs for the evaluation and also several config-
urations to compare them to the assumed performance given in Sec-
tion 5.1.4. We start by describing our evaluation setup and the used
benchmarks, then the used CPACHECKER configurations are shown, and
finally we take a look at the results.

6.1 E VA L U AT I O N E N V I R O N M E N T

The evaluation was performed on machines with two 2.6 GHz Octa
Core CPUs (Intel E5-2650 v2) and 128 GB of RAM. The operating sys-
tem is Ubuntu 16.04.1 LTS (64-bit) with a Linux 4.4.0-34 kernel. For
the Java support OpenJDK 1.8 is used. The CPACHECKER revision for
the evaluation is 23 084 (trunk). 45 Each verification run was limited to 45 The configurations using

path invariants were executed
with revision 23146
(pathInvariants-fix). This
revision contains a fix which
only affects path invariants,
and due to time limitations all
benchmarks could not be rerun
with this revision. The fix is
also available in trunk.

2 physical CPU cores, which corresponds to 4 virtual CPU cores due to
hyper-threading. RAM was limited to 8 GB. The overall CPU time for
single-analysis verification runs was limited to 300 s, the concurrent
or sequentially combined analyses have an overall CPU time limit of
600 s. This time limit may then be further divided by CPACHECKER in-
ternally, e. g., for concurrent analyses we aim at having approximately
300 s for both of the analysis parts. The Java heap was set to 6 GB
for all analyses. For each verification run the overall amount of CPU
time 46 and memory usage is measured. The benchmark execution and 46 This time measure refers to

the CPU time of the whole
verification run, including all
threads.

overall resource measurements are done with the BenchExec frame-
work. 47

47 More information on
BenchExec can be found at
github.com/sosy-lab/
benchexec.

In all tables time consumption will be given in hours with three
significant digits unless it is specified in another way. In tables we
refer to all programs, including timeouts, unknowns and other errors
as all, the correct programs are a subset of this where we talk about all
correct programs of a single configuration. For comparison purposes
we also add information about the equal verification runs for a set
of configurations. These numbers refer to the runs being analyzed
correctly with each of the configurations in the table.

47

github.com/sosy-lab/benchexec
github.com/sosy-lab/benchexec

48 E VA L U AT I O N

6.2 B E N C H M A R K P R O G R A M S

The benchmark programs we used are taken from the SV-
Comp 2016. 48 We excluded the categories containing verification48 The SV-COMP is a

competition among automated
software verifiers, more

information can be found at
sv-comp.sosy-lab.org/

2016/.

problems regarding memory safety, floats, termination, and concur-
rency. They are only analyzable with specific configurations of
CPACHECKER which we do not use, or cannot be analyzed at all at the
moment. Furthermore we did only use the program files of the other
categories that needed at least 1 refinement while using our baseline
configuration introduced in the next section. Tasks that can be solved
without refinements will never be affected by our experiments, as in-
variants are only generated during refinements, so they are filtered
out to present a clearer picture. In the end our benchmark set contains
3 488 verification tasks, where 2 413 are considered being safe and 1 075
are considered being unsafe.

6.3 U S E D C O N F I G U R AT I O N S

The implemented invariant generation and usage approaches allow
us to evaluate many different configurations. As the Invariants CPA
produces bit-precise 49 formulas only, we can also only use bit-precise49 Bit precise means that the

formulas created with the SMT
solver do not contain

unbounded integers for integer
variables, but instead fixed-size

bit vectors are used.

analyses. Additionally, all analyses using invariants are based on a
predicate analysis. Furthermore some features of the predicate anal-
ysis that are not working correctly in combinations of the Predicate
CPA and the Invariants CPA are switched off 50. Due to using only bit-

50 These features are an initial
static refinement, which

computes certain predicates out
of the CFA, and that irrelevant

variables, identified by another
part of CPACHECKER, are

ignored.

precise analyses we decided to use MATHSAT as SMT solver which
is also the solver used by most CPACHECKER configurations for the SV-
COMP. Other SMT solvers are not supporting bit vectors or they are
not widely used and tested with the Predicate CPA.

For all configurations we have three baselines that are not using
invariants, but have the same restrictions regarding unsupported fea-
tures: base300 and base600 are predicate analyses with a time limit
of 300 s, and 600 s respectively. basePar is a parallel combination of a
predicate analysis and an analysis with the Invariants CPA — a port-
folio analysis — where each of the analyses has approximately 300 s
and overall they have 600 s together.

The configurations using invariants are divided into three cate-
gories which will be evaluated separately:

• First we have the lightweight heuristics which were introduced
in Section 5.2.3, all of them can be used at any given invariant
usage location or at a combination of them. The configurations

sv-comp.sosy-lab.org/2016/
sv-comp.sosy-lab.org/2016/

6.4 R E S U LT S 49

without specified invariant usage will be called as follows: int-
check is the configuration which checks interpolants for induc-
tivity, weakening is the configuration which weakens the path
formula until it is an invariant, and conj-check is the configura-
tion that transforms the path formula to a CNF and checks the
conjuncts on inductivity.

Additionally to these heuristics we also have path invariants.
They can only be added to the precision. Path invariants can
be computed with every analysis having a state implementing
FormulaReportingState. To show that this approach is not
dependent on a specific analysis, we use in one configuration the
Invariants CPA and in another configuration the Policy CPA 51 as 51 The Policy CPA is based on

local policy
iteration [KMW16]. It also
uses the Predicate CPA and the
same formula encoding, such
that we can exchange
invariants easily.

invariant generation analyses. We will refer to these configura-
tions as path-inv and path-policy.

• Secondly we have the concurrent combination of the predi-
cate analysis with an auxiliary-invariant generation analysis
(cf. Section 5.2.1). The only analysis which can be used in
a continuously-refined manner is, at the moment, an analysis
with the Invariants CPA. All computed invariants can be used at
any given invariant usage location or at a combination of them.
These configurations will be prefixed with async.

• Lastly we have the sequential combination of analyses where
results of earlier analyses are used for invariant generation in
later analyses. As for both other categories, invariants generated
with this approach can be used at any location. The name of
these configurations will be prefixed with seq.

The different invariant usage strategies are forming the configura-
tion name, where -prec means that invariants are added to the preci-
sion, -path means that invariants are conjoined to the path formula,
and -abs means that invariants are conjoined to the abstraction for-
mula. Combinations of these can also be used.

6.4 R E S U LT S

After explaining our evaluation environment, the used benchmark
programs, and the set of configurations in the last sections, we take
a look at the results of our evaluation process. This section is divided
into three parts: first we focus on the configurations using lightweight
invariants, such as path invariants or the inductive weakening of for-
mulas; second we have a closer look at the configurations using paral-
lel combinations of analyses for invariant generation and usage, and
finally we look at the results of sequential combinations of analyses.

