
University of Passau
Faculty of Computer Science and Mathematics
Chair for Software Systems

Dissertation

Effective Approaches
to Abstraction Refinement

for Automatic Software Verification

Stefan Löwe

April 28, 2017

Supervisor: Prof. Dr. rer. nat. Dirk Beyer
External Examiner: Prof. Dr. Jan Strejcek

Abstract

This thesis presents various techniques that aim at enabling more effective and more
efficient approaches for automatic software verification.
After a brief motivation why automatic software verification is getting ever more

relevant, we continue with detailing the formalism used in this thesis and on the
concepts it is built on.

We then describe the design and implementation of the value analysis, an analysis
for automatic software verification that tracks state information concretely. From
a thorough evaluation based on well over 4 000 verification tasks from the latest
edition of the International Competition on Software Verification (SV-COMP), we
learn that this plain value analysis leads to an efficient verification process for many
verification tasks, but at the same time, fails to solve other verification tasks due
to state-space explosion. From this insight we infer that some form of abstraction
technique must be added to the value analysis in order to also allow the successful
verification of large and complex verification tasks.

As a solution, we propose to incorporate counterexample-guided abstraction re-
finement (CEGAR) and interpolation into the value domain. To this end, we design
a novel interpolation procedure, that extracts from infeasible counterexamples inter-
polants for the value domain, allowing to form a precision strong enough to exclude
these infeasible counterexamples, and to make progress in the CEGAR loop. We
then describe several optimizations and extensions to these concepts, such that the
value analysis with CEGAR becomes competitive for automatic software verification.

As the next step, we combine the value analysis with CEGAR with a predicate
analysis, to obtain a more precise and efficient composite analysis based on CEGAR.
This composite analysis is indeed on a par with the world’s leading software verifica-
tion tools, as witnessed by the results of SV-COMP’13 where this approach achieved
the 2nd place in the overall ranking.
After having available competitive CEGAR-based analyses for the value domain,

the predicate domain, and the combination thereof, we then turn our attention to
techniques that have the goal to make all these CEGAR-based approaches more
successful. Our first novel idea in this regard is based on the concept of infeasible
sliced prefixes, which allow the computation of different precisions from a single
infeasible counterexample. This adds choice to the CEGAR loop, while without this
enhancement, no choice for a specific precision, i. e., a specific refinement, is possible.

iii

In our evaluation we show, for both the value analysis and the predicate analysis,
that choosing different infeasible sliced prefixes during the refinement step leads to
major differences in verification effectiveness and verification efficiency.

Extending on the concept of infeasible sliced prefixes, we define several heuristics
in order to precisely select a single refinement from a set of possible refinements. We
make this new concept, which we refer to as guided refinement selection, available
to both the value and predicate analysis, and in a large-scale evaluation we try to
answer the question which selection technique leads to well suited abstractions and
thus, to a more effective verification process. Additionally, we present the idea of
inter-analysis refinement selection, where the refinement component of a composite
analysis may decide which of its component analyses is best to be refined, and in yet
another evaluation we highlight the positive effects of this technique.

Finally, we present the results of SV-COMP’16, where the verifier we contributed
and which is based on the concepts and ideas presented in this thesis achieved the
1st place in the category DeviceDriversLinux64.

iv

Acknowledgements

Writing this dissertation took six long years, and it was not always a joyful endeavor,
with some letdowns and disappointments along the way. I could only accomplish
this task with the help and encouragement of several people, and I want to express
my deep appreciation to them.

First and foremost I would like to thank my supervisor Dirk Beyer for his untiring
support, for the many fruitful discussions we had, and for sharing his knowledge and
experience with me. I especially want to thank Dirk for bringing the International
Competition on Software Verification to life.

I also want to express my gratitude to Jan Strejcek for reviewing my dissertation,
as well as not holding it against me that I planned but never followed through with
my visit in Brno.

I am also highly thankful to Philipp Wendler. I had the luxury to share the office
with Philipp, and profit from his knowledge and his experience on a daily basis. The
amount of work he puts into maintaining the CPAchecker project is exceptional, and
besides that he always found time to fix our ageing computer infrastructure. On
top of that, we had some joint papers and projects together all of which came to a
successful conclusion in the end.

Furthermore, I want to thank my office colleagues Gregor Endler, Matthias Dangl,
Karlheinz Friedberger, Peter Häring, Malte Rosenthal, and Andreas Stahlbauer for
our joint work on papers and the CPAchecker project, as well as for the good times
we had together over the years.

I also want to thank Sven Apel for making fun of me every once in a while, and
even more for continuously motivating me and teaching me a lot of things.

Many thanks also to our assistants Eva Veitweber and Eva Reichhart, who always
took care of all the administrative work without much fuss. And it was a pleasure to
bring you coffee in exchange for a good laugh.
I also want to thank the student assistants that worked hard on the CPAchecker

framework and the benchmarking infrastructure, namely Alexander Driemeyer,
Thomas Lemberger, Sebastian Ott, and Thomas Stieglmaier.

Last but not least, I want to thank my friends and my whole family, especially
my parents Christina and Helmut, my sister and my brothers, and of course my
wonderful wife Katarzyna, who always were and will be there for me to support me.

v

Contents

1 Introduction 1

1.1 The Need For Software Verification 1
1.2 Automatic Software Verification . 2
1.3 Contributions . 3

1.3.1 Value Analysis with CEGAR and Interpolation 5
1.3.2 Precise and Efficient Composite Analysis based on CEGAR . 5
1.3.3 Refinements over Infeasible Sliced Prefixes 6
1.3.4 Guided Refinement Selection 6
1.3.5 Contribution to SV-COMP’16 7
1.3.6 Availability of Implementations and Experimental Data . . . 7

1.4 Structure of the Thesis . 7

2 Background 9

2.1 Programs, Control-Flow Automaton, and Semantics 9
2.2 Configurable Program Analysis . 10

2.2.1 Abstract Domain . 10
2.2.2 Precision . 11
2.2.3 Transfer Relation . 11
2.2.4 Merge Operator . 11
2.2.5 Stop Operator . 12
2.2.6 Precision-Adjustment Operator 12

2.3 CPA Algorithm . 12
2.4 Abstract Reachability Graph . 14
2.5 Counterexample-Guided Abstraction Refinement 15
2.6 Interpolation . 17

vii

Contents

2.7 CPAchecker as Verification Framework 17

3 Value Analysis 21

3.1 Motivation . 21
3.2 Related Work . 24
3.3 Definitions . 25
3.4 Value Analysis as CPA . 27

3.4.1 Abstract Domain . 27
3.4.2 Precision . 27
3.4.3 Transfer Relation . 28
3.4.4 Merge Operator . 28
3.4.5 Stop Operator . 28
3.4.6 Precision-Adjustment Operator 28

3.5 Evaluation . 28
3.5.1 Setup . 29
3.5.2 Benchmarks . 29
3.5.3 Configuration . 30
3.5.4 Results . 30

3.6 Conclusion . 33
3.6.1 Lessons Learned . 33
3.6.2 Challenge . 34
3.6.3 Proposition . 34
3.6.4 Solution . 34

4 Value Analysis with CEGAR and Interpolation 35

4.1 Motivation . 35
4.2 Related Work . 38
4.3 State-Space Exploration Algorithm for the Value Domain 39
4.4 Precision for the Value Domain . 39
4.5 Feasibility Check for the Value Domain 40
4.6 Interpolation for the Value Domain 41

4.6.1 Interpolation for Abstract Variable Assignments 41

viii

Contents

4.6.2 Interpolation for Constraint Sequences 42
4.7 Refinement Based on Value Interpolation 43
4.8 Evaluation . 46

4.8.1 Configuration . 46
4.8.2 Results . 46
4.8.3 Comparison to the Plain Value Analysis 48

4.9 Conclusion . 52
4.9.1 Lessons Learned . 52
4.9.2 Challenge . 52
4.9.3 Proposition . 52
4.9.4 Solution . 53

5 Value Analysis with Improved CEGAR and Interpolation 55

5.1 Motivation . 55
5.2 Reducing the Number of Value Interpolation Queries 55

5.2.1 Iterative, Inductive Interpolation 56
5.2.2 Interpolation over Deepest Infeasible Suffix 56
5.2.3 Interpolant-Equality Heuristic 57
5.2.4 Interpolant-Equivalence Heuristic 58
5.2.5 Evaluation of the Optimizations for the Value Interpolation . 58

5.3 Reducing the Number of Refinements 59
5.4 Evaluation . 60

5.4.1 Configuration . 61
5.4.2 Results . 61
5.4.3 Comparison to the Plain Value Analysis 62
5.4.4 Level of Non-Determinism . 63

5.5 Versatility of Value-Analysis Refinement 68
5.5.1 Applicability to other Analyses 68
5.5.2 Regression Verification . 69

5.6 Further Considerations . 71
5.6.1 Static Refinement . 71
5.6.2 Global Refinement . 73

ix

Contents

5.6.3 Impact-Like Refinement for the Value Analysis 76
5.7 Conclusion . 78

5.7.1 Lessons Learned . 78
5.7.2 Challenge . 79
5.7.3 Proposition . 79
5.7.4 Solution . 79

6 Precise and Efficient Composite Analysis based on CEGAR 81

6.1 Motivation . 81
6.2 Related Work . 82
6.3 Composition of a Value Analysis and a Predicate Analysis 83
6.4 Evaluation . 84

6.4.1 Configuration . 84
6.4.2 Results . 85

6.5 International Competition on Software Verification 2013 87
6.6 Conclusion . 89

6.6.1 Lessons Learned . 89
6.6.2 Challenge . 89
6.6.3 Proposition . 89
6.6.4 Solution . 89

7 Refinements over Infeasible Sliced Prefixes 91

7.1 Motivation . 91
7.2 Related Work . 93
7.3 Introducing Infeasible Sliced Prefixes 94
7.4 Extracting Infeasible Sliced Prefixes 95
7.5 Refinements over Infeasible Sliced Prefixes 98
7.6 Evaluation . 99

7.6.1 Infeasible Sliced Prefixes for the Value Analysis 100
7.6.2 Infeasible Sliced Prefixes for the Predicate Analysis 103
7.6.3 Infeasible Sliced Prefixes with Large-Block Encoding 106
7.6.4 Further Applications of Infeasible Sliced Prefixes 111

x

Contents

7.7 Conclusion . 112
7.7.1 Lessons Learned . 112
7.7.2 Challenge . 112
7.7.3 Proposition . 113
7.7.4 Solution . 113

8 Guided Refinement Selection 115

8.1 Motivation . 115
8.2 Related Work . 116
8.3 Heuristics for Guided Refinement Selection 116

8.3.1 Selection by Domain-Type Score of Path Precision 117
8.3.2 Selection by Depth of Pivot Location of Path Precision . . . 117
8.3.3 Selection by Width of Path Precision 118
8.3.4 Selection by Length of Infeasible Sliced Prefix 119
8.3.5 Composition of Heuristics . 119
8.3.6 Tailor-Made Heuristics using Domain Knowledge 119

8.4 Evaluation of Intra-Analysis Refinement Selection 120
8.4.1 Configuration . 120
8.4.2 Refinement Selection for the Predicate Analysis 121
8.4.3 Refinement Selection for the Value Analysis 125

8.5 Refinement Selection for Composite Analyses 127
8.6 Evaluation of Inter-Analysis Refinement Selection 130

8.6.1 Configuration . 131
8.6.2 Results . 131

8.7 Conclusion . 132
8.7.1 Lessons Learned . 132
8.7.2 Challenge . 132
8.7.3 Proposition . 133

9 Contribution to SV-COMP’16 135

9.1 Configuration . 135
9.2 Results of SV-COMP’16 and beyond 136

xi

Contents

10 Summary and Future Research 141

10.1 Summary . 141
10.2 Future Research . 143

xii

List of Figures

1.1 Overview of the contributions made in this thesis 4

2.1 Overview of the architecture of the CPAchecker framework 18

3.1 Simple verification task, with its corresponding CFA 22
3.2 ARG of a simple verification task . 23
3.3 Quantile plot for the value analysis 33

4.1 Simple verification task, containing an unbounded loop, with its cor-
responding CFA . 36

4.2 ARG of a simple verification task, containing an unbounded loop . . 37
4.3 Examples of a CFA, an infeasible error path, a sequence of interpolants,

and the respective precision elements 45
4.4 Scatter plot comparing the CPU times of the plain value analysis

and the value analysis with CEGAR, with regard to the number of
refinements . 50

4.5 Quantile plot comparing the CPU times of the plain value analysis
and the value analysis with CEGAR 51

5.1 Quantile plot comparing the CPU times of the plain value analysis,
the value analysis with CEGAR, and the value analysis with improved
CEGAR . 64

5.2 Scatter plot comparing the CPU time of the plain value analysis and
the value analysis with CEGAR for verification tasks with a lower
level of non-determinism . 66

xiii

List of Figures

5.3 Scatter plot comparing the CPU time of the plain value analysis and
the value analysis with CEGAR for verification tasks with a higher
level of non-determinism . 67

5.4 A simple verification task with an interpolant tree 75

6.1 Example verification task exposing non-determinism due to missing
initializer . 81

6.2 Score-based quantile plot comparing the value analysis with improved
CEGAR, the default predicate analysis of CPAchecker, and the com-
position of these two analyses . 88

7.1 A verification task, an infeasible error path, and a “bad” and a “good”
interpolant sequence . 92

7.2 An infeasible error path, a cascade of sliced prefixes, and a set of
infeasible sliced prefixes . 97

7.3 Scatter plots comparing the CPU time of the value analysis using
different heuristics for selecting infeasible sliced prefixes 102

7.4 Scatter plots comparing the CPU time of the predicate analysis using
different heuristics for selecting infeasible sliced prefixes 105

7.5 Scatter plots comparing the CPU time of the predicate analysis if
using the selection heuristic Length-Max and not explicitly using a
selection heuristic for different ABE-block sizes 108

7.6 Visualization of extracting infeasible sliced (ABE) blocks 110

8.1 Quantile plot comparing the CPU time of predicate analysis without
and with refinement selection using different heuristics 123

8.2 Quantile plot comparing the CPU time of value analysis without and
with refinement selection using different heuristics 126

8.3 An example verification task, an infeasible error path, and a “bad”
and a “good” interpolant sequence, the latter not being applicable to
the value analysis . 128

8.4 Visualization of inter-analysis refinement selection 129

xiv

List of Figures

9.1 Quantile plot comparing for several verifiers the number of correctly
solved verification tasks for category DeviceDriversLinux64 137

9.2 Quantile plot comparing for several verifiers the number of correctly
solved verification tasks from category IntegersControlFlow . . . 138

xv

List of Tables

3.1 Overview of the verification tasks from SVCOMP’16 as used in this
evaluation . 29

3.2 Table showing the verification effectiveness of the value analysis . . . 31
3.3 Table showing the verification efficiency of the value analysis 32

4.1 Table showing the verification effectiveness of the value analysis with
CEGAR and interpolation . 47

4.2 Table showing the difference in verification effectiveness between the
plain value analysis and the value analysis with CEGAR 49

5.1 Overview of the different optimization techniques and how they relate
to not applying any optimizations and applying all optimizations . . 59

5.2 Table showing the verification effectiveness of the value analysis with
improved CEGAR . 62

5.3 Table showing the difference in verification effectiveness between the
plain value analysis and the value analysis with improved CEGAR . 63

6.1 Table showing the verification effectiveness of the composition of the
value and predicate analysis . 85

6.2 Table showing the verification effectiveness of the composition of the
value and predicate analysis in comparison to the value analysis with
improved CEGAR . 86

7.1 Table showing the effects of two different selection heuristics for the
value analysis . 101

xvii

List of Tables

7.2 Table showing the effects of two different selection heuristics for the
predicate analysis . 104

8.1 Number of solved verification tasks for the predicate analysis with
refinement selection using different heuristics 122

8.2 Number of solved verification tasks for the value analysis with refine-
ment selection using different heuristics 125

8.3 Number of solved verification tasks for the three different analyses . 131

xviii

List of Algorithms

1 CPA(D, R0,W0) (taken from [26]) . 13
2 CEGAR(D, (e0, π0)) (taken from [30]) 15

3 Interpolate(γ−, γ+) . 43
4 Refine(σ) . 44

5 ObtainInUseFunction(σ) . 72

6 ExtractSlicedPrefixes(σ) . 95
7 Refine+(σ) . 99
8 ExtractSlicedBlockPrefixes(σ) . 107

xix

List of Acronyms

ABE adjustable-block encoding

ARG abstract reachability graph

CEGAR counterexample-guided abstraction refinement

CFA control-flow automaton

CPA configurable program analysis

LBE large-block encoding

SAT satisfiability theories

SBE single-block encoding

SMT satisfiability modulo theories

SV-COMP International Competition on Software Verification

xxi

1 Introduction

In the first chapter we motivate why software verification is needed in the first place,
and why it would be important to automate the process of software verification. We
then briefly outline the contributions made in this thesis that allow us to inch closer
to this ambitious goal.

1.1 The Need For Software Verification

Over the past decades, software has become ever more important in our daily lives —
we use software when we grab our mobile or smart phone, when we gesture on our
tablets, when we work on our computer in the office or at home, and even in the
household when we use the washer, dryer, or modern kitchen utensils. Besides private
life, software systems are nowadays also ubiquitous in practically every part of society,
be it traffic control on streets, rails, water, or in the air, in the medical, financial,
or public sector, or in the industry. While a software malfunction of one’s private
device is considered a mild annoyance, the failure of a software system running in a
manufacturing plant, or errors in an air-traffic control system may have catastrophic
consequences.

Testing is the predominant way to increase the confidence that a piece of software
behaves correctly, and by combining several forms of testing [91], such as unit testing,
integration testing, system testing, user acceptance testing, and others, one can reach
a level of test coverage such that the software under test can be considered error free.
But for a sufficiently complex program, no matter how many test cases exist, testing
can in general only be used to reveal the presence of bugs, but never to prove their
absence [51].

Also due to the inherent incompleteness of testing, fierce bugs may remain existent
in software while it is already running on production systems, and until these bugs
are finally fixed they remain to be a threat, either because the software simply does
not work as intended, or because the bug can be exploited by an attacker to, e. g.,
compromise the whole system where the faulty software is deployed.
In the last couple of years, several extremely dangerous bugs where found in

popular software. For example, the bug informally known as “Heartbleed” 1 allows

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

1

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

1 Introduction

data theft and impersonation of services and users through a vulnerability in the
widely used OpenSSL cryptographic software library. The security bug informally
known as “Shellshock” 2 allows an attacker to execute arbitrary code on a machine
running a vulnerable version of the Unix Bash shell, a program running on countless
servers accessible through the internet. By exploiting the bug informally known
as “Stagefright” 3 an attacker can gain elevated access and execute remote code
on vulnerable versions of the Android operating system, to date the most popular
operating system for smart phones. A bug known informally as “goto fail” 4 allows
man-in-the-middle attacks against computers running the Mac OS X operating
system. Finally, home and office computers are regularly threatened while connected
to the internet, due to critical flaws in the popular browser plug-ins for Java 5 or
Flash 6, which are actively used by attackers to gain unauthorized access to these
machines.

These examples demonstrate that, especially for complex, safety-critical software,
it is desirable to prove that this software is correct and free of errors. With software
verification one is able to prove the correctness of a piece of software 7. This can be
achieved by formal verification [58, 70], a manual process similar to theorem proving,
or by interactive systems [82,93], which, in their core, make use of the fundamental
principles from formal verification, such that the user and verification system assist
each other to obtain proofs for complex software.
With software systems getting more and more complex, the interest for software

verification is also on the rise, and ideas and tools for automatic software verification
have become a central part of research in computer science, and with this thesis we
try to contribute new ideas and tools for automatic software verification, as well.

1.2 Automatic Software Verification

In a large-scale, industrial setting, automatic software verification is the only realistic
option [7, 27, 31, 35] to cope with the demand of software to be verified. In such a
setting, a software verification tool, also referred to as software verifier, is tasked
to answer the question if a given piece of software or program is correct, i. e., if it
conforms to a given specification. Such a specification may state that for all possible
executions of the verification task no division by zero may occur, or no assertion or
exception may be raised, or no buffer may overflow. Typically, and also throughout
this thesis, the specification is part of the verification task, and the specification is

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
5https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=java
6https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=flash
7A counterexample is immediately available in case the software contains an error.

2

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=java
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=flash

1.3 Contributions

regarded as violated if there exists an execution of the verification task such that a
specific statement in the verification task is reachable [10,14]. So in essence, checking
the specification is reduced to checking the reachability of a program statement. This
problem is also known as the reachability problem.
Unfortunately, in general the reachability problem is undecidable, as it can be

reduced to the halting problem [104]. Due to this inherent complexity of software
verification two distinct directions of research have developed. On the one hand
there is software model checking, where for a verification task a model is computed,
e. g., by enumerating all reachable states of this verification task, and then it is
checked if any of the reachable states violates the specification. Classic software
model checking [44], inspired by the success of hardware model checking, has the
advantages that it is precise, in the sense that in theory it does not report false
alarms, and that a found specification violation can be mapped easily to a concrete
counterexample. However, for complex verification tasks, classic software model
checking hardly does scale. So, on the other hand there is static analysis, which,
not only throughout this thesis, is also referred to as program analysis or abstract
interpretation [47]. This technique mitigates the complexity of software verification
by computing a rather coarse over-approximation for a given verification task, which
helps to reduce the computational complexity at the expense of being less precise,
i. e., many false alarms may be reported.
The concept of configurable program analysis (CPA) [21] subsumes both these

two approaches in one general framework, and it facilitates the fine-grained control
over the verification process not only in this aspect. All contributions in this thesis
are formalized towards coherence with the CPA framework, and the respective
implementations are integrated in the open-source software verifier CPAchecker 8,
and in the following we briefly outline these contributions.

1.3 Contributions

The contributions of this thesis are detailed chronologically in the respective chapters,
i. e., a subsequent contribution represents an extension of the former contribution.
Figure 1.1 depicts how the individual contributions build upon each other.

The purpose of the very first contribution stems from the idea to create an analysis
that complements the predominant symbolic analyses, like for example verifiers that
are based on predicate abstraction 9 [7, 18,24].

8http://cpachecker.sosy-lab.org/
9Throughout this thesis we refer to an analysis from this class of analyses as predicate analysis.

3

http://cpachecker.sosy-lab.org/

1 Introduction

Value Analysis
Chapters 3, 4, 5

Predicate Analysis
existing work

CEGAR Analyses

● Design of value domain

● Definition of value interpolation
and CEGAR

● Optimization of interpolation
and refinement components

● Implementation as independent
components within CPAchecker

● Design of predicate domain

● Definition of Craig interpolation
and CEGAR

● Optimizations, e.g., adjustable
block encoding

● Implementation as independent
components within CPAchecker

● Design of a precise and efficient composite analysis

● Contribution to SV-COMP'13 wins silver medal in “Overall“

Composite Analysis based on CEGAR
Chapter 6

Refinements over Infeasible Sliced Prefixes
Chapter 7

● Definition of infeasible sliced prefixes and extraction algorithms

● Application of infeasible sliced prefixes to CEGAR-based analyses

Guided Refinement Selection
Chapter 8

● Definition of heuristics for guided refinement selection

● Intra- and inter-analysis refinement selection for CEGAR-based analyses

Contribution to SV-COMP'16
Chapter 9

● Contribution to SV-COMP'16 wins gold medal in “DeviceDriversLinux64“

● Further improvements over SV-COMP'16 contribution

Figure 1.1: Overview of the contributions made in this thesis

4

1.3 Contributions

1.3.1 Value Analysis with CEGAR and Interpolation

Due to massive advancements in the fields of satisfiability theories (SAT) and
satisfiability modulo theories (SMT) solving during the last two decades, symbolic
analyses enjoy great success in the field of software verification [10, 11, 12, 13, 14].
Still, for some classes of verification tasks, the SAT and SMT solvers used as decision
procedures in many verifiers are not always well suited or are simply overwhelmed
by the complexity of some verification tasks.
Due to that, we designed an analysis that does not rely on external decision

procedures, but instead borrows ideas from static analysis, concrete execution and
explicit-state model checking. We called this analysis value analysis, because it
tracks the concrete values of program variables in a domain we refer to as the value
domain. The design and implementation of this analysis itself already proves to
be beneficial, and we extended it by defining counterexample-guided abstraction
refinement (CEGAR) and interpolation for the value domain. This did not only
extend the successful application of the value analysis to more verification tasks,
but the CEGAR and interpolation scheme of the value domain was also successfully
applied to other domains similar to the value domain, e. g., to an octagon domain and
a symbolic execution analysis. Hence, any advancements in the CEGAR technique
are now applicable to predicate analyses, as well as to all analyses compatible with
our CEGAR approach designed for the value domain.

Our paper covering this contribution was accepted for publication at FASE’13 [26].

1.3.2 Precise and Efficient Composite Analysis based on CEGAR

The central design decision of the value analysis is its simplicity, i. e., its reluctance
to track any information symbolically. Therefore, especially for verification tasks
that expose non-deterministic behavior, the value analysis alone is less precise
than a symbolic analysis could be, and the value analysis may, by mistake, report
specification violations for error-free verification tasks.

To counteract this imprecision, we conceived a novel composite analysis, featuring
the value analysis and a predicate analysis, where both of the component analyses
incorporate the CEGAR technique. In order to keep the composite analysis closer
to the characteristics of the value analysis, we designed the refinement protocol
of the composite analysis in such a way, that, by default, first the CEGAR and
interpolation scheme of the value analysis is tasked to perform a refinement, and
only if the expressiveness of the value domain is insufficient, then this gap is filled
with the computational more expensive predicate analysis.

The result is an analysis that is both precise and efficient, as confirmed by the
results of the International Competition on Software Verification (SV-COMP) where

5

1 Introduction

our verifier won the silver medal in three sub-categories as well as in the overall
ranking [11] 10.
Our competition contribution was accepted for publication at SV-COMP’13 [83].

1.3.3 Refinements over Infeasible Sliced Prefixes

Despite the success of the composite analysis that features the value analysis and
a predicate analysis, there remain verification tasks that neither of the analyses
alone nor the composite approach solves. One reason for the verification process not
converging in a timely fashion is because the facts extracted by the interpolation
engine during CEGAR iterations are not always well suited for the analysis. For
example, in case of the value analysis the interpolation engine might tell the analysis
to track loop-counter variables, which often leads to state-space explosion and then to
the divergence of the analysis. Similarly, for the predicate analysis the interpolation
engine might tell the analysis again and again to track another inequality predicate
about a loop-counter variable, but without finding a valid bound for this loop-counter
variable, which eventually also leads to divergence of the analysis.