50 E VA L U AT I O N

Table 2: Details on analyses using lightweight heuristics for generating auxil-
iary invariants and their baseline

correct wrong Invariants (equal) CPU time (h)
proof alarm alarm time (h) attempts succ all correct equal

base300 1 391 553 27 149 26.0 17.8
weakening-path 1 379 534 27 1.71 5 920 0 151 26.2 19.7
path-policy 1 337 529 27 3.52 3 950 1 498 161 31.4 25.7
int-check-prec 1 334 483 23 6.59 5 978 1 253 165 29.4 27.5
conj-check-path 1 384 543 27 0.674 5 920 0 147 26.5 19.0

The raw data for the tables and figures presented in this evalua-
tion can be found at our supplementary web page at sosy-lab.org/
research/msc/stieglmaier/. We do also show how our experi-
ments can be reproduced and provide all necessary additional files.

Overall, the usage of lightweight heuristics, as well as the sequen-
tial combination of analyses, did not achieve a noticeable performance
improvement compared to the baseline. The additional time taken for
invariant generation is missing for the main analysis and furthermore,
the invariant generation was often not even successful. In contrast to
these results, the parallel combination of the Predicate CPA and the
Invariants CPA lead to a huge performance boost. Compared to the
single analysis baselines around 100 tasks more could be verified suc-
cessfully and around 10 fewer false alarms were raised. More details
and insights into all results are provided in the next sections.

6.4.1 Lightweight Heuristics

With lightweight heuristics we mean all approaches that can be com-
puted on the fly and which should — compared to running more anal-
yses in parallel or sequential combinations — take only short amounts
of time. The configurations we describe here are path invariants, in-
ductive weakening of path formulas, checking the invariance of inter-
polants and checking the invariance of conjuncts of the path formula.
All configurations have a limit of 300 s overall CPU time, there is no
extra time for the invariant generation.

In Table 2 the best configuration for each of the heuristics can be
seen 52. The columns show the number of correctly analyzed pro-52 The values in the Invariants

column are extracted from
logfiles, so they are only

available for the verification
tasks not running into

timeouts or experiencing other
errors. Additionally they are

measured by CPACHECKER

itself, so they are not as reliable
as the CPU time which is
measured by BenchExec.

grams divided into found proofs and alarms. Additionally the wrong
results are displayed. As only safe programs were erroneously treated
as unsafe programs the other column was left out. The statistics about
invariants show the time and the amount of invariant generation at-
tempts as well as the amount of successful invariant generations (succ)

sosy-lab.org/research/msc/stieglmaier/
sosy-lab.org/research/msc/stieglmaier/

6.4 R E S U LT S 51

for all equal and correct verification runs. The last part of the table are
the statistics about the CPU time.

The table shows that all lightweight invariant-generation ap-
proaches take too much time away from the main analysis, and fur-
thermore, in this time not enough, or not the required invariants are
found. The approaches of weakening path formulas or checking the
conjuncts of path formulas transformed into a CNF were used about
6 000 times per configuration over all correctly analyzed programs,
but not a single valid invariant could be generated. This can also be
seen from the CPU time taken by the equal verification runs: The time
for analyzing these programs increased approximately by the time
needed for the invariant generation tries. Due to the higher time con-
sumption also fewer programs could be analyzed in time.

Path invariants and checking interpolants on invariance lead to
even worse results. While these configurations are able to generate in-
variants — and both add the invariants to the precision — they are tak-
ing even more time and therefore the performance suffers. For path-
policy and base300 the difference in the CPU time is over 4 h higher
than the time for the invariant generation. This leads to the conclusion
that the invariants have a negative impact on the performance, which
could be the case for example, by adding predicates to the precision
which force that loops have to be unrolled, an issue we wanted to over-
come with these approaches 53. More insights into the four heuristics 53 E. g., the predicate

i = i + 1 with i being a
loop counter could cause this
issue. An example where such
formulas are found as
interpolant, and the invariant
is helpful follows in the section
about the results with path
invariants.

are given in the following sections.

Weakening of Path Formulas

Weakening path formulas up to the point where the remaining for-
mula is an invariant did not work as expected. As can be seen in
Table 2, this approach did not find any invariants. Without invari-
ants all configurations we have tested are the same, as they only differ
in where the invariants would be added. So besides minor changes
to the results, which are caused by tasks that can be analyzed in ap-
proximately 300 s and therefore time out in some configurations but
are successfully analyzed in other configurations, there is no differ-
ence. Upon further investigation we found several bugs in the usage
and implementation of the reduced CNF conversion, they are fixed on
later revisions of CPACHECKER than the evaluation was made on. An
additional limitation to solvers that support quantifiers was necessary.
Quantification is used for removing variables not having the most up
to date SSA index in the process of converting a path formula to a
reduced CNF. The combination of bitvectors and quantifiers is only
possible with the SMT solver Z3. Unfortunately the integration of this

52 E VA L U AT I O N

Table 3: Details on analysis using weakening or checking path formula con-
juncts with Z3 instead of MATHSAT

correct wrong Invariants (all)
proof alarm proof alarm attempts succ

z3-base300 1 155 297 0 21
z3-weakening-abs 1 047 249 5 25 7 802 5 523
z3-weakening-prec 965 250 0 20 8 442 6 026
z3-int-check-abs 1 111 254 0 18 6 976 1 648
z3-int-check-prec 1 093 249 0 21 7 117 1 792

solver in CPACHECKER is not perfect, and the results are not comparable
to analyses with MATHSAT.

Table 3 shows some experimental results made with revision
23206 (trunk). Instead of MATHSAT, Z3 was used. This leads to a dras-
tic performance decrease. By comparing base300 with z3-base300 we
can see that 492 fewer tasks can be verified successfully. When using
weakening of path formulas for invariant generation, the number of
successfully analyzed tasks decreases even further, although the ratio
of invariant generation attempts to successful invariant generations is
higher than for the other lightweight heuristics.

Checking Conjuncts of Path Formulas on Invariance

This approach transforms a path formula to a reduced conjunctive nor-
mal form and checks the conjuncts on invariance with k-induction. As
explained in 54 the conversion of formulas to reduced conjunctive nor-
mal forms does not work as expected with MATHSAT. Some experi-
mental results with Z3 can be found in Table 3. While this approach
is strictly better than weakening path formulas, it is still not able to
correctly analyze as many tasks as z3-base300 does.

The main difference of this approach and the weakening of path
formulas is how the conjuncts are checked on invariance. Here we
use k-induction as a separate analysis for finding 1- inductive invari-
ants. In contrast, weakening uses counterexamples to remove con-
juncts which cannot be part of the final invariant [KM16]. Both ap-
proaches can currently only be used with Z3 and therefore suffer from
a worse performance than analyses using MATHSAT. Additionally it
seems that generating invariants with these approaches has no bene-
ficial influence on the analyses. What can be seen, is that -abs con-
figurations perform better than -prec configurations, which is caused
by the computational overhead of adding invariants to the precision.
This observation can be made for all invariant generation approaches
we have evaluated.