We designed an algorithm that extracts from one interpolation problem a set of
interpolation problems, and thus giving the verifier more control over the interpolation
process even in the case where external decision procedures like SMT solvers are
used for interpolation. This novel contribution allows us to consider an interpolation
problem as optimization problem, while also relaxing the black-box characteristics of
interpolation engines.

Our paper covering this contribution was accepted for publication at FORTE’15 [30].

1.3.4 Guided Refinement Selection

With infeasible sliced prefixes being available an interpolation problem may be seen
as optimization problem, but it is yet unclear how to capitalize from this insight.
Therefore, we extracted various (quality) criteria for refinements, which allow us

to formulate heuristics to compute a ranking for a set of refinements and, based on
the heuristics, select a refinement according to that resulting ranking. Based on a
huge evaluation performed both for the value as well as for the predicate analysis, we
investigated the effect of guided refinement selection using different heuristics. We
furthermore devised the concept of inter-analysis refinement selection, where for a
composite analysis we query heuristics to decide which of the component analyses is
best to be refined in order to allow the composite analysis to converge faster.

Our paper covering this contribution was accepted for publication at SPIN’15 [29].

10http://sv-comp.sosy-lab.org/2013/results/index.php

6

http://sv-comp.sosy-lab.org/2013/results/index.php

1.4 Structure of the Thesis

1.3.5 Contribution to SV-COMP’16

We incorporated all contributions listed above into CPAchecker, and we participated
with the respective configuration in SV-COMP’16 [14].

Our competition contribution was accepted for publication at SV-COMP’16 [84],
and our verifier won the gold medal in the category DeviceDriversLinux64.

1.3.6 Availability of Implementations and Experimental Data

All our implementations are integrated into CPAchecker, and they are freely and
publicly available. In order to allow reproducibility of all evaluations in this thesis,
we provide the full results and raw data on our supplementary web page available at
http://www.sosy-lab.org/research/phd/loewe/.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows:

• After this brief introductory chapter some more background on (automatic)
software verification is presented in Chapter 2.

• The value analysis is introduced in Chapter 3.

• The concepts of interpolation and CEGAR for the value domain are detailed
in Chapter 4.

• In Chapter 5 we discuss optimizations for the newly designed interpolation
procedure and the CEGAR technique of the value domain, and also comment
on the endeavor of our further research on the topic of value domain refinement.

• Chapter 6 holds the details around the composite analysis, which features the
value analysis and a predicate analysis.

• After that, the concept of infeasible sliced prefixes is introduced in Chapter 7,
and in Chapter 8 this is extended to address intra- and inter-analysis refinement
selection.

• In Chapter 9 we discuss our contribution to SV-COMP’16 and its current state
after further development.

• Chapter 10 provides a summary of the thesis as well as a brief outlook on
further research directions.

7

http://www.sosy-lab.org/research/phd/loewe/

2 Background

The previous chapter emphasized the importance of software correctness, and we
outlined several techniques that are available for improving the quality of software,
such as testing, theorem proving, or automatic software verification, with the latter
being in the focus of this thesis. In this chapter we now turn the attention to the
theoretical background of software verification. This is needed to explain the ideas
and concepts for automatic software verification presented in this thesis.
Hence, this chapter will introduce the basics around programs, the control-flow

automaton (CFA) of programs, as well as define the semantics of programs, paths, and
operations. This builds the basis for defining the CPA concept, which incorporates
an abstract domain, a transfer relation, and other operators, that together allow
formulating a reachability algorithm, namely the CPA algorithm. Finally, one
possible instantiation of the CEGAR algorithm is presented, along with the notion
of interpolation, so that when all is put together, flexible and efficient algorithms for
automatic software verification can be designed.

2.1 Programs, Control-Flow Automaton, and Semantics

We restrict the presentation to a simple imperative programming language, where all
operations are either assignments or assume operations, and all program variables
range over integers.
A program is represented by a CFA A, with A = (L, l0, G), which consists of

a set L of program locations, modeling the program counter, an initial program
location l0 ∈ L, representing the program entry, and a set G ⊆ L × Ops × L of
control-flow edges, modeling the operations that are executed when control flows
from one program location to the next. The set of program variables that occur in
operations from Ops is denoted by X.

A verification task P = (A, le) consists of a CFA A representing the program, and
a target location le ∈ L, which represents the specification, i. e., “the program must
not reach location le”.
A concrete data state of a program is a variable assignment cd : X → Z, which

assigns to each program variable a value from the set Z of integer values.
A concrete state of a program is a pair (l, cd), where l ∈ L is a program location

and cd is a concrete data state. The set of all concrete states of a program is called C.

9

2 Background

A region ρ represents a set concrete states for which the following holds: ρ ⊆ C.
We denote the definition range for a function f as def(f) = {x | ∃y : f(x) = y},

and the restriction of a function f to a new definition range Y by f|Y = f ∩ (Y × Z).
Each edge g ∈ G defines a labeled transition relation g→ ⊆ C × {g} × C. The

complete transition relation → is the union over all control-flow edges: → = ⋃
g∈G

g→.
We write c g→c′ if (c, g, c′) ∈ →, and c→c′ if there exists an edge g with c g→c′.

A path σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉 of pairs of an operation and a
location. The path σ is called program path, if the path σ represents a syn-
tactic walk through the CFA, i. e., for every i with 1 ≤ i ≤ n there exists an
edge g = (li−1, opi, li), and l0 is the initial program location. The result of ap-
pending the pair (opn, ln) to a path σ = 〈(op1, l1), . . . , (opm, lm)〉 is defined as
σ ∧ (opn, ln) = 〈(op1, l1), . . . , (opm, lm), (opn, ln)〉, and the result of appending the
sequence 〈(opn, ln), . . . , (opp, lp)〉 to a path σ = 〈(op1, l1), . . . , (opm, lm)〉 is defined as
σ ∧ 〈(opn, ln), . . . , (opp, lp)〉 = 〈(op1, l1), . . . , (opm, lm), (opn, ln), . . . , (opp, lp)〉.
A constraint sequence γσ = 〈op1, . . . , opn〉 is defined through the sequence of

operations occurring in the path σ = 〈(op1, l1), . . . , (opn, ln)〉 it is associated with.

2.2 Configurable Program Analysis

All contributions in this thesis are based on the CPA concept [21] and its extensions
to CPA+ [22]. In the following, if we refer to CPA, this always denotes CPA+.
A CPA D = (D,Π, ,merge, stop, prec) is an abstract reachability analysis that
operates on a CFA and consists of an abstract domain D, a set of precisions Π, a
transfer relation , and the three operators merge, stop, and prec. The following
paragraphs, describing each individual component of such a CPA, are taken from
existing work [22].

2.2.1 Abstract Domain

The abstract domain D = (C, E , [[·]]) is defined by the set C of concrete states, the
semi-lattice E of abstract states, and a concretization function [[·]].
The semi-lattice E = (E,>,⊥,v,t) consists of the (possibly infinite) set E of

abstract domain elements, the top element > ∈ E, the bottom element ⊥ ∈ E, the
partial order v ⊆ E × E, and the join operator t : E × E → E.
The function t yields the least upper bound for two lattice elements, and the

symbols > and ⊥ denote the least upper bound and the greatest lower bound of the
set E, respectively.
The concretization function [[·]] : E → 2C assigns to each abstract state e its

meaning, i. e., the set of concrete states that it represents.

10

2.2 Configurable Program Analysis

For soundness of the program analysis, the abstract domain has to fulfill the
following requirements:

(a) [[>]] = C and [[⊥]] = ∅

(b) ∀e, e′ ∈ E : e v e′ ⇒ [[e]] ⊆ [[e′]]

(c) ∀e, e′ ∈ E : [[e t e′]] ⊇ [[e]] ∪ [[e′]]
(the join operator is precise or over-approximates [[e]] ∪ [[e′]])

Requirement (c) is implied by (b) and the fact that t yields the least upper bound.

2.2.2 Precision

The set of precisions Π determines the possible precisions π ∈ Π of the abstract
domain. The program analysis uses the elements π from Π to keep track of different
precisions for different abstract states from E. As such, a pair (e, π) ∈ E×Π is called
abstract state e with precision π. The operators of the abstract domain are parametric
in the precision. In the remainder of this thesis the precision may be omitted if
clear from context or when it is unnecessary for describing the characteristics of a
component.

2.2.3 Transfer Relation

The transfer relation ⊆ E ×G× E ×Π assigns to each abstract state e possible
new abstract states e′ with precision p which are abstract successors of e, and each
transfer is labeled with a control-flow edge g. We write e g (e′, π) if (e, g, e′, π) ∈ ,
and e (e′, π) if there exists an edge g with e g (e′, π).
The transfer relation has to fulfill the following requirement:

(d) ∀e ∈ E, g ∈ G, π ∈ Π :⋃
e
g
 (e′,π) [[e′]] ⊇ ⋃

c∈[[e]]{c′ | c
g→c′}

(the transfer relation over-approximates operations for every fixed precision)

2.2.4 Merge Operator

The merge operator merge : E × E × Π→ E weakens the second parameter using
information from the first parameter, and potentially returns a new abstract state
with the precision given as third parameter.
The merge operator has to fulfill the following requirement:

(e) ∀e, e′ ∈ E, π ∈ Π : e′ v merge(e, e′, π)
(the result of merge can only be more abstract than the second parameter)

11

2 Background

There are two straight-forward implementations for merge. One implementation, to
which we refer to as mergesep, does not combine states at all, but instead just returns
the second parameter unchanged, i. e., mergesep(e, e′, π) = e′. The other approach,
called mergejoin, implements the merge operator based on the join operator t of
the lattice, i. e., mergejoin(e, e′, π) = e t e′. However, note that, with respect to the
lattice, the result of merge(e, e′, π) may be anything between e′ and >.

2.2.5 Stop Operator

The termination check stop : E × 2E ×Π→ B checks if the abstract state given as
the first parameter with the precision given as the third parameter, is subsumed
by the set of abstract states given as the second parameter. The termination check
can, for example, go through the elements of the set R that is given as the second
parameter and search for a single element that, in accordance to the partial order
v, subsumes the first parameter, or —if D is a power-set domain 1— can join the
elements of R to check if R subsumes the first parameter.
The termination check has to fulfill the following requirement:
(f) ∀e ∈ E, R ⊆ E, π ∈ Π :

stop(e,R, π) = true =⇒ [[e]] ⊆ ⋃e′∈R [[e′]]
(if an abstract state e is considered to be covered by R, then every concrete
state represented by e is represented by some abstract state from R)

Hence, two straight-forward implementations of this operator are stopsep(e,R) =
(∃e′ ∈ R : e v e′) and stopjoin(e,R) = (e v ⊔R).

2.2.6 Precision-Adjustment Operator

The precision-adjustment operator prec : E ×Π× 2E×Π → E ×Π computes a new
abstract state and a new precision for a given abstract state with precision and a set
of abstract states with precision. The precision-adjustment operator is applied after
the transfer relation and may perform widening of the abstract state, in addition
to changing the precision.
The precision-adjustment operator has to fulfill the following requirement:
(g) ∀e, ê ∈ E, π, π̂ ∈ Π, R ⊆ E ×Π :

(ê, π̂) = prec(e, π,R) =⇒ [[e]] ⊆ [[ê]]

2.3 CPA Algorithm

Based on the components of the CPA concept from above, one can formulate the
CPA algorithm (cf. Algorithm 1), which may serve as reachability algorithm.

1A power-set domain is an abstract domain such that [[e t e′]] = [[e]] ∪ [[e′]].

12

2.3 CPA Algorithm

Algorithm 1: CPA(D, R0,W0) (taken from [26])
Input : a CPA D = (D,Π, ,merge, stop, prec),

an initial set R0 ⊆ (E ×Π) of abstract states with their precision,
a subset W0 ⊆ R0 of frontier abstract states with their precision

Output : a pair with (1) a set of reachable abstract states with their precision
and (2) a set of frontier abstract states with their precision

Variables : a set reached ⊆ E ×Π and a set waitlist ⊆ E ×Π
1 reached := R0
2 waitlist := W0

3 while waitlist 6= ∅ do
4 choose (e, π) from waitlist
5 waitlist := waitlist \ {(e, π)}
6 foreach e′ with e (e′, π) do
7 (ê, π̂) = prec(e′, π, reached)
8 if isTargetState(ê) then
9 return (reached ∪ {(ê, π̂)}, waitlist ∪ {(ê, π̂)})

10 foreach (e′′, π′′) ∈ reached do
11 enew := merge(ê, e′′, π̂)
12 if enew 6= e′′ then
13 reached := (reached ∪ {(enew, π̂)}) \ {(e′′, π′′)}
14 waitlist := (waitlist ∪ {(enew, π̂)}) \ {(e′′, π′′)}
15 if ¬stop(ê, {e|(e, ·) ∈ reached}, π̂) then
16 reached := reached ∪ {(ê, π̂)}
17 waitlist := waitlist ∪ {(ê, π̂)}
18 return (reached, ∅)

The CPA algorithm gets as input a CPA D as well as two sets of abstract states
with their precision, namely the sets R0 and W0. Normally, the set R0 is initially
empty, and the set W0 contains only the initial abstract state. These two sets are
then used to initialize the sets reached and waitlist.