6.4 R E S U LT S 53

Table 4: Details on analyses using checking interpolants on invariance and
their baseline

correct wrong Invariants (equal) CPU time (h)
int-check- proof alarm proof alarm time (h) tries succ all correct equal

base300 1 391 553 0 27 149 26.0 17.8
abs 1 339 482 1 23 6.76 6 197 1 011 164 28.6 27.0
path 1 341 490 1 23 6.76 6 218 1 007 164 29.2 27.1
prec 1 334 483 0 23 7.09 6 455 1 272 165 29.4 27.9
prec-path 1 335 485 1 23 6.72 6 348 1 172 164 29.0 27.5
abs-path 1 342 489 1 23 6.80 6 229 1 011 164 29.2 27.1
prec-abs 1 333 481 1 23 6.70 6 293 1 162 165 28.5 27.4
prec-abs-path 1 336 486 1 23 6.69 6 364 1 174 165 29.2 27.5

Checking Interpolants on Invariance

Checking interpolants on invariance with k-induction is assumed to
be a rather lightweight-invariant generation approach. Slicing infeasi-
ble counterexample paths into several infeasible prefixes and choosing
one of them for interpolant computation [BLW15] is a technique that
tries to guide the refinement such that the found predicates have a
more positive impact on the analysis than choosing another infeasible
prefix would have. We extend this approach to not only search for
one infeasible prefix that is used for interpolant computation, but in-
stead we compute interpolants for each of the infeasible prefixes and
afterwards check the computed interpolants on 1-inductivity.

Table 4 shows the results for computing invariants with that strat-
egy combined with all usage strategies we introduced earlier. All con-
figurations using invariants are strictly worse than base300. Fewer
verification tasks — safe and unsafe — could be analyzed successfully,
and the overall CPU time increases from 149 h to over 160 h. When
looking only at the equal and correct tasks, the difference is growing
to almost 10 h, an increase in the time spent of over 50 %. Most of
the additional time, about 7 h, is spent by trying to generate invari-
ants, which is successful in approximately 1 out of 6 cases. The time
for invariant generation is however not measured as CPU time but as
wall time, such that the comparison of these times makes not much
sense.

To take a closer look at the differences in time consumption, Ta-
ble 5 shows the CPU time and wall time separately for the correct
and equal analyzed verification tasks that either failed or succeeded to
use invariants. It is surprising that the increase in CPU time is higher
for the tasks where invariant generation was successful. Compared
to the baseline about 40 % more time are needed for these tasks but
only 13 % more time is needed for the tasks where invariant genera-
tion was not successful. When using the wall time instead of the CPU

54 E VA L U AT I O N

Table 5: Drastic increase of CPU time for analyses succeeding in using invari-
ants computed by checking interpolants

invariant generation failed invariant generation succeeded
base300 prec-abs-pf prec abs base300 prec-abs-pf prec abs

CPU time (h) 13.9 20.7 20.7 20.4 3.92 6.85 7.16 6.54
inv time (h) 0 5.00 5.04 4.99 0 1.41 1.74 1.35

- 13.9 15.7 15.7 15.4 3.92 5.44 5.42 5.19

increase (%) 13.0 13.0 10.8 38.8 38.3 32.4

Wall time (h) 9.19 14.0 14.0 13.7 2.06 3.42 3.68 3.19
inv time (h) 0 5.00 5.04 4.99 0 1.41 1.74 1.35

- 9.19 9.00 8.99 8.75 2.06 2.02 1.94 1.84

decrease (%) 2.07 2.18 4.79 1.94 5.83 10.7

time for comparison, the numbers are changing, for unsuccessful in-
variant generation the time decreases by 2–4 % and for the successful
invariant generation even from 2–10 %. Both comparisons lead to the
conclusion that other threads are influencing our measurement, and in
fact when executing the benchmark set limited to one virtual core, wall
time and CPU time are equal and the time for generating invariants is
still smaller then the difference in the measured times. Our research
did not come to any conclusion where the additional time — account-
ing about 3 h in our experiments — could be spent. Invariant genera-
tion, as well as all other parts of CPACHECKER, are run single-threaded,
the SMT solver MATHSAT is also running single-threaded and while
profiling the application we did not find any additional threads being
used. Also when looking at the ratio of wall and CPU time, it stays
approximately the same for the tasks with failed invariant generation
(about 50 %) and successful invariant generation (about 90 %), which
means that there is no evidence for additional time in configurations
with invariant generation in particular, but a part of the used CPU
time is always spent differently, for example, for garbage collection or
resource measurement.

When we look back at Table 4 we can see that some
of the configurations have one unsafe verification task,
ldv-linux-3.0/usb_urb-drivers-input-misc-keyspan_re
mote.ko_false-unreach-call.cil.out.i.pp.i, where the
analyses concluded that this program is safe. This is a side-effect of
using invariants. Without invariants the analysis of this task does
not terminate, with invariants being added to either the path or the
abstraction formula, the analysis terminates and reports a wrong
result. The baseline is not able to analyze this program, even in 900 s.
Therefore we do not know if the wrong result is caused by invalid
invariants, a wrong usage of invariants or if the program cannot
be analyzed correctly with the given base300 configuration. In the

6.4 R E S U LT S 55

SV-COMP 2016 there were two tools that terminated in time, one of
them (Blast) reported a specification violation, so we can be sure that
the problem is not that this verification task has a wrong label.

Another remarkable point is that some of the tasks are running
into a timeout because of the sliced prefix generation. This issue can
be observed better with increasing amount of possible slices that need
to be tested. The initial idea was to increase the number of abstrac-
tion states by changing the block operator blk (cf. Section 2.3.5) such
that abstractions should be computed more often. The default config-
uration is that an abstraction is only computed at each occurrence of a
loop head. We add that additionally, an abstraction is computed when
control-flow meets. With this modification, the infeasible counterex-
amples consist of more abstraction states than before, which means
that there are also more states that can be removed for creating dif-
ferent infeasible prefixes. But with this increased number of possi-
bilities, the number of timeouts rises, for example, for int-check-abs
from 1 563 to 2 394. At the same time base300 has 1 414 timeouts. For
all other configurations for generating invariants with this approach
the numbers are comparable. The reason for the longer prefix genera-
tion times is, in our opinion, that removing certain formulas from the
satisfiability check has an impact on the SMT solver, which is in turn
not able to prove unsatisfiability. Formulas leading to such a behav-
ior when removed could, e. g., be related to pointer-aliasing handling,
because for that, many relations are introduced. By removing some re-
lations, the possible state space grows and makes the unsatisfiability-
check harder.