The set reached stores all abstract states with their precision that are found to be
reachable. The set waitlist stores all abstract states with their precision that are not
yet processed, i. e., the frontier, and during the course of the algorithm, i. e., during
the state-space exploration, these two sets are being updated continuously.

After the initialization phase of the algorithm, an abstract state with its precision
is chosen and removed from the waitlist, and its successors are computed according
to the transfer relation. For each of these successor states, the algorithm adjusts the
precision of the individual successor using the precision-adjustment operator prec.
If the successor is a target state, i. e., it corresponds to the target location le, then

13

2 Background

the algorithm terminates, returning the pair of sets reached and waitlist —possibly
as input for a subsequent precision refinement— as shown below (cf. Algorithm 2).
Otherwise, using the operator merge, the abstract successor state is combined with
each existing abstract state from reached. If the operator merge results in a new
abstract state with information added from the new successor (the old abstract state
is subsumed) then the old abstract state with its precision is replaced by the new
abstract state with its precision in the sets reached and waitlist. If after the merge
step the resulting new abstract state with its precision is covered by the set reached
—that is, stop returned true— then further exploration of this abstract state is stopped.
Otherwise, the abstract state with its precision is added to the set reached and to
the set waitlist. Finally, once the set waitlist is empty, the set reached is returned
in a pair along with the empty waitlist.

For simplicity, the collections reached and waitlist are represented as simple sets
here, but mind that the waitlist is implemented as priority queue, such that choosing
from the waitlist can be configured from the outside. Furthermore, on top of the set
reached there exists an implementation of a graph structure that we call abstract
reachability graph (ARG) [18], and which is sketched in the following section.

2.4 Abstract Reachability Graph

The ARG represents the abstract model of a verification task, and it results from
running a CPA on the CFA of the respective verification task, for example by using
the CPA algorithm from above. So essentially, the ARG represents the unrolling of a
CFA with a specific CPA. Hence, ARGs are different for different input CFAs, but
also for two identical input CFAs the resulting ARGs usually differ if the analyses
are performed using different or differently configured CPAs.
Besides representing a region of concrete data states, e. g., through an abstract

variable assignment (cf. Section 3.3) or a first-order formula [24], each abstract state
contained in the ARG usually wraps further auxiliary state information, such as the
respective program location and the call stack at which this abstract state has been
computed.
In addition, the ARG encapsulates two more pieces of information that are of

importance. First, it has encoded the (transitive) predecessor-successor relation
between the abstract states, and second, it knows which pairs of abstract states are in
a coverage relation. The predecessor-successor relation is a minimal requirement for
CEGAR, because CEGAR operates on counterexamples and we need to provide these
counterexamples, i. e., the paths leading from the initial state to a state identified as
potential target state, to the CEGAR algorithm, which we introduce in the following.

14

2.5 Counterexample-Guided Abstraction Refinement

2.5 Counterexample-Guided Abstraction Refinement

CEGAR is a technique for automatic, iterative refinement of an abstract model [43],
which is based on the following four building blocks:

1. a state-space exploration algorithm, computing the abstract model,

2. a precision, defining the current level of abstraction,

3. a feasibility check, deciding if an error path is feasible, and

4. a refinement procedure, enabling the creation of a more precise abstract model.

Algorithm 2 shows one, general instantiation of an algorithm following the CEGAR
approach. It uses the algorithm CPA (cf. Algorithm 1) as state-space exploration
algorithm, and an abstract domain that is formalized as a CPA with dynamic precision
adjustment D (cf. Section 2.2). The CPA uses a set E of abstract states and a set Π of
precisions. As described above, the main purpose of the CPA algorithm is to compute

Algorithm 2: CEGAR(D, (e0, π0)) (taken from [30])
Input : a CPA D = (D,Π, ,merge, stop, prec),

an initial abstract state e0 ∈ E with a precision π0 ∈ Π
Output : the verification result true, or false (with counterexample)
Variables : a set reached ⊆ E ×Π, a set waitlist ⊆ E ×Π,

an error path σ = 〈(op0, l0), . . . , (opn, ln)〉
1 reached := {(e0, π0)}
2 waitlist := {(e0, π0)}
3 π := π0

4 while true do
5 (reached,waitlist) := CPA(D, reached, waitlist)
6 if waitlist = ∅ then

// no error path found: verdict is true
7 return true

8 σ := ExtractErrorPath(reached)
9 if IsFeasible(σ) then

// error path is feasible: verdict is false, report bug
10 return false
11 else

// error path is infeasible: restart with refined precision
12 π := π ∪ Refine(σ)
13 reached := {(e0, π)}
14 waitlist := {(e0, π)}

15

2 Background

the set reached and waitlist, which represent the current reachable abstract states
with precisions and the frontier, respectively. In accordance to the CEGAR concept,
the CPA algorithm is initially run with π0 as coarse initial precision (usually π0 = ∅).
If all program states have been exhaustively checked, indicated by an empty waitlist,
and no target state was reached, then the CEGAR algorithm terminates and reports
the verdict true, i. e., the verification task is considered safe. If the CPA algorithm
finds an error in the abstract state space, i. e., a counterexample for the given
specification, then it stops and returns the yet incomplete sets reached and waitlist.
Now the corresponding abstract error path σ is extracted from the set reached
using the procedure ExtractErrorPath 2, and passed to the procedure IsFeasible for
the feasibility check, where this extracted abstract error path is reevaluated with
full precision. If the abstract error path σ is found to be feasible also with full
precision, this means there exists a corresponding concrete error path, and this
concrete error path represents a violation of the specification. Hence, the algorithm
terminates, returning the verdict false and reporting the bug. If, however, the error
path σ is found to be infeasible, i. e., it is not corresponding to a concrete program
path, then the current precision π was too coarse and needs to be refined. The
refinement procedure is represented here by the procedure Refine returning a precision
that is strong enough to exclude this infeasible error path from future state-space
explorations. This returned precision is used to extend the current precision π of the
CPA algorithm, which re-computes the sets reached and waitlist based on this new,
refined precision in the next iteration of the CEGAR loop.
The above describes the standard CEGAR approach, i. e., after each and every

refinement the sets reached and waitlist are reset and the state-space exploration
starts anew, then with the refined precision as returned by the procedure Refine. If
combining CEGAR with the concept of lazy abstraction [69], the overall analysis
may become more efficient. This is made possible by one of the key ingredients of
lazy abstraction, namely that after a refinement only those parts of the sets reached
and waitlist are removed that needed to be refined, while leaving the remainder of
the explored state space unchanged. Hence, the state-space exploration continues
from there using the newly refined precision, without the need of recomputing those
parts of the state space that remain unaffected from this refinement anyway. For
selectively removing parts of the sets reached and waitlist there must be means to
obtain all descendants of an abstract state, as well as to restore the consistency of
the coverage relation after a lazy refinement, i. e., CEGAR with lazy abstraction
requires an ARG to be available. Our implementation is based on the CPAchecker
which already provides these functionalities through the well-established ARGCPA
(cf. Section 2.7).

2In the implementation the path is extracted using the predecessor-successor relation of the ARG.

16

2.6 Interpolation

2.6 Interpolation

As shown in the previous section, the CEGAR algorithm needs some implementation
for the procedure Refine, which is responsible for refining the precision employed in
the state-space exploration algorithm, such that the infeasible counterexamples get
excluded one after the other. There exist several different possibilities for realizing
such a refinement procedure, e. g., mining predicates [34], statically computing
invariants [76], or invariant generation [54], but arguably, the most prominent and
successful ones in the field of automatic software verification are based on (Craig)
interpolation [10,14,49,68,87].
Craig interpolation is a technique from logics that yields for two contradicting

formulas an interpolant formula that contains less information than the first formula,
but is still expressive enough to contradict the second formula.
Formally, for a pair of formulas ϕ− and ϕ+ such that ϕ− ∧ ϕ+ is unsatisfiable, a

Craig interpolant ψ is a formula that fulfills the following three requirements [49]:

1. the implication ϕ− ⇒ ψ holds,

2. the conjunction ψ ∧ ϕ+ is unsatisfiable, and

3. ψ only contains symbols that occur in both ϕ− and ϕ+.

Such a Craig interpolant is guaranteed to exist for many useful theories, e. g.,
the theory of linear arithmetic, as implemented in several SMT solvers. Hence,
for software verification, interpolation was first used in the domain of predicate
abstraction [68], however, a later chapter will introduce the concept of interpolation
also for the value domain [26].
Independent of the analysis domain, interpolants for infeasible error paths are

useful for refining the precision of the state-space exploration algorithm, such that
these infeasible error paths are excluded in subsequent CEGAR iterations.

2.7 CPAchecker as Verification Framework

CPAchecker [23] is an open-source project made available under the Apache 2.0 license.
It is being developed by the members of the Software Systems Lab, led by Dirk
Beyer, at the University of Passau. Both source code and binary releases are available
from http://cpachecker.sosy-lab.org. CPAchecker is used by practitioners and
researchers, for example at the Russian Academy of Science, at the universities of
Darmstadt, Hamburg, Paderborn and Vienna, as well as at Verimag in Grenoble.

CPAchecker is designed as an extensible framework for software verification. It is
written in Java and the main focus is laid on verification of sequential C programs.
The framework uses the C parser from the Eclipse CDT project and offers interfaces to

17

http://cpachecker.sosy-lab.org

2 Background

ValueAnalysis
CPA

ARG
CPA

CPA

CEGAR
Algorithm

CPA
Algorithm

CEXCheck
Algorithm

Algorithm

CFA
Builder

Composite
CPA

Specification
CPA

Predicate
CPA

BDD InterfaceSMT Interface

MathSAT SMTInterpol JavaBDD

Verification
Artifacts

Verification
Verdict

Specification

Location
CPA

Callstack
CPA

FunctionPointer
CPA

Configuration

Verification
Task

Figure 2.1: Overview of the architecture of the CPAchecker framework

several SMT solvers, e. g., MathSAT5 [41], SMTInterpol [40], and others, for solving
and interpolating over formulae. The paramount design decision of CPAchecker
is separation of concerns, thus, many of the standard tasks which are required
for virtually any verification approach are implemented as individual, independent
CPAs [21] within CPAchecker (cf. Figure 2.1). For example, the program counter is
tracked by the LocationCPA, the call stack is modeled by the CallstackCPA, function
pointers are resolved by the FunctionPointerCPA, and adherence to the specification
is monitored by the SpecificationCPA. The principle of separating concerns is also
kept for the main analyses, e. g., for the value analysis or for the predicate analysis,
which represent the two main analyses described throughout this thesis. Both these
analyses are also implemented as strictly decoupled CPAs within CPAchecker, namely
as ValueAnalysisCPA and PredicateCPA, respectively.

Given a user-supplied configuration, any of the CPAs available within CPAchecker
may be enabled on a per-demand basis and flexibly recombined to form a parallel
composition of analyses by means of the CompositeCPA, which itself may be used to
form an ARG-based analysis by wrapping it in the ARGCPA.

Any such CPA can then plugged into a configurable instance of an Algorithm, e. g.,
the CPAAlgorithm, to perform the state-space exploration for some verification task.
Other algorithms, like the CEGARAlgorithm or the CEXCheckAlgorithm can be
asked to wrap the CPAAlgorithm, simply by passing in the respective configuration
to the CPAchecker framework.

18

2.7 CPAchecker as Verification Framework

CPAchecker has become one of the most successful tools for automatic software
verification, winning a series of gold, silver and bronze medals in every edition of the
SV-COMP, and the CPAchecker team was awarded the Kurt Gödel medal for their
achievements in the field of automatic software verification.

Note that all contributions described in this thesis are integrated in the CPAchecker
framework. The respective approaches have been thoroughly implemented, improved,
optimized, and maintained over several years, adding to the overall value and success
of the CPAchecker project.

19

3 Value Analysis

After having laid out the concepts of CPA and the CPA algorithm, we now define an
analysis to be used as component analysis within the CPA framework. We call the
analysis value analysis, as it tracks the concrete values for the program variables of
a verification task.

3.1 Motivation

Current research lays a strong focus on concepts and ideas that propose to perform
program analysis symbolically [103], and thus these analyses have to rely on some
form of external decision procedure like a SAT or SMT solver. While the respective
implementations of this approach perform well on a wide range of verification
tasks [10,11,12,13,14], there are also many cases where a fully symbolic approach
does not scale because the SAT or SMT solver is overwhelmed. Instead, tracking state
information concretely makes the use of external decision procedures unnecessary,
which leads to more efficient successor computations. This becomes magnified in
presence of bit-operations, because the SMT solvers either must employ bit-precise
reasoning, which comes at an even higher computational cost, or they have to
over-approximate such operations which introduces imprecision to the analysis. In
contrast, an analysis that tracks the values of program variables concretely may
decide, and more importantly has the capability, to model bit-level or floating-point
operations accurately.
Therefore, to contrast the predominant symbolic analyses, we conceive a value

analysis that tracks only concrete values of program variables. However, when
compared to symbolic approaches, this design decision does not only come with
the advantages outlined above, but there are also a few important disadvantages to
bear in mind. The simple state representation of the value analysis —it only tracks
concrete assignments of program variables— leads to an analysis that is less precise in
the presence of non-deterministic behavior, e. g., introduced due to program variables
not being initialized or program variables being assigned from external function calls.
Whereas symbolic approaches still can learn some state information in these cases,
the value analysis is in general not able to derive any concrete value for a program
variable in such a scenario. Moreover, enumerating all possible concrete values for
all program variables can easily lead to a huge amount of abstract states, and the

21

3 Value Analysis

1 #include <assert . h>
2 int main () {
3 int a = 0 ;
4 int b = 1 ;
5 int c ;
6 b = a + b ;
7

8 i f (c) {
9 a = 1 ;

10 }
11 else {
12 a = 2 ;
13 }
14

15 int f = a − b ;
16 i f (f < 0) {
17 assert (0) ;
18 }
19 }

L2

L8

L9 L12

L15

L16

L17

L18

int a = 0;
int b = 1;
int c;
b = a + b;

[c == 0]

a = 2;

int f = a - b;

[f < 0]

assert(0);

return;

[!(c == 0])

a = 1;

[!(f < 0)]

Figure 3.1: Simple verification task, with its corresponding CFA

problem of state-space explosion might render the analysis infeasible. Symbolic
approaches often allow a more compact state-space representation, which then may
help to avoid the problem of state-space explosion. All in all, it is interesting to see
if the value analysis we envision is able to compete with symbolic analyses.
Before introducing the formalism for the analysis, we illustrate, on the small

example shown in Figure 3.1, how the value analysis operates.
There, the program variables int a and int b are properly initialized, while the

program variable int c is left uninitialized. Thus, in the assume operation if (c)
in line 8, both branches, i. e., the two assignments a = 1 and a = 2 need to be
taken into account by the analysis, so that the statement int f = a − b can be
evaluated for each case. Only this way a complete judgment over the reachability of
the assert statement is possible, and the verdict true of the verification task can
be reported.
The final ARG, as it looks after having ran the value analysis, is visualized in

Figure 3.2. Before the initial state, all program variables are mapped to >, indicating
that no valuations for any program variable are known. In the first basic block, the
program variables int a and int b are initialized and set to 0 and 1, respectively.
Because the program variable int c is left uninitialized, both branches from the
assume operation in line 8 are explored. From the condition [c == 0] the analysis
can assume the value 0 for the program variable int c in the else branch and

22

3.1 Motivation

N2

N8

N9 N12

N15 N15′

N16 N16′

N18 ⊥ N18′ ⊥

int a = 0;
int b = 1;
int c;
b = a + b;

[!(c == 0)]

a = 1;

int f = a - b;

[!(f < 0)]

return;

[f < 0]

[c == 0]

a = 2;

int f = a - b;

[!(f < 0)]

return;

[f < 0]

a 7→ >
b 7→ >
c 7→ >
f 7→ >

a 7→ 0
b 7→ 1

c 7→ 0

a 7→ 1 a 7→ 2

f 7→ 0 f 7→ 1

Figure 3.2: The ARG of the verification task from Figure 3.1, annotated with the
assignments of program variables like the value analysis would compute
them for the verification task

thereafter. Note that from the condition [c != 0] the analysis cannot derive any
information, as it does not track inequalities. But despite this minor imprecision, in
both branches after node N15 the valuation of the program variable int f can be
evaluated to a deterministic value, which in both branches is not lower than 0, but 0
and 1, respectively. Consequently, the else branch of node N16 does not have a
successor in neither of the two branches —indicated by the dashed line and faded
color— which proves that the failing assert statement is unreachable and that the
verdict for this verification task is true.

Now, after having introduced the operating mode of the value analysis, the next
section discusses related work in that field. After that, we present the formal
definitions, in order to pinpoint the semantics of the analysis precisely. These are
then used to define the value analysis as individual component CPA in the CPA
framework. This is followed by an evaluation of our value analysis, and the conclusion
of this first chapter then details the strong points and weak spots of our first approach
towards creating an efficient analysis.

23

3 Value Analysis

3.2 Related Work

There are many different approaches to perform program analysis, and there is
also a huge body of techniques and tools for program analysis, making a complete
comparison with all available work impossible. Thus, we discuss here only the most
prominent approaches for program analysis. In later chapters we compare our verifier
to those verifiers that are made visible by their respective authors as successful
participants in the SV-COMP editions of the last years [10,11,12,13,14].
The predominant analyses in the field of automatic software verification are

based on predicate abstraction [7, 9, 60, 86, 100], or they perform bounded model
checking [55, 64, 79, 90] or symbolic execution [37, 75, 78, 101]. Some approaches
additionally use binary decision diagrams [6, 32, 36], or combine several of the
mentioned techniques [4, 85] in parallel or in sequence. Undoubtedly, these analyses
have great success [10,11,12,13,14], and this success story is also due to the massive
improvements in the field of automatic SAT and SMT solving [39,80,98] achieved
during the last decade. All these approaches perform symbolic program analysis,
and are therefore not that closely related to our approach, which is based on tracking
concrete values of program variables. For a more detailed discussion on these
approaches we refer the interested reader to the literature referenced above.

On the other side of the spectrum, there is the field of explicit-state software model
checking. In its simplest form explicit-state software model checking enumerates all
reachable states of a verification task, a characteristic that makes this approach seem
closely related to value analysis that we conceive here. However, in the presence of
non-determinism, e. g., stemming from uninitialized program variables or program
variables assigned from external function calls, our approach always over-approximates
the valuation of such a program variable. In contrast, explicit-state model checking
may go as far as generating one state for each possible valuation of a program variable,
i. e., for a non-deterministic program variable int a this alone would lead to 232

states. The most renowned explicit-state model checkers are Spin [71] and Java Path
Finder [66]. Java Path Finder only supports the verification of Java programs, and Spin
was originally designed to verify properties of Promela [92] models only, and it is not
possible to directly verify C source code with Spin. But, as Spin translates the Promela
model internally to a C program, later version allow to embed fragments of C within
Promela models. Additionally, when supplying a manually designed test harness
description to the tool Modex [73], then the later creates a Promela model from that,
which then can be verified with Spin. The more recent explicit-state model checker
Divine [8,102] supports the verification of both C and C++ by integrating the highly
universal LLVM compiler infrastructure project [81]. However, non-deterministic
behavior is not restricted by Divine, i. e., Divine is explicit in non-determinism, so it
actually does enumerate all 232 possibilities of a non-deterministic program variable

24

3.3 Definitions

of type int . Besides that, explicit-state model checkers such as Spin, Java Path
Finder, or Divine are primarily designed for concurrent systems, while our value
analysis mainly targets reachability properties of single-threaded programs.

The main problem of program analyses based on either explicit or symbolic model
checking is that of state-space explosion. Program analyses following the abstract
interpretation framework [47] mitigate this problem to some extent, because whenever
two branches in a program meet again, the defined join operator merges the two
individual states available at the end of each branch, such that the result of the join
subsumes the information from both branches. So, instead of the two individual
branches only one has to be explored further, which lowers the number of abstract
states to be enumerated, but at the cost of a lower precision which may lead to
lots of false positives, i. e., incorrect false verdicts [21]. Note that we envision
our value analysis to be path-sensitive, otherwise it would be too imprecise and
almost identical to constant propagation [1]. Two well-known tools that are based
on abstract interpretation are the static analyzer Astree [35] and the value analysis
of the Frama-C platform [38].
This discussion of techniques and approaches is by no means intended to be

complete, as there exist many more approaches for program analysis. For example,
there is a plethora of work on pointer analyses, on analyses to check memory safety or
verify concurrent programs, as well as analyses to reason about program termination.
All these approaches are orthogonal to our value analysis, which is thought to run in a
model-checking configuration and to reason over reachability properties in sequential
C programs. In the following we will present the basic definitions and concepts of
our value analysis and then embed it as CPA into the CPA framework.

3.3 Definitions

An abstract data state, formally defined as abstract variable assignment, represents a
region of concrete data states.

An abstract variable assignment is either (1) a partial function v : X −→◦ Zmapping
variables in its definition range to integer values, or (2) ⊥, which represents no variable
assignment (i. e., no value is possible, similar to the predicate false in logic). The
special abstract variable assignment > = ∅ does not map any variable to a value and is
used as initial abstract variable assignment in a program analysis. We model abstract
variable assignments as partial functions because specific variables, despite being
declared in the program, may not be represented in abstract variable assignments.
This can be due to the analysis not being able to determine a value for a variable,
e. g., because a variable is left uninitialized or is assigned to the return value of an

25

3 Value Analysis

external function call, or because the analysis omitted a variable on purpose for
reasons of abstraction.

The definition range of a partial function f is defined as def(f) = {x | ∃y : f(x) = y}
and the restriction of a partial function f to a new definition range Y is defined
as f|Y = f ∩ (Y × Z). For two partial functions f and f ′, f(x) = y represents the
predicate (x, y) ∈ f , and f(x) = f ′(x) represents the predicate ∃c : (f(x) = c) ∧
(f ′(x) = c).

An abstract variable assignment v represents the set [[v]] of all concrete data
states cd for which v is valid, or formally, (1) for v = ⊥, [[v]] = [[⊥]] = ∅, and (2) for
all v 6= ⊥, [[v]] = {cd | ∀x ∈ def(v) : v(x) = cd(x)}.
The abstract variable assignment ⊥ is called contradicting. The implication for

abstract variable assignments is defined as follows: v implies v′ (written v =⇒ v′) if
(1) v = ⊥, or (2) for all variables x ∈ def(v′) we have v(x) = v′(x). The conjunction
for abstract variable assignments v and v′ is defined as:

v ∧ v′ =
{
⊥ if v = ⊥ or v′ = ⊥ or (∃x ∈ def(v) ∩ def(v′) : ¬(v(x) = v′(x)))
v ∪ v′ otherwise

An abstract state of a program is a pair (l, v), representing the following set of
concrete states: {(l, cd) | cd ∈ [[v]]}.
The semantics of an operation op ∈ Ops is defined by the strongest post-

operator ŜPop(·). Given an abstract variable assignment v, the abstract variable
assignment v′ = ŜPop(v) is the resulting abstract variable assignment when exe-
cuting op on the input v. Formally, given an abstract variable assignment v and
an assignment operation x := exp, we have (1) ŜPx:=exp(v) = ⊥ if v = ⊥, or
(2) ŜPx:=exp(v) = v|X\{x} ∧ vx with

vx =
{
{(x, c)} if c ∈ Z is the result of the arithmetic evaluation of exp/v
∅ otherwise (if exp/v cannot be evaluated)

where exp/v denotes the interpretation of the expression exp for the abstract variable
assignment v. Given an abstract variable assignment v and an assume operation [p],
we have (1) ŜP[p](v) = ⊥ if v = ⊥ or the predicate p/v is unsatisfiable, or (2) we
have ŜP[p](v) = v∧ vp, with vp =

{
(x, c) ∈ (X \ def(v)× Z)

∣∣ p/v =⇒ (x = c)
}
and

p/v = p ∧ ∧
y∈def(v)

y = v(y), i. e., c is the only possible assignment for the variable x

so that the formula p is satisfied.
The semantics of a path σ = 〈(op1, l1), . . . , (opn, ln)〉 is defined as the successive

application of the strongest post-operator to each operation of the corresponding con-
straint sequence γσ, formally, ŜPγσ(v) = ŜPopn(. . . ŜPop1(v) . . .). The abstract state
that results from running a program path σ is represented by the pair (ln, ŜPγσ(>)),
where > is the initial abstract variable assignment that is available at the initial
program location. A path σ is called feasible if ŜPγσ(>) is not contradicting, i. e.,
ŜPγσ(>) 6= ⊥.

26

3.4 Value Analysis as CPA

A concrete state (ln, cdn) is reachable, if there exists a feasible program path
σ = 〈(op1, l1), . . . , (opn, ln)〉, with cdn ∈ [[ŜPγσ(>)]], and a location l ∈ L is reachable
if there exists a concrete data state cd such that (l, cd) is reachable.

A program, or verification task, is considered to have the verdict true, if le is not
reachable. In this case the specification of the program is considered to be satisfied.
A program path σ = 〈(op1, l1), . . . , (opn, le)〉, for which ŜPγσ(>) 6= ⊥ is called error
path.

3.4 Value Analysis as CPA

In the following, we define a component CPA for tracking concrete integer values of
program variables. In order to obtain a meaningful analysis we need to construct a
composite CPA, which consists of this component CPA for tracking concrete values
of program variables, and a few more component CPAs, e. g., a CPA for tracking
the program counter, as described in the literature [22]. For the composite CPA,
the general definitions of the abstract domain, the transfer relation, and the other
operators are also available from the literature [22]. The composition is automatically
taken care of by the CPA framework.

The CPA for the value analysis is defined as C = (DC,ΠC, C,mergeC, stopC, precC)
and consists of the following components [26].

3.4.1 Abstract Domain

The abstract domain DC = (C,V, [[·]]) contains the set C of concrete data states, and
uses the semi-lattice V = (V,>,v,t), which consists of the set V = (X −→◦ Z) ∪
{>,⊥} of abstract variable assignments, where V , with Z denoting the set of integer
values, induces the flat lattice over the integer values. The top element > ∈ V is the
abstract variable assignment that holds no specific value for any program variable,
and the bottom element ⊥ ∈ V is the abstract variable assignment which models
that there is no value assignment possible, i. e., a state that cannot be reached in
an execution of the program. The partial order v ⊆ V × V is defined as v v v′,
if (1) v = ⊥, or (2) v′ = >, or (3) def(v′) ⊆ def(v) and v(x) = v′(x) holds for
all x ∈ def(v′). The join t : V × V → V yields the least upper bound for two
abstract variable assignments. The concretization function [[·]] : V → 2C assigns to
each abstract variable assignment v its meaning, i. e., the set of concrete data states
that it represents.