Overall checking interpolants on invariance with k-induction
seems to be working for only a small set of verification tasks. For the
other tasks, either the invariant generation takes too long, or the found
invariants do not influence the analysis in the expected way. The idea
to increase the amount of interpolants being checked by changing
the behavior of the blk operator made the performance even worse.
While more infeasible sliced prefixes do also mean more interpolants,
and potentially a higher success rate in finding invariants, the addi-
tional time necessary for the prefix generation is just too high.

Path Invariants

As stated in Section 3.2 and Section 2.4, path invariants were already
a part of the CPACHECKER framework before this master’s thesis, but
during this work we found an issue with the old implementation. The
conversion of formulas did not consider different pointer encodings
and thus lead to wrong formulas used as precision increment in the
Predicate CPA. This was not recognized, because adding additional

56 E VA L U AT I O N

Table 6: Details on analyses using path invariants for generating auxiliary in-
variants and their baseline

correct wrong Invariants (equal) CPU time (h)
proof alarm alarm time (h) tries succ all correct equal

base300 1 391 553 27 149 26.0 21.3
path-inv 1 327 519 27 2.36 4 719 1 428 162 31.0 30.5
path-policy 1 337 529 27 3.84 4 600 1 611 161 31.4 29.8

400s-inv 1 364 575 27 196 35.6
400s-policy 1 371 576 27 196 34.7

formulas to the precision — correct and incorrect ones — does not lead
to wrong behavior, only the runtime increases with increasing size of
the precision. In our earlier work we found analyses using path in-
variants generated by the Invariants CPA or the Policy CPA perform
better than the baseline in terms of the number of correctly analyzed
tasks. Path invariants improved the results by about 1.5 % 54. When54 This is not comparable to

our results as we use bit-precise
analyses and the earlier

evaluation used unbounded
integers and rationals.

it comes to the time measured, analyses with path invariants took sig-
nificantly longer (more than 10 %) than the baseline. This comes on
the one hand from the time needed for the invariant generation, and
on the other hand from the additional time needed for repeated refine-
ments, if the generated invariants were not strong enough to refute
the counterexample 55.55 This can be the case due to

over-approximation while
converting the formulas or
because of the fact that the
formula encoding was not

correct, and therefore many
formulas added to the precision

could not be used afterwards.

Our evaluation shows completely different results. The number of
successfully analyzed tasks while using path invariants is about 4 %
lower than base300. This is mainly caused by the additional time
needed for invariant generation. When increasing the time limit to
400 s (400s-inv, 400s-policy), only verification tasks where the invari-
ant generation is successful have a changing outcome, such that the
overall results become approximately equal to base300. In Table 6 one
can see that while path-policy takes about 1.5 h more time for gen-
erating invariants compared to path-inv, it can successfully analyze
20 tasks more, and additionally the CPU time for equally and success-
fully analyzed tasks is approximately 0.8 h less than for path-inv. This
behavior is less noticeable for the 400s configurations but still the anal-
ysis using the Policy CPA performs better.

What is also interesting is that there are many tasks that can be cor-
rectly analyzed by base300 in 15 s to 30 s, but are running into a time-
out with path-inv and path-policy. The invariant generation in these
cases is not the problem; instead the usage of the generated invari-
ants leads to loop unrollings, and in turn, to more refinements than
base300. The aim of path invariants was initially to prevent loop un-
rollings (and therefore refinements) but it seems that this is not work-
ing as expected with this invariant generation strategy. From Table 6

6.4 R E S U LT S 57

Table 7: A selection of tasks and their results with path invariants

file name path-inv path-policy

loop-acceleration/array_true-unreach-call3.i 3 7

loop-acceleration/functions_true-unreach-call1.i 7 3

loop-acceleration/nested_true-unreach-call1.i 3 7

loop-acceleration/simple_true-unreach-call1.i 7 3

loop-new/count_by_1_true-unreach-call.i 3 7

loop-new/count_by_1_variant_true-unreach-call.i 3 7

loop-new/count_by_nondet_true-unreach-call.i 7 3

1 int main() {

2 int i;

3 for (i = 0; i < 1000000; i++) ;

4 __VERIFIER_assert(i == 1000000);

5 return 0;

6 }

Listing 1: The source code of loop-new/count_by_1_true-unreach-call.i

we can see furthermore that the number of correctly analyzed safe pro-
grams decreases in a higher ratio than the number of correct alarms.
For the 400s analyses, the number of correct alarms is even higher
than base300, while the number of correct proofs is still smaller than
base300.

Both path invariant generation approaches yield better results than
base300 for the tasks in the loops category. The tasks in the loops cate-
gory do not consist of many lines of code. Instead they have loops and
some conditions that are complicated to track without having relations
between variables. While base300 times out on some of the tasks af-
ter 300 s, either path-inv or path-policy are able to successfully prove
the safety of these programs (cf. Table 7). Furthermore, the safety of
these tasks can be proved within 10 s. So the speedup due to the in-
variants is enormous. For all these tasks base300 times out after many
refinements, with invariants only a small amount of refinements (be-
tween one and five) are necessary. Most of the computed invariants
are very simple, for example, for the task loop-new/count_by_1_true-
unreach-call.i (cf. Listing 1) the computed invariant is that at the lo-
cation of their __VERIFIER_assert call i = 10000. This is very
helpful in contrast to the interpolants found by the SMT solvers, which
force a loop unrolling in this case, because in each loop iteration the
interpolant found is just that i equals the next higher number.

58 E VA L U AT I O N

0 500 1 000 1 500 2 000

10

100

n-th fastest correct result

C
PU

ti
m

e
(s

)

base600
base300
basePar

async-abs

Figure 6: A quantile plot showing the best concurrent analysis and the three
baselines

To sum up, we have three cases, first there are tasks where invari-
ant generation is not successful and thus the additional time spent
effectively slows down the analysis. Second, there are tasks where in-
variant generation is successful, but the found invariants slow down
the analysis, for example by forcing a loop to be unrolled. Unfortu-
nately this case is appearing to be more common than the last case
where the auxiliary invariants speed up the analysis. The last case
leads, in many cases, to results within seconds where otherwise five
minutes are not enough to analyze the verification task. For a better
performance it will therefore be necessary to classify the error traces
and only compute path invariants for certain cases. Such conditions
could, e. g., be that the loops in the infeasible counterexample path do
not consist of more than X statements, or that the loop conditions and
the loop iteration statements may only be simple increment or decre-
ment operations. In general, taking the complexity of the loop body
into account might help, but finding appropriate heuristics for that is
future work.

6.4.2 Parallel Analyses

In this section we move away from trying to generate invariants but
keeping the impact on the overall time of the analysis low, to using
approximately half of the overall analysis time for invariant genera-
tion. By limiting the overall analysis time to 600 s and the CPU time to
300 s for both of the analysis threads we can achieve this. Tracking the

6.4 R E S U LT S 59

CPU time a thread needs is, however, not very precise in our case. On
the one hand, threads started from within a thread are not counted to-
wards this time, and on the other hand, additionally running threads,
for example for handling the resource limits or also the Java garbage
collector can also not be counted towards these limits. So the thread-
wise CPU time limits are a best-effort approach to achieve a certain
distribution.