3.4.2 Precision

The precision of the analysis controls the level of abstraction employed during the
analysis. The set of precisions ΠC consists of precisions π, where each precision π,

27

3 Value Analysis

with π : L 7→ 2X , specifies at which program locations l ∈ L which program variables
x ∈ X are being tracked. For example, the precision π(l) = X for all l ∈ L, also
called the full precision, signals the analysis to track all program variables at all
program locations, and a precision π(l) = ∅ for all l ∈ L, also called the empty
precision, signals the analysis to track no program variables at all. Note, that we
sometimes refer to the precision without explicitly giving the parameter l ∈ L. In
such a case we assume π(l) = π(l ′) = ξ ⊆ X for all l, l ′ ∈ L.

3.4.3 Transfer Relation

The transfer relation C has the transfer v g
 (ŜPop(v), π), with g = (·, op, ·).

3.4.4 Merge Operator

The merge operator does not combine elements when control flow meets, i. e.,
mergeC(v, v′, π) = v′.

3.4.5 Stop Operator

The stop operator considers abstract states individually, i. e., stopC(v,R, π) =
(∃v′ ∈ R : v v v′).

3.4.6 Precision-Adjustment Operator

The precision-adjustment operator computes a new abstract state with precision
based on the abstract state v and the precision π by restricting the abstract variable
assignment v to those program variables that appear in π, formally, prec(v, π,R) =
(v|π, π). Mind that, in this analysis instance, there is not yet a procedure available
to refine the precision π. Therefore, in practice, one is bound to use the full
precision π = X as (initial) precision, and therefore prec can be simplified to
prec(v, π,R) = prec(v,X,R) = (v|X , π) = v, i. e., there is no actual abstraction
computation performed, because prec returns the original abstract variable assignment
unchanged.
Before the next chapter introduces the required concepts to allow a meaningful

precision-adjustment operator, the next section first focuses on the evaluation of the
value analysis operating on a full precision.

3.5 Evaluation

Based on the definitions in this chapter, we implemented the ValueAnalysisCPA
as a component CPA in the verification framework CPAchecker. Together with a

28

3.5 Evaluation

few more component CPA s (e. g., a LocationCPA [21,22] for tracking the program
counter) we can formulate a CompositeCPA [21,22] in order to obtain a complete
program analysis for tracking concrete values of program variables. In this section
we present a thorough evaluation of this analysis.

3.5.1 Setup

For benchmarking we use machines equipped with two Intel Xeon E5-2650v2 eight-
core CPUs with 2.6GHz and 135 GB of main memory, running Ubuntu 14.04 as
operating system. In accordance to the rules of SV-COMP [10, 14], we limit each
run to 900 s of CPU time, 15.0 GB of memory, and we execute each verification
run on four CPU cores. As benchmarking framework we rely on BenchExec 1 for
ensuring precise and reproducible results [28], such that the experimental setup is
identical to the evaluation environment 2 advocated by the jury and the organizers
of SV-COMP’16 [14].

3.5.2 Benchmarks
Category Total Evaluated

BitVectorsReach 48 48
ControlFlow 48 48
DeviceDriversLinux64 2 120 2 120
ECA 1 140 1 140
Floats 81 81
Loops 141 141
ProductLines 597 597
Sequentialized 261 62
Simple 46 46

ArraysMemSafety 65 0
ArraysReach 118 0
BitVectorsOverflows 12 0
Concurrency 1 016 0
HeapMemSafety 158 0
HeapReach 81 0
Recursive 98 0
Termination 631 0

Overall 6 661 4 283

Table 3.1: Overview of the verification
tasks from SVCOMP’16 as
used in this evaluation

In order to allow a thorough evaluation of
our approach, we use verification tasks from
the official repository of the SV-COMP
benchmark suite 3, as used in the latest
edition of SV-COMP [14]. From the 6 661
available tasks, we only select verification
tasks that deal with reachability proper-
ties, while disregarding verification tasks
for memory safety, overflows or termination
properties. We further omit verification
tasks specifically designed for concurrency,
dynamic data structures and pointers, or
recursion, because the implementation of
the value analysis does not have complete
support for these features. This leaves us
with 4 283 verification tasks to experiment
with. In Table 3.1 we present an overview
of the SV-COMP categories and the respec-
tive number of verification tasks that are included in our evaluation 4.

1https://github.com/dbeyer/benchexec
2http://sv-comp.sosy-lab.org/2016/systems.php
3https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp16
4For descriptions of verification tasks see http://sv-comp.sosy-lab.org/2016/benchmarks.php

29

https://github.com/dbeyer/benchexec
http://sv-comp.sosy-lab.org/2016/systems.php
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp16
http://sv-comp.sosy-lab.org/2016/benchmarks.php

3 Value Analysis

3.5.3 Configuration

For evaluating the value analysis we use CPAchecker in trunk revision 20 406 —from
March the 21st, 2016— and we start CPAchecker with the configuration named
valueAnalysis-Plain. This configuration tells CPAchecker to run the standard
value analysis without descending in recursive function calls and without performing
counterexample checks using a secondary analysis [19,85]. While the latter feature
would help discarding incorrect false verdicts reported by the value analysis, so far,
we are not interested in improving the precision of the analysis but rather want to
evaluate how efficient and precise it is for itself.
In order to allow reproducibility of the evaluation, an example for a complete

command line to run the value analysis as well as the full results and raw data are
available on our supplementary web page 5.

3.5.4 Results

We now present the results of running this configuration of the value analysis on the
given benchmarks in the environment as described above.

Verification Effectiveness of the Value Analysis

We discuss in detail only a few interesting aspects regarding the verification effective-
ness of the value analysis. For a complete overview of the characteristics regarding
the verification effectiveness of the value analysis on our benchmark set, we point
the reader to Table 3.2.

Solved Verification Tasks In total, the value analysis solves 2 658 out of the 4 283
verification tasks. This means, that for almost two-thirds of the verification task
—for 62 % to be exact— the value analysis obtains a result of either true or false.
The set of all solved tasks contains all tasks for which a correct true, correct false,
incorrect true, or an incorrect false verdict was obtained.

Incorrect True Verdicts The value analysis does not return a single incorrect true
verdict for the whole benchmark set, i. e., for the verification tasks we considered in
the experiment, the value analysis never answers true for a verification task that
contains a violation of the specification. This favorable characteristic of the value
analysis is owed to its over-approximating nature.

5http://www.sosy-lab.org/research/phd/loewe/#PlainValueAnalysis

30

http://www.sosy-lab.org/research/phd/loewe/#PlainValueAnalysis

3.5 Evaluation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

unsolved 2 6 1 021 552 0 30 0 10 4 1 625

solved 46 42 1 099 588 81 111 597 52 42 2 658

correct 25 42 1 058 588 38 61 597 39 23 2 471
true 14 27 967 254 16 20 332 8 1 1 639
false 11 15 91 334 22 41 265 31 22 832

incorrect 21 0 41 0 43 50 0 13 19 187
true 0 0 0 0 0 0 0 0 0 0
false 21 0 41 0 43 50 0 13 19 187

Table 3.2: Table showing the verification effectiveness of the value analysis

Incorrect False Verdicts The flip side of the value analysis’ over-approximating
nature is that it reports numerous incorrect false verdicts, i. e., for a verification
task that does not contain a violation of the specification, the value analysis alerts
the user of a specification violation it supposedly found in that very same verification
task. In the experiment we conducted, in at least 187 instances, i. e., for 18 % of
all false verdicts, the analysis is too imprecise. We say at least 187 instances here,
because we do not perform any witness checking [16], and hence, in the total of
832 correct false verdicts, there could be cases in which the value analysis has
supposedly found a bug, but this found bug is not really a bug in the verification
task at hand, i. e., for some of these 832 verification tasks, the value analysis might
have obtained the correct verdict false only by chance.
For sure, this effect of the imprecision of the value analysis is not favorable. As

briefly mentioned before, CPAchecker as framework already allows counterexample
checks to be performed, and in a later chapter of this thesis a smarter, integrated
technique for limiting the number of false alarms is presented (cf. Chapter 6). Before
elaborating on that, we turn the attention to the verification tasks the value analysis
is unable to solve.

Unsolved Verification Tasks In our experiment, for a total of 1 625 verification
task, the value analysis is unable to obtain a result, because it either exceeds the
defined CPU time limit, or it runs out of memory. The prime reason why the value
analysis fails to provide a verdict for a given verification task is state-space explosion.

31

3 Value Analysis

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 0.72 2.1 260 160 0.080 7.7 2.1 3.0 1.1 440

unsolved 0.50 1.5 260 140 0. 7.5 0. 2.5 1.0 410

solved 0.22 0.64 4.4 14 0.080 0.17 2.1 0.49 0.10 22

correct 0.17 0.64 3.6 14 0.036 0.12 2.1 0.33 0.050 21
true 0.15 0.43 3.1 4.8 0.015 0.049 1.0 0.014 0.0045 9.6
false 0.017 0.21 0.46 8.7 0.021 0.069 1.1 0.32 0.046 11

incorrect 0.045 0. 0.81 0. 0.044 0.052 0. 0.16 0.054 1.2
true 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
false 0.045 0. 0.81 0. 0.044 0.052 0. 0.16 0.054 1.2

Table 3.3: Table showing the verification efficiency of the value analysis

Note that in 1 573 of the total 1 625 cases, the respective verification tasks are from
the categories DeviceDriversLinux64 or ECA, respectively. Many verification tasks
in this two categories are complex and have a huge state space, and as such, these
two categories alone account for 97 % of the unsolved verification tasks.

Verification Efficiency of the Value Analysis

For discussing the verification efficiency of the value analysis, we stick to the just
mentioned unsolved verification tasks, because, as detailed in Table 3.3, all verification
tasks that have an inconclusive result account for 93 % of the total CPU time.
Speaking in absolute numbers, this means that out of the total 440 hours CPU time
needed by the value analysis —a whopping 410 hours— are practically just wasted.
This whole situation is also captured by the quantile plot shown in Figure 3.3.

By looking at the course of the curve, one notes that for many (supposedly simple)
verification tasks, the value analysis works well, as well over a third of the verification
tasks can be solved promptly in less than 10 seconds. However, approximately from
that point on, the value analysis does not scale well anymore for the remaining
verification tasks, and it ultimately runs out of resources for the aforementioned total
of 1 625 verification tasks.

For the sake of completeness, we performed the same experiment with a timeout of
1 800 s CPU time, with the effect that only a handful of verification tasks more can
be solved, while doubling the wasted verification effort from 410 to over 800 hours.

32

3.6 Conclusion

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500

10

100

1 000

1593 solved in under 10 s

2463 solved in under 100 s

n-th fastest result

C
PU

tim
e

(s
)

Figure 3.3: The quantile plot for the value analysis, showing that the value analysis is
efficient for many verification tasks, but that it does not scale for complex
ones

3.6 Conclusion

In this chapter we introduced the value analysis. First, we motivated why it is worth-
while to take a detailed look into such a, at first glance, seemingly simplistic analysis.
By an example, we showed how it is supposed to work, and after discussing related
work, we formalized the value analysis as CPA, and, based on the implementation in
CPAchecker, we performed a thorough evaluation.

3.6.1 Lessons Learned

From that evaluation we learned, that the value analysis performs well on a wide
range of benchmarks. From the standpoint of verification effectiveness, it returns a
verdict for over 62 % of the verification tasks. The value analysis does not report an

33

3 Value Analysis

incorrect true verdict, but in every sixth case where it supposedly found a bug, this
“bug” represents a false alarm, i. e., it is an incorrect false verdict. Additionally,
for more complex verification tasks this simple value analysis fails to provide a
meaningful result, because it runs out of resources.

So, the bottom line is that the value analysis is well suited for simple verification
tasks and verification tasks where the reachable state space is limited.

3.6.2 Challenge

One challenge to overcome is the imprecision of the value analysis. However, we
regard that as a direct consequence of the design decision that, in a given abstract
variable assignment, the analysis does only hold the valuation of variables which have
a deterministic value, while never tracking any information symbolically. After all,
this would be more or less what symbolic execution does, and same as for the value
analysis, if blindly thrown at more complex verification tasks, approaches based on
symbolic execution also fall prey to state-space explosion [75,78,101].

So, as first challenge, we try to tackle state-space explosion for the value analysis,
more so, because we think that any advances there can also be adopted by other
domains or approaches that share similarities with the value analysis, like for example
the just mentioned symbolic-execution approach.

3.6.3 Proposition

The current instantiation of the value analysis tracks for all variables their known
valuations, independent of the fact whether or not the valuations of a variable are
needed for obtaining the verdict for a verification task. Our hypothesis is that, if
we had an oracle that could tell the analysis which variables are relevant to reason
about a verification task, and the analysis would only track exactly those variables,
then this would often reduce the size of the state space dramatically.

3.6.4 Solution

In Chapter 2 we briefly introduced CEGAR and interpolation in the context of
software verification, both techniques which are being used with great success for
analyses based on predicate abstraction.

Therefore, in order to mitigate the problem of state-space explosion for the value
analysis, we propose to incorporate an abstract–refine loop into the value analysis.
This will be the main topic of the following chapter.