As described in Section 6.3 we only have parallel configurations
combining an analysis using the Predicate CPA and an analysis using
the Invariants CPA. The Invariants CPA is configured to be continu-
ously refined, and provides the intermediate finished reached sets to
the Predicate CPA, which computes invariants from them. As base-
lines, we use all three configurations base300, base600 and basePar
to be able to draw more precise conclusions out of the results. Fig-
ure 6 gives an overview on the performance of all baselines and the
best parallel analysis using invariants 56. All parallel-analysis config- 56 All other parallel

configurations using
invariants are quite similar to
async-abs and are excluded
from Figure 6 for better
visibility.

urations will be discussed in more detail in the following paragraphs.
Exact numbers for all configurations can be found in Table 8. As can
be seen in Figure 6, base300 has the same curve as base600, it just
stops earlier. This is exactly what is expected as both configurations
are equal, only base600 has twice the amount of time. More interest-
ing is that the number of successfully analyzed tasks increases by 78
from base300 to base600 but by instead using basePar we can further
increase the number of successfully analyzed tasks by 28. This means
that there are many programs quite hard to analyze with the base300
or even base600 which are easier for the analysis using the Invariants
CPA. By generating invariants and using them at any possible loca-
tion we can once again increase the number of successfully analyzed
tasks. While all configurations using invariants perform strictly bet-
ter than the baseline, async-abs is the best configuration we evaluated
in this setting, with an increase of 54 more correctly analyzed tasks,
compared to basePar.

Table 8 shows many interesting facts about this way of generating
and using invariants. At first the overall CPU time of all analyses us-
ing parallel analyses is about 87 % higher than base300. This is not
surprising as we configured the parallel analyses to be able to use at
most 600 s, and there are two analyses running concurrently. Com-
pared to base600 the overall CPU time is only increasing by approxi-
mately 6 %. When only looking at the correctly and equally analyzed
tasks, the parallel analyses consequently take about 90 % more CPU
time than base300 and base600. By looking at the wall time the pic-
ture changes. Over all tasks the wall time of base600 is 240 h and the
wall times of the parallel analyses are around 150 h, about 37 % lower.
For the correctly and equally analyzed tasks the wall time for base300

60 E VA L U AT I O N

Table 8: Details on all parallel analyses using invariants and their baselines

correct wrong Main Succ Wall time (h) CPU time (h)
async- proof alarm proof alarm correct all equal all equal

base300 1 391 553 0 27 1 944 128 13.8 149 20.9
base600 1 434 588 0 27 2 022 240 13.9 262 21.1
basePar 1 509 541 0 18 1 109 152 15.6 281 39.9
abs 1 532 572 0 18 1 154 147 14.4 276 38.2
path 1 536 561 1 17 1 148 146 14.2 274 37.9
prec 1 526 549 0 18 1 108 149 15.3 279 39.6
prec-path 1 525 561 1 17 1 111 148 15.1 278 39.4
abs-path 1 528 568 1 18 1 148 146 14.4 275 38.4
prec-abs 1 526 557 0 18 1 110 149 15.2 279 39.4
prec-abs-path 1 531 551 1 18 1 106 148 15.0 278 39.5

and base600 is shorter than any of the parallel analyses. It is notice-
able that while the number of correctly analyzed tasks is increasing
for all parallel configurations, the number of wrongly analyzed tasks
decreases by 9, about 33 %. In the next paragraphs we will only use
basePar for comparisons, because this baseline is closest to the config-
urations using invariants.

basePar is the slowest of all parallel configurations, meaning that
the usage of invariants boosts the CPU and wall time of the analyses.
The wall time is overall about 3 % higher and for the equal tasks about
8 % higher. For the CPU time it is overall about 2 % higher, and 4 %
higher for the equally and correctly analyzed tasks. While the con-
sumed time decreases when using invariants, the number of correctly
analyzed tasks rises between 25 and 54, making the performance of
the analyses strictly better than basePar.

By taking a closer look at the configurations using invariants we
can see that the configurations where the invariants are conjoined to
the path formula are analyzing one unsafe task wrongly and report
that there is no specification violation. By digging deeper we found
out that at some point, the conjunction of path formula and invariant
became unsatisfiable, immediately leading to the wrong result. When
comparing the path formula and the invariant at this point, one can
see that the invariant assumes that a variable (a pointer) has the ad-
dress zero, where it has another address in the path formula. This is
no encoding issue in the way we thought about it, instead it has to do
with how (aliased) pointers are handled in different CPAs. While the
Predicate CPA handles such cases with uninterpreted functions and
does not expect value assignments to such variables, there is no spe-
cial handling in the Invariants CPA at all. The Invariants CPA uses
a separate CPA for that, and the formulas generated by the Invariants
CPA do unfortunately contain assumptions about pointers being 0. 57

57 The full path formula, the
invariant, and the interpolant

for the program
heap-manipulation/sll
_to_dll_rev_false-unr
each-call.i can be found

on our supplementary web
page.

6.4 R E S U LT S 61

This leads to the unwanted behavior we observed here. That this prob-
lem leads to a different results only one time in over 3 400 verification
tasks makes the problem even harder to find. A reason for this issue
not having bad effects on the -abs configurations is that the interfering
parts of the path formula are removed during abstraction due to the
precision.

Apart from the wrongly analyzed task there are more differences,
for example regarding the number of tasks where the result comes
from the main analysis using the Predicate CPA and not from the ad-
ditional analysis using the Invariants CPA. From 2 104 correctly an-
alyzed tasks with async-abs, 1 154 results are reported by the main
analysis, about 55 %. For all configurations where the invariants are
appended to the precision, this ratio is about 53 %, meaning that the
main analysis became slower such that more results are given by the
analysis with the Invariants CPA. This can also be seen by the wall
and CPU times, which are higher for all -prec configurations.

In Section 5.1.4 we made some assumptions about the perfor-
mance of the different approaches, stating that -abs, -path, -prec and
-prec-path look most promising. While -prec suffers from bad perfor-
mance due to more necessary computations during the abstraction,
we need to be sure that we have invariants (with correct encoding) to
be able to safely use them with -abs. From Table 8 we can see that
async-abs is the best configuration we have used, which is an indi-
cator that our formula conversion works very well. Additionally we
found out that the performance drawback of appending invariants to
the precision is considerable. The configurations conjoining the invari-
ants to the path formula are almost as good as async-abs, however,
they have one wrongly analyzed unsafe result, making the conclusion
about their validity impossible.