34

4 Value Analysis with CEGAR and
Interpolation

The previous chapter introduced the value analysis, and defined it as component
CPA in the CPA framework. Based on an implementation of the value analysis in
the verification framework CPAchecker, we showed that it performs well on a wide
range of benchmarks, especially on verification tasks where the reachable state space
is only small to medium-sized.
For example, the value analysis solves all verification tasks from the category

ProductLines, and also performs well for the verification tasks in the categories
ControlFlow and Sequentialized. However, for more complex verification tasks,
for example from the category DeviceDriversLinux64, the value analysis often runs
out of resources because of state-space explosion, and in the following we pursue
ways to avoid exactly this problem.

4.1 Motivation

To see how the value analysis can suffer from state-space explosion, even for a tiny
verification task, consider the example verification task shown in Figure 4.1.

This verification task contains a while loop in which a generic system call is
executed, modelled by the call to the procedure system_call , which is defined as
extern . The while loop exits if either the system call returns 0 or a previously
specified number of iterations, given by the value of the program variable int x , have
been performed. Because the body of the function system_call is unknown, so is
the value of the program variable int result . Also, because no valuation for int x
is known, i. e., it also exposes non-determinism, the assumption [ticks > x] cannot
be evaluated to either true or false. This verification task has the verdict true,
i. e., the assert statement in line 18 is not reachable. However, the value analysis as
proposed in the previous chapter (cf. Section 3.3), which always tracks every program
variable, would keep unrolling the loop L8 L12 L14 over and over, continuously

discovering new abstract states, because the expression ticks = ticks + 1 always
assigns a new value to the program variable int ticks . Thus, due to extreme

35

4 Value Analysis with CEGAR and Interpolation

1 #include <assert . h>
2 extern int system_cal l () ;
3

4 int main (int x) {
5 int f l a g = 0 , t i c k s = 0 ;
6 int r e s u l t ;
7

8 while (1) {
9 t i c k s = t i c k s + 1 ;

10 r e s u l t = system_cal l () ;
11

12 i f (r e s u l t == 0 | | t i c k s > x) {
13 break ;
14 }
15 }
16

17 i f (f l a g > 0) {
18 assert (0) ;
19 }
20 }

L5

L8

L12

L13 L14

L17

L18

L20

int flag = 0;
int ticks = 0;

int result;

ticks = ticks + 1;
result = system_call();

[result == 0
|| ticks > x]

break;

[flag > 0]

assert(0);

return;

[!(result == 0
|| ticks > x)]

[!(flag > 0)]

Figure 4.1: Simple verification task, containing an unbounded loop, with its corre-
sponding CFA

resource consumptions, the analysis would not terminate within practical time and
memory limits, and, eventually, it is forced to give up on proving the verdict true
for this verification task.
The new approach for the value analysis that we propose in this chapter can

efficiently prove the verdict true of this verification task, because it tracks only
values of program variables that are necessary to refute the infeasible error paths. In
this case only the program variable int flag needs to be tracked in order to prove
the verdict true for this example verification task.
This is achieved by the following approach. In the first iteration of the CEGAR

algorithm, the precision of the analysis is empty, i. e., no program variables are
tracked. Thus, the assert statement will be reached, via the error path shown in
the figure, and indicated by the edges that are drawn in red color. Now, using an
interpolation technique for the value domain, we can discover a precision from this
infeasible error path. In this case, the algorithm identifies that only the program
variable int flag , or more precisely, the constraint [flag = 0] has to be tracked
by the state-space exploration algorithm, so that the found error path can be refuted.
Therefore, the state-space exploration algorithm is started anew after this refinement,
now with the program variable int flag in the precision. Because int ticks is not

36

4.1 Motivation

N5

N8

N12

N13 N14

N8′N17

N20 ⊥

int flag = 0;
int ticks = 0;
int result;

ticks = ticks + 1;
result = system_call();

[result == 0 || ticks > x] !([result == 0 || ticks > x])

covered by
break;

[!(flag > 0)]

return;

[flag > 0]

assert(0);

flag 7→ >
ticks 7→ >
result 7→ >

flag 7→ 0

Figure 4.2: The ARG of the verification task from Figure 4.1, annotated with the
abstract variable assignments like the value analysis with CEGAR would
compute them for the verification task

in the precision, no valuations for this program variable are tracked, and repeated
assignments for ticks = ticks + 1 will not result in new abstract states. This can
be seen from Figure 4.2, where the while loop is not unrolled. This is the case,
because the successor of node N14, namely N8’, is covered, i. e., subsumed by the
loop head N8, because N8 and N8’ both refer to the same location (i. e., the head
of the while loop), and contain the same abstract variable assignment, namely
{flag 7→ 0}. Therefore the state-space exploration algorithm can stop computing
successors for N8’. Finally, the assume operation [flag > 0] is evaluated to false,
thus, the assert statement is not reachable, and the analysis terminates, returning
the verdict true.

In summary, the key effect of this approach is that only relevant program variables
are tracked by the value analysis, while unimportant information is ignored. This
greatly reduces the amount of information to be tracked, which increases the chance
for coverage between abstracts, and as a consequence, reduces the number of abstract
states to be explored and thus often avoids the problem of state-space explosion
(cf. Figure 4.2). Interestingly, despite the success of abstraction, CEGAR, and
interpolation in the field of automatic software verification, these techniques have

37

4 Value Analysis with CEGAR and Interpolation

not been combined and applied together to value domains. In order to fill this gap,
we need to define the following components (cf. Section 2.5):

1. the state-space exploration algorithm for the value domain,

2. the precision for the value domain, i. e., the level of abstraction in the value
domain,

3. the feasibility check for the value domain, which decides if an error path is
feasible according to the abstract semantics of the value domain, and

4. the refinement procedure for the value domain, to refine the precision of the
abstract model.

These are the components that are required to leverage the value analysis defined
before (cf. Chapter 3), making it applicable in the CEGAR framework, and in the
following, after discussing related work in this field, the up-coming sections will
introduce the respective components one by one.

4.2 Related Work

The explicit-state model checkers Spin [71], Java Path Finder [66] and Divine [8] were
already introduced briefly in the previous chapter (cf. Section 3.2). There exists no
work that integrates abstraction based on CEGAR into Divine, and neither does
such an approach exist for Spin. But for Spin there exist techniques [72,73] to extract
from a C program a Promela model which represents an abstraction of the original
C program. There, the level of abstraction, i. e., the information of what should be
included in the Promela model, is determined by extraction rules that the user has to
define manually. This can be combined with approaches that abstract the Promela
model itself [59].

Java Path Finder [66] is designed only for the Java programming language. There
exists work that integrates a concept inspired by CEGAR into Java Path Finder,
using an approach different from interpolation [94]. In addition, the Bandera tool
set [45] can be used to perform slicing of Java programs, and its abstraction engine
provides support for data abstraction.

The tool Dagger [62] verifies C programs by applying interpolation-based refinement
to octagon and polyhedra domains. To avoid imprecision stemming from the standard
widening operator employed in abstract interpretation analyses, Dagger introduces a
so called interpolated widening operator, which helps to increase the precision of the
analysis and thus avoids false alarms. However, because the interpolated widening
operation is in general not monotone, it can happen that a counterexample that is

38

4.3 State-Space Exploration Algorithm for the Value Domain

thought to be eliminated by a refinement might be found again in a later stage of
the analysis [62].

The algorithm Vinta [2] applies interpolation-based refinement to abstract domains
based on intervals. If the state-space exploration finds an error path, then Vinta
performs a feasibility check using bounded model checking, and if the error path is
infeasible, it computes interpolants. The interpolants are used to refine the invariants
that the abstract domain operates on. Vinta requires an SMT solver for feasibility
checks and interpolation.

4.3 State-Space Exploration Algorithm for the Value
Domain

Because the refinement component as we define it here is independent from the
state-space exploration of the value analysis (cf. Chapter 3), we do not need to
define a new component here. The only change to be made is, that the precision-
adjustment operator prec now does perform an actual abstraction computation,
i. e., prec(v, π,R) = (v|π, π), which means that the abstract variable assignment v
is restricted to the set of program variables contained in π, while all others are
discarded.

We call this set of program variables the precision π, and the concept of a precision
for the value domain will be explained in the following.

4.4 Precision for the Value Domain

The precision for an abstract variable assignment is a set π of program variables,
and the value abstraction for an abstract variable assignment v and a precision π is
an abstract variable assignment v′ that is defined only on variables that are in the
precision π. For example, the value abstraction for the abstract variable assignment
v = {x 7→ 2, y 7→ 5} and the precision π = {x} is the abstract variable assignment
v′ = v|π = {x 7→ 2}. The value abstraction for an abstract variable assignment can
be computed using the prec operator defined in Section 3.4.
With the definitions of a precision for abstract variable assignments and value

abstraction, we can implement an abstraction scheme that incorporates the two
ingredients of lazy abstraction [69].
First, we define the precision for a program as a function π : L 7→ 2X , such that

for each program location a precision for abstract variable assignments is assigned
individually. Thus, instead of tracking variables throughout the whole program,
they are only tracked in those parts of the program where they are relevant. The

39

4 Value Analysis with CEGAR and Interpolation

interpolation algorithm introduced below is capable of deriving the information which
program variables have to be tracked at which program locations.
The second ingredient of lazy abstraction states that during the analysis of a

program different precisions for different abstract states on different program paths in
the ARG are being employed. We can apply a lazy value abstraction, because again,
the interpolation algorithm introduced below allows us to identify the first abstract
state (called pivot state [69]) at which novel information is available. Therefore, after
a refinement the state-space exploration can continue at this pivot state instead of
scheduling a complete recomputation of the state space from scratch.

The value analysis with CEGAR and interpolation uses the precision for a program
along with lazy value abstraction in order to compute the value abstraction for an
abstract variable assignment at location l by using the precision π(l) available at the
respective abstract state. The initial program precision for the CEGAR algorithm
is the empty program precision πinit(l) = ∅, such that the precision-adjustment
operator abstracts all program variables, i. e., for each program location l ∈ L, no
program variable is tracked. Consequently, if a target location le is syntactically
reachable in a program, a target state will be reached in the initial CEGAR iteration,
due to the initial, empty program precision.

In the following, the component for the feasibility check is introduced, whose task
it is then to decide, whether or not the abstract error path also represents a concrete
error path.

4.5 Feasibility Check for the Value Domain

The feasibility check for an abstract error path σ = 〈(op1, l1), . . . , (opn, le)〉 is per-
formed by running a value analysis, using the full precision π(l) = X for all locations
l ∈ L, on the path σ. This is equivalent to computing ŜPγσ(>) and check if the result
is contradicting, i. e., if ŜPγσ(>) = ⊥. This feasibility check is extremely efficient,
because the abstract error path is finite and the strongest post-operations for abstract
variable assignments are simple arithmetic evaluations. If the feasibility check reaches
the target state, i. e., ŜPγσ(>) 6= ⊥, then this abstract error path corresponds to a
real counterexample, and the bug can be reported. If the feasibility check does not
reach le, i. e., ŜPγσ(>) = ⊥, this means that a refinement is necessary, because the
current precision employed by the analysis when finding the abstract error path was
insufficient to exclude this infeasible, abstract error path.

In such a case, it is necessary to find a (as small as possible) precision increment,
that together with the current precision is sufficient to exclude the current abstract
error path in future state-space explorations.

40

4.6 Interpolation for the Value Domain

4.6 Interpolation for the Value Domain

The third component needed for embedding the value analysis in the CEGAR
framework is a refinement procedure, which will be gradually introduced in the
following.

4.6.1 Interpolation for Abstract Variable Assignments

For each infeasible abstract error path in the above mentioned refinement procedure,
a precision needs to be determined that assigns to each program location on that
path the set of program variables that the value analysis needs to track in order to
eliminate that infeasible abstract error path. Interpolation has been proven successful
in the predicate domain, however, mind that interpolants from the predicate domain,
which consist of formulas, are not useful for the value domain. Hence, we need to
introduce the concept of value-domain interpolants, and as a first step we introduce
the notion of an interpolant for abstract variable assignments.
An interpolant for a pair of abstract variable assignments v− and v+, such that

v−∧v+ is contradicting, is an abstract variable assignment V that fulfills the following
requirements:

1. the implication v− =⇒ V holds,

2. the conjunction V ∧ v+ is contradicting, and

3. V only contains program variables in its definition range which are in the
definition ranges of both v− and v+, i. e., def(V) ⊆ def(v−) ∩ def(v+).

Lemma 4.6.1. For a given pair (v−, v+) of abstract variable assignments, such that
v− ∧ v+ is contradicting, an interpolant exists. Such an interpolant can be computed
in time O(m+ n), where m and n are the sizes of v− and v+, respectively.

Proof. The abstract variable assignment v−|def(v+) is an interpolant for the pair of
abstract variable assignments (v−, v+).