6.4.3 Sequential Combination of Analyses

From using some analyses concurrently we come to sequential combi-
nations of analyses now. While for parallel analyses the advantage is
that all concurrently running analyses can communicate via interme-
diate finished reached sets with each other, the drawback is that all
analyses consume CPU time at the same moment although one anal-
ysis may perhaps be able to successfully analyze the program all by
itself. With sequential combinations of analyses we try to use fast and
coarse analyses at first and if they are not able to successfully analyze
the program we pass their reached set on to the next analysis, which
can save computation time due to the already found invariants.

62 E VA L U AT I O N

Figure 7: Overview over the sequential combinations of analyses and their
information exchange

Our approach consists of two to three sequentially combined anal-
yses. An overview can be seen in Figure 7, they are explained in detail
in the following paragraphs.

1. The first analysis is always a bit-precise predicate analysis lim-
ited to a number of five loop iterations, 58 which means that all58 Five loop iterations were

chosen as a trade off between
precision and a fast analysis.

paths where more than five loop iterations are encountered are
ignored in the further analysis. This technique is for example
also used for BMC. The refinement of paths with possible speci-
fication is delayed until the full state space is explored. Then all
paths are refined at once, and we terminate the analysis. The pre-
cision increment computed by the so called global refinement 5959 This refinement strategy was

implemented by us especially
for this invariant generation
approach. The advantage is

that by delaying the refinement
we can explore the full state
space for a given precision,

which would not be possible
with the existing refinement

strategies.

is dumped for further usage with other analyses. This analy-
sis can only be used for finding specification violations, as the
loop bound prevents us from analyzing deeper parts of the state
space; therefore we cannot draw conclusions about safety. This
analysis is assumed to be very fast, but we still limited it to 100 s
in our evaluation, as for some programs it takes longer than
expected. If the time limit is reached, no precision is dumped
and the next analysis is skipped, such that the additional time
needed for unsuccessful tasks does not grow too much.

2. The second analysis is once again a bit-precise predicate analy-
sis, but this configuration is unbounded. It uses the precision
dumped by the first analysis and just explores the state space.
This analysis does not use any refinement, its aim is just to pro-
vide a reached set we can use later on for invariant generation.
As we do not use any refinement, this analysis cannot be used
for finding bugs, instead it can prove safety if the precision com-
puted by the first analysis is strong enough. This analysis is lim-
ited to 100 s.

3. The third analysis is a bit-precise predicate analysis which uses
the reached set computed by the second analysis for computing
invariants. The invariants can then be used for adding them to
the precision or for conjoining them to the path or abstraction
formulas. This analysis can do both, prove safety and find bugs.

6.4 R E S U LT S 63

Table 9: Details on all sequential combinations of analyses using invariants
and their baselines

correct wrong ∅ Analyses Wall time (h)
seq- proof alarm alarm Alg1 Alg2 Alg3 all correct equal

base300 1 391 553 27 1.00 128 17.9 14.5
base600 1 434 588 27 1.00 240 26.7 14.7
restart2 1 420 612 27 1.97 12.3 8.84 182 29.1 22.7
abs 1 415 557 27 2.38 12.3 3.35 8.73 201 32.3 25.9
path 1 416 547 28 2.38 12.3 3.39 8.65 200 30.9 25.9
prec 1 409 550 27 2.38 12.3 3.33 9.15 202 31.7 26.3
prec-path 1 409 557 28 2.38 12.3 3.40 8.89 201 31.7 26.1
abs-path 1 414 555 28 2.38 12.3 3.35 8.66 200 31.5 25.9
prec-abs 1 407 555 27 2.38 12.3 3.36 9.21 202 32.0 26.4
prec-abs-path 1 414 552 26 2.38 12.3 3.35 9.13 201 31.8 26.3

In our evaluation this analysis is limited to 300 s. Altogether we
have two analyses for invariant generation and the main analy-
sis, which uses the computed invariants afterwards.

As one approach to using invariants is adding them to the preci-
sion, we did also evaluate a configuration using only the analyses de-
scribed in item 1 and item 3. The later analysis then uses the dumped
precision directly and behaves like the baseline analyses apart from
that. This has the advantage that no additional time for the state-space
exploration of the second analysis is needed, and furthermore, there
are no invariants that are changing the analysis during run time. This
configuration will be called restart2.

Table 9 shows the results of evaluating the sequential invariant-
generation approaches. While all configurations using invariants are
slower than base300 by about 40 % to 56 % they are strictly faster than
base600. The speedup is about 25 % for restart2 and a little lower
for the other configurations. In general, restart2 is the best configu-
ration using invariants we have in this category: the additional time
necessary for state-space exploration in the other configurations slows
down the analysis too much. By looking at the successfully analyzed
verification tasks, we can see that restart2 performs overall a little bet-
ter than base600, and base300 is the worst configuration in this re-
gard. The higher number of correctly found specification violations
for restart2 is caused by the first analysis of the sequential combina-
tion. For 14 fewer tasks safety was proved correctly by restart2 com-
pared to base600, which is mainly caused by the fact that the predi-
cate analysis needs more than 300 s to analyze them (with and without
invariants). Another cause that was already explained earlier is that
some invariants explicitly cause some loops to be unrolled and there-
fore lead to timeouts where the baseline is able to analyze the task in
time.

64 E VA L U AT I O N

That the time for the first and second analyses — columns Alg1
and Alg2 — are always approximately the same is the case because
the analyses are always the same. The difference is only in using the
invariants in the third analyses. The times for the third analyses are
also only differing marginally. Surprisingly, the time consumed in the
first analysis is higher than the time in the subsequent analyses. To
reduce this time, we could, for example, decrease the loop bounds
to a value smaller than five. The average number of analyses used
is therefore also equal: 2.38 means that many of the analysis either
need two or all three analyses for analyzing the verification task. For
restart2 the average number of used analyses is 1.97, which means
that in most cases the second analysis is required.

A closer look at the different invariant usage strategies shows the
same picture as for the concurrently generated invariants evaluated in
the last section. Apart from restart2, seq-abs is the best configuration
using invariants. It is about 0.5 h (5 %) faster than seq-prec. seq-path
is even faster than seq-abs but its results are not as good. seq-prec-
path, which should be almost equal to seq-abs is once again too slow
and also the results are worse than the results of seq-path alone.

Overall we can say that the combination of two analyses with
different aims leads to better results in a shorter time than a single
analysis does. restart2 is clearly faster than base600 with equal per-
formance, and a bit slower than base300 with much more correctly
analyzed verification tasks. What can also be seen is that invariants
should not be generated at all costs: in some cases it makes sense to
use weaker assumptions, for example, a dumped precision for incre-
menting the precision of another analysis, instead of creating invari-
ants out of this precision with a separate analysis.

6.5 C O N C L U S I O N O F T H E E VA L U AT I O N

Over all evaluated configurations, the concurrently computed invari-
ants yield the best results, performing strictly better than the base-
line. With async-abs being the best configuration overall. The se-
quential combinations of analyses were all better than base300, but
most of them were not as good as base600. The lightweight invariant-
generation approaches did not work as expected, resulting in a worse
performance than the baseline. They still need more work to make
them faster and the results more reliable. When looking at the differ-
ent usage strategies, our assumptions about their performance made
in Section 5.1.4 were true, with -abs being the best option if a correct
invariant is given.

7
R E S T R I C T I O N S A N D C H A L L E N G E S

While implementing the invariant generation and usage approaches
for this thesis we encountered several difficulties. These are described
in the following sections.

7.1 L A R G E F O R M U L A S

Invariant generation with the approaches we have implemented is ei-
ther based on path formulas or interpolants that are transformed, or
on separate analyses where the invariants are generated out of the
reached set of the separate analysis. All cases have in common that for
most verification tasks the formulas that need to be handled are very
large. Printing them would take several sheets of paper and therefore
debugging is hard. Some problems can also only be observed for one
or two tasks of the benchmark set, making them hard to find. This
is for example the case for the differing pointer encoding described
in Section 6.4.2. In general, encoding issues caused by transforming
states of one CPA to formulas for the Predicate CPA were the main
point we had to work on, while implementing invariant generation
approaches based on other analyses.

7.2 E X T E R N A L I N VA R I A N T G E N E R AT O R S

The initial idea for this thesis was not to create many invariant gener-
ation approaches on our own, but to use existing invariant generators
and supply the found invariants to our analysis. Unfortunately we
did not find suitable invariant generators. All of the ones we found
have individual drawbacks that make their usage for our purpose im-
possible. INVGEN and DAIKON are already mentioned in Section 3.4.
Both look very promising, but the requirement of the INVGEN front
end that only programs with exactly one function, and neither arrays,
nor pointers are allowed makes this invariant generation unusable for
us. The front end of DAIKON is able to handle all C programs we
need, however it is just instrumenting the program and then tries to
deduce likely invariants out of the values observed during run time.
This means we cannot have any non-determinism in our programs.

65

66 R E S T R I C T I O N S A N D C H A L L E N G E S

We can only simulate non-determinism by either using fixed random
numbers (and therefore limiting the state-space before the analysis,
which is unsound), or by using a random number generator directly
(this will most likely lead to non-termination, and is not sound either).
Overall every attempt to integrate one of these invariant generators
failed, so we had to implement some invariant generation approaches
ourselves.

8
C O N C L U S I O N

In this chapter we give a summary of this thesis. We briefly explain
our conceptual additions and provide an overview over the results of
our evaluation. Lastly we conclude our thesis with an outlook on how
the usage and generation of invariants can be extend and improved in
the future.

8.1 S U M M A RY O F T H I S T H E S I S

In this work we introduced a new algorithm for concurrent execu-
tion of several analyses and based on this we added the possibility of
communication via reached sets in CPACHECKER. This was then used
for computing invariants out of reached sets for usage with another
analysis. Besides concurrent analysis we also implemented several
lightweight invariant-generation approaches, either based on path for-
mulas that are transformed to a CNF-like shape and then used to
compute invariants by inductive weakening or simply checking the
conjuncts for invariance, or they are based on interpolants that are
checked for invariance. All the lightweight approaches did not yield
the expected results, neither the path formula and interpolation-based
approaches, nor path invariants. All of these approaches consumed to
much time and therefore turned out not to be as lightweight as ex-
pected.

The configurations using invariants computed sequentially or con-
currently are working better. The sequential configurations have a run
time in between 300 s and 600 s thus being slower but much more pre-
cise than the baseline with 300 s and being faster and equally precise
than the baseline with 600 s. For parallel analyses we measured a per-
formance improvement of about 3 % compared to a portfolio analysis
and about 8 % compared to a pure predicate analysis needing a com-
parable wall time.

The evaluation of the different invariant-usage strategies showed
that our expectation was correct and conjoining invariants to the ab-
straction formula yields the best results. Adding invariants to the pre-
cision is the best option if we have formulas where we are not sure if
they are invariant, but adding formulas to the precision also slows the
analysis down.

67

68 C O N C L U S I O N

8.2 F U T U R E W O R K

For the future there are several possibilities how this work can be ex-
tended. The main goal is to make the the inter-analysis communica-
tion more robust. With the current approach already small differences
in the formula encoding will lead to hard-to-find errors. Furthermore
we did only test each invariant generation approach on its own, by
combining them we may be able to use synergies between them, e. g.,
the concurrent approaches are better in finding safety proofs whereas
the sequential approaches find more bugs. Besides combining differ-
ent approaches we could also try to make the existing approaches
more intelligent, for example, such that invariants are only used if
they are known to improve the analysis, and ignored in other cases.
This could be achieved by classifying the parts of the invariant for-
mula such that we try to find out which parts will, for example, lead
to loops being unrolled. Another approach to improve invariants us-
age is to take, additionally to the location, the call-stack information
into account. This way, invariants generated from reached sets contain
less disjunctions and make the analysis more precise.

Overall our work is the base for future experiments with invariants
in CPACHECKER. Its flexibility and modularity make future extensions
easy. Several ways to enhance our work are described in the para-
graph above.

B I B L I O G R A P H Y

[AS06] M. Awedh and F. Somenzi. Automatic invariant strengthen-
ing to prove properties in bounded model checking. Proc. DAC,
pages 1073–1076. ACM/IEEE, 2006.

[BDW15a] D. Beyer, M. Dangl, and P. Wendler. Boosting k-
Induction with Continuously-Refined Invariants. Proc. CAV,
LNCS 9206, pages 622–640. Springer, 2015.

[BDW15b] D. Beyer, M. Dangl, and P. Wendler. Combining k-Induction
with Continuously-Refined Invariants. Technical Report
MIP-1503, Department of Computer Science and Mathe-
matics, University of Passau, 2015.

[BHKW12] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and
P. Wendler. Conditional Model Checking: A Technique to Pass
Information between Verifiers. Proc. FSE, pages 57:1–57:11.
ACM, 2012.

[BHMR07] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Ry-
balchenko. Path Invariants. Proc. PLDI, pages 300–309.
ACM, 2007.

[BHT07] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable
Software Verification: Concretizing the Convergence of Model
Checking and Program Analysis. Proc. CAV, LNCS 4590,
pages 504–518. Springer, 2007.

[BHT08] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program
Analysis with Dynamic Precision Adjustment. Proc. ASE,
pages 29–38. IEEE, 2008.

[BJKS15] M. Brain, S. Joshi, D. Kroening, and P. Schrammel. Safety
Verification and Refutation by k-Invariants and k-Induction,
pages 145–161. LNCS 9291. Springer, 2015.

[BK11] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for
Configurable Software Verification. Proc. CAV, LNCS 6806,
pages 184–190. Springer, 2011.

[BKW10] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate Ab-
straction with Adjustable-Block Encoding. Proc. FMCAD,
pages 189–197. FMCAD, 2010.

69

70 Bibliography

[BL13] D. Beyer and S. Löwe. Explicit-State Software Model
Checking Based on CEGAR and Interpolation. Proc. FASE,
LNCS 7793, pages 146–162. Springer, 2013.

[BLN+13] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and
P. Wendler. Precision Reuse for Efficient Regression Verifi-
cation. Proc. ESEC/FSE, pages 389–399. ACM, 2013.

[BLW15] D. Beyer, S. Löwe, and P. Wendler. Refinement Selection.
Proc. SPIN, LNCS 9232, pages 20–38. Springer, 2015.

[BNSV14] G. Brat, Jorge A. Navas, Nija Shi, and A. Venet. IKOS: A
Framework for Static Analysis Based on Abstract Interpreta-
tion, pages 271–277. LNCS 8702. Springer, 2014.

[CGJ+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided Abstraction Refinement for Symbolic
Model Checking. J. ACM, volume 50, pages 752–794. ACM,
2003.

[Cra57] W. Craig. Linear Reasoning. A New Form of the Herbrand-
Gentzen Theorem. J. Symb. Logic, volume 22, number 3,
pages 250–268. Association for Symbolic Logic, 1957.

[DDLM13] I. Dillig, T. Dillig, B. Li, and K. L. McMillan. Inductive
invariant generation via abductive inference. Proc. OOPSLA,
pages 443–456. ACM, 2013.

[EPG+07] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon Sys-
tem for Dynamic Detection of Likely Invariants. Sci. Comput.
Program., volume 69, number 1-3, pages 35–45. Elsevier,
2007.

[FG10] P. Feautrier and L. Gonnord. Accelerated Invariant Genera-
tion for C Programs with Aspic and C2fsm. Electron. Notes
Theor. Comput. Sci., volume 267, number 2, pages 3–13.
Elsevier, 2010.

[GKN15] A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A
Framework for Verifying C Programs (Competition Contribu-
tion), pages 447–450. LNCS 9035. Springer, 2015.

[GR09] A. Gupta and A. Rybalchenko. InvGen: An Efficient In-
variant Generator. Proc. CAV, LNCS 5643, pages 634–640.
Springer, 2009.

[HB12] K. Hoder and N. Bjørner. Generalized Property Directed
Reachability. Proc. SAT, LNCS 7317, pages 157–171.
Springer, 2012.

Bibliography 71

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE. P.
IEEE, volume 79, number 9, pages 1305–1320. IEEE, 1991.

[Jan07] M. Janota. Assertion-based Loop Invariant Generation. 2007.

[JSS14] B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Ab-
stract Acceleration of General Linear Loops. Proc. POPL,
POPL’14, pages 529–540. ACM, 2014.

[KM16] G. Karpenkov and D. Monniaux. Formula Slicing: Induc-
tive Invariants from Preconditions. Proc. HVC. Springer,
2016.

[KMW16] E. G. Karpenkov, D. Monniaux, and P. Wendler. Pro-
gram Analysis with Local Policy Iteration, pages 127–146.
LNCS 9583. Springer, 2016.

[KT11] T. Kahsai and C. Tinelli. PKind: A parallel k-induction
based model checker. Proc. PDMC, EPTCS 72, pages 55–62.
EPTCS, 2011.

[LA04] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. Proc. CGO,
pages 75–86. IEEE, 2004.

[LB04] S. K. Lahiri and R. E. Bryant. Constructing Quanti-
fied Invariants via Predicate Abstraction. Proc. VMCAI,
LNCS 2937, pages 267–281. Springer, 2004.

[LM10] K. R. M. Leino and R. Monahan. Dafny Meets the Verifi-
cation Benchmarks Challenge, pages 112–126. LNCS 6217.
Springer, 2010.

[MWK+15] K. Madhukar, B. Wachter, D. Kroening, M. Lewis, and
M. K. Srivas. Accelerating Invariant Generation. Proc. FM-
CAD, pages 105–111. IEEE, 2015.

E I D E S S TAT T L I C H E E R K L Ä R U N G

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe und alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, als solche gekennzeichnet sind, sowie dass ich
die Masterarbeit in gleicher oder ähnlicher Form noch keiner anderen
Prüfungsbehörde vorgelegt habe.

Passau, den 9. Oktober 2016

Thomas Stieglmaier

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Acronyms
	Introduction
	1 Motivation
	2 Background
	2.1 Program Representation
	2.2 Configurable Program Analysis
	2.2.1 Formalism of a CPA
	2.2.2 The Reachability Algorithm
	2.2.3 Composite Program Analysis

	2.3 CPAchecker
	2.3.1 Basic Architecture
	2.3.2 Composite CPAs in CPAchecker
	2.3.3 Sequential Combination of Analyses
	2.3.4 Counterexample-Guided Abstraction Refinement
	2.3.5 The Predicate CPA
	2.3.6 The Invariants CPA

	2.4 Path Invariants
	2.5 k-Induction with Continuously-Refined Invariants
	2.5.1 Bounded Model Checking
	2.5.2 k-Induction

	3 Related Work
	3.1 Model Checkers Using Invariants
	3.2 Path Invariants
	3.3 Loop Acceleration
	3.4 Other Invariant Generators
	3.5 Conditional Model Checking

	Generating and Using Auxiliary Invariants in CPAchecker
	4 Conceptual Extensions
	4.1 Architecture before this Thesis
	4.2 Reached Set-based Data Exchange between Analyses
	4.3 Parallel Analyses
	4.4 Architecture after this Thesis

	5 Augmenting Predicate Analysis with Invariants
	5.1 Invariant Injection Strategies
	5.1.1 Using Invariants as Precision Increment
	5.1.2 Appending Invariants to the Path Formula
	5.1.3 Appending Invariants to the Abstraction Formula
	5.1.4 Combining Invariant Use-Cases

	5.2 New Invariant Generation Approaches
	5.2.1 Sharing Finished Reached Sets
	5.2.2 Sharing Precisions
	5.2.3 Lightweight Heuristics

	5.3 Generalized Invariants handling in the Predicate CPA
	5.3.1 Invariant Generation
	5.3.2 Invariant Retrieval

	Evaluation and Conclusion
	6 Evaluation
	6.1 Evaluation Environment
	6.2 Benchmark Programs
	6.3 Used Configurations
	6.4 Results
	6.4.1 Lightweight Heuristics
	6.4.2 Parallel Analyses
	6.4.3 Sequential Combination of Analyses

	6.5 Conclusion of the Evaluation

	7 Restrictions and Challenges
	7.1 Large Formulas
	7.2 External Invariant Generators

	8 Conclusion
	8.1 Summary of this Thesis
	8.2 Future Work