The above-mentioned interpolant that simply results from restricting v− to the
definition range of v+, i. e., force a common definition range for v− and v+, is
of course not the best interpolant. Moreover, interpolation over abstract variable
assignments is not expressive enough, as the following example illustrates.
Consider the constraint sequence γ = 〈i = 0, i > 0〉, which could occur as (part

of an) infeasible, abstract error path. Note that γ = 〈i = 0, i > 0〉 is contradicting,
because ŜPγ(>) = ⊥. However, there exists no interpolant for the pair of abstract
variable assignments v− = ŜP〈i=0〉(>) = {i 7→ 0}, and v+ = ŜP〈i>0〉(>) = >,

41

4 Value Analysis with CEGAR and Interpolation

because the conjunction of the two abstract variable assignments v− and v+ is not
contradicting, i. e., v− ∧ v+ = {i 7→ 0} ∧ > = {i 7→ 0} 6= ⊥.
Hence, interpolation for abstract variable assignments is a first idea to approach

interpolation in the value domain, but since interpolants need to be extracted for
paths, in the following, we define interpolation for constraint sequences.

4.6.2 Interpolation for Constraint Sequences

A more expressive interpolation is achieved by considering constraint sequences. In
order to define interpolation for constraint sequences, we introduce definitions for
conjunction, implication and contradicting for constraint sequences.

We define the conjunction γ ∧ γ′ of the constraint sequences γ = 〈op1, . . . , opm〉 and
γ′ = 〈op′1, . . . , op′n〉 as their concatenation, i. e., γ ∧ γ′ = 〈op1, . . . , opm, op′1, . . . , op′n〉,
the implication of γ and γ′ (denoted by γ =⇒ γ′) as the implication of their
strongest post-conditions ŜPγ(>) =⇒ ŜPγ′(>). Furthermore, we say that a
constraint sequence γ results in a contradiction, if ŜPγ(>) = ⊥, i. e., ŜPγ(>) is
contradicting.

An interpolant for a pair of constraint sequences γ− and γ+, such that γ− ∧ γ+ is
contradicting, is a constraint sequence Γ that fulfills the three requirements:

1. the implication γ− =⇒ Γ holds,

2. the conjunction Γ ∧ γ+ is contradicting, and

3. Γ contains in its constraints only program variables that occur in the constraints
of both γ− and γ+.

Lemma 4.6.2. For a given pair (γ−, γ+) of constraint sequences, such that γ− ∧ γ+

is contradicting, an interpolant exists. Such an interpolant is computable in time
O((m+ n)2), where m and n are the sizes of γ− and γ+, respectively.

Proof. Algorithm Interpolate (cf. Algorithm 3) returns an interpolant for two con-
straint sequences γ− and γ+. The algorithm starts with computing the strongest
post-condition for γ− and assigns the result to the abstract variable assignment v,
which then may contain up to m program variables. Per definition, the strongest
post-condition for γ+ of the abstract variable assignment v is contradicting. Next,
we perform a value-domain interpolation query, or an interpolation query for short.
In such an interpolation query we test for a program variable from v if after removing
it from v the strongest post-condition for γ+ of v is still contradicting, and we do
such an interpolation query for each program variable from v (each such test takes
n ŜPop(·) steps). If it is still contradicting, the program variable can be removed
from v. If not, the program variable is necessary to prove the contradiction of the

42

4.7 Refinement Based on Value Interpolation

Algorithm 3: Interpolate(γ−, γ+)
Input : two constraint sequences γ− and γ+, with ŜPγ−∧γ+(>) = ⊥
Output : a constraint sequence Γ, which is an interpolant for γ− and γ+

Variables : an abstract variable assignment v
1 v := ŜPγ−(>);
2 foreach x ∈ def(v) do
3 if ŜPγ+(v|def(v)\{x}) = ⊥ then

// x is not relevant and should not occur in the interpolant
4 v := v|def(v)\{x};

// start assembling the interpolating constraint sequence
5 Γ := 〈〉;
6 foreach x ∈ def(v) do

// append an assume constraint for x
7 Γ := Γ ∧ 〈[x = v(x)]〉;
8 return Γ

two constraint sequences, and thus, should occur in the interpolant. Note that this
keeps only program variables in v that occur in γ+ as well. The rest of the algorithm
constructs a constraint sequence from the abstract variable assignment, in order to
return an interpolating constraint sequence, which fulfills the three requirements of
an interpolant. With this algorithm such an interpolant can be computed in time
O((m+ n)3).

Mind that, if we would remove the loop starting in line 2 of Algorithm 3 and instead
just restrict v to those program variables being referenced in ŜPγ+(v), Algorithm 3
would return a valid interpolant in time O((m + n)2). However, in general this
would lead to interpolants being too strong. So, we check for each program variable
x ∈ def(v) individually its influence on the feasibility of ŜPγ(·), by issuing an
interpolation query. Hence, we are investing more resources during interpolation, so
that we can save computational effort during the main analysis —and often avoid
divergence— because we are able to employ a coarser precision.

4.7 Refinement Based on Value Interpolation

The goal of our interpolation-based refinement for the value analysis is to determine
a location-specific precision that is strong enough to eliminate an infeasible error
path in future state-space explorations. This criterion is fulfilled by the property
of interpolants. A second goal is to have a precision that is as weak as possible,

43

4 Value Analysis with CEGAR and Interpolation

Algorithm 4: Refine(σ)
Input : infeasible error path σ = 〈(op1, l1), ..., (opn, ln)〉
Output : precision π
Variables : interpolating constraint sequence Γ

1 Γ := 〈〉
2 foreach l ∈ L do
3 π(l) := ∅
4 for i := 1 to n− 1 do
5 γ+ := 〈opi+1, ..., opn〉

// inductive interpolation
6 Γ := Interpolate(Γ ∧ 〈opi〉, γ+)

// extract variables from variable assignment resulting from Γ
7 π(li) :=

{
x | (x, z) ∈ ŜPΓ(>)}

8 return Π

i. e., to have a precision with a definition range as small as possible, in order to be
parsimonious in tracking program variables and creating abstract states.

We apply the idea of interpolation for constraint sequences to assemble the precision-
extraction algorithm Refine (Algorithm 4). It takes as input an infeasible error path,
and returns a precision for a program. A further requirement is that the procedure
computes inductive interpolants [18], i. e., each interpolant along the path contains
enough information to prove the remaining path infeasible. This is needed in order
to ensure that the interpolants at the different locations achieve the goal of providing
a precision that eliminates the infeasible error path from further explorations. For
every program location li along an infeasible error path σ, starting at l0, we split the
constraint sequence of the path into a constraint prefix γ−, which consists of the
constraints from the start location l0 to li, and a constraint suffix γ+, which consists
of the constraints from the location li to le. For computing inductive interpolants, we
replace the constraint prefix by the conjunction of the last interpolant and the current
constraint. The precision is extracted by computing the abstract variable assignment
for the interpolating constraint sequence and assigning the relevant program variables
as precision for the current location li, i. e., the set of all program variables that are
necessary to be tracked in order to eliminate the error path. This algorithm can be
directly plugged in as refinement routine of the CEGAR algorithm (cf. Algorithm 2).
Also note that the interpolation and refinement depends only on ŜPop(·), which is
the same operator used in the main analysis. This self-containedness is another nice
property of our novel approach.
The interpolation and refinement process is illustrated in Figure 4.3, using the

44

4.7 Refinement Based on Value Interpolation

L5

L8

L12

L13 L14

L17

L18

L20

int flag = 0;
int ticks = 0;

int result;

ticks = ticks + 1;
result = system_call();

[result == 0
|| ticks > x]

break;

[flag > 0]

assert(0);

[!(result == 0
|| ticks > x)]

[!(flag > 0)]

(a) control-flow automaton

N5

N8

N12

N13

N17

N18

assert(0);

(b) error path

〈〉

〈[flag = 0]〉

〈[flag = 0]〉

〈[flag = 0]〉

〈[flag = 0]〉

⊥

assert(0);

(c) interpolants

∅

{flag}

{flag}

{flag}

{flag}

∅

assert(0);

(d) precisions

Figure 4.3: For the introductory example from Figure 4.1 the (a) CFA is shown, the
(b) infeasible error path the value analysis will find if started with an
empty precision, the (c) sequence of interpolants as constraint sequence,
and the (d) precision elements as extracted from the interpolants needed
to refute the infeasible error path from future state-space explorations

introductory example from this chapter (cf. Figure 4.1). By default, the value
analysis with CEGAR starts the state-space exploration for every verification task
with an empty precision, and consequently, for the verification task in Figure 4.3a
the error path in Figure 4.3b will be found, eventually. This path is then checked
for feasibility, and it turns out to be an infeasible error path. Therefore, it is passed
to the procedure Refine (cf. Algorithm 4) which then calls procedure Interpolate
(cf. Algorithm 3) to compute the interpolants (cf. Figure 4.3c) for each program
location of the infeasible error path, before, back in procedure Refine, the respective
precision elements (cf. Figure 4.3d) are extracted from each of the interpolants. The
resulting precision is strong enough to prove the verdict true for the verification
task in the next iteration of the CEGAR loop. Mind that the precision remains
abstract enough, such that the loop in the verification task is not unrolled, and the
verification process of this verification task concludes promptly.

Based on the concepts above, we implemented a refinement component for the value
domain, and in the following a thorough evaluation of this approach is presented.

45

4 Value Analysis with CEGAR and Interpolation

4.8 Evaluation

For evaluating the value analysis, now with CEGAR and interpolation, we use the
same experimental setup and the same benchmark verification tasks as described in
Sections 3.5.1 and 3.5.2, respectively.

4.8.1 Configuration

In order to guarantee that the results in this evaluation stay comparable to the
results we obtained from the evaluation of the value analysis without CEGAR
(cf. Section 3.5) we use the same revision 20 406 of CPAchecker, and we again advise
the analysis to not descend into recursive function calls and to not double-check on
any counterexamples, just like before. We use BenchExec the same way as before for
executing the benchmarks.
The configuration corresponding to the value analysis with CEGAR is named

valueAnalysis-Cegar, and it configures the analysis to respect the two main ideas
of lazy abstraction [69]. This means that after a refinement this configuration makes
the analysis continue from the pivot state, i. e., the parent state of the state closest
to the initial state for which in the current refinement new precision elements were
found. This way, only those parts in the state space that really need the new
precision actually get the new precision, while all other parts of the state space are
still explored with a coarser precision, which ultimately might lead to a smaller state
space. Second, this configuration advises the analysis to make use of a parsimonious
precision, i. e., it only tracks program variables at those program locations where
the refinement procedure identified that their valuations are required for excluding
an infeasible counterexample, while not tracking them anywhere else, which, again,
ultimately might lead to a smaller state space.
In order to allow reproducibility of the evaluation, an example for a complete

command line to run the value analysis with CEGAR as well as the full results and
raw data are available on our supplementary web page 1.

4.8.2 Results

We now present the results of running the value analysis with CEGAR on the
benchmarks and in the environment as described before (cf. Section 3.5).

Verification Effectiveness of the Value Analysis with CEGAR

Here we discuss in detail only a few interesting aspects regarding the verification
effectiveness of the value analysis with CEGAR. For a complete overview of the

1http://www.sosy-lab.org/research/phd/loewe/#ValueAnalysisCegar

46

http://www.sosy-lab.org/research/phd/loewe/#ValueAnalysisCegar

4.8 Evaluation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

unsolved 2 3 750 1 140 1 25 207 34 2 2 164

solved 46 45 1 370 0 80 116 390 28 44 2 119

correct 25 45 1 311 0 37 63 390 22 25 1 918
true 14 27 1 148 0 15 22 262 8 2 1 498
false 11 18 163 0 22 41 128 14 23 420

incorrect 21 0 59 0 43 53 0 6 19 201
true 0 0 0 0 0 0 0 0 0 0
false 21 0 59 0 43 53 0 6 19 201

Table 4.1: Table showing the verification effectiveness of the value analysis with
CEGAR and interpolation

characteristics regarding the verification effectiveness of the value analysis with
CEGAR on our benchmark set, we point the reader to Table 4.1, and especially
to the discussion in Section 4.8.3, where the differences between running the value
analysis with and without CEGAR are highlighted.

Solved Verification Tasks In total, the value analysis with CEGAR solves 2 119 out
of the 4 283 verification tasks. This means, that for almost one half of the verification
task —for 49 % to be exact— the value analysis with CEGAR obtains a result of
either true or false. It fares quite well in all categories, except for the category ECA
where it is unable to solve even a single verification task.

Incorrect True Verdicts The value analysis with CEGAR also does not return a
single incorrect true verdict across the whole benchmark set, i. e., the refinement
component, as one would expect, does not make the analysis unsound in that regard.

Verification Efficiency of the Value Analysis with CEGAR

For the verification efficiency of the value analysis with CEGAR, we believe that
mere numbers about the consumed run time alone have little value, so we rather
discuss this in the next section, where we compare the value analysis with CEGAR

47

4 Value Analysis with CEGAR and Interpolation

to the value analysis without CEGAR, to which we refer from now on as the plain
value analysis.

4.8.3 Comparison to the Plain Value Analysis

In the beginning of this chapter, we showed how the plain value analysis can easily
fall prey to the problem of state-space explosion, and we claimed that incorporating
CEGAR into the analysis, this would improve both the verification effectiveness and
the verification efficiency of the analysis.

We will now check this claim by comparing both the verification effectiveness and
the verification efficiency of the plain value analysis to that of our novel value analysis
with CEGAR and interpolation.

Differences in Verification Effectiveness

To show the differences in verification effectiveness of the two approaches, we present
in Table 4.2 the cell-wise difference of Table 4.1 and Table 3.2, respectively. So, a
positive value in a cell of Table 4.2 means that the value analysis with CEGAR
achieves a higher result for the respective table cell as the plain value analysis, and
vice versa. Accordingly, a cell value of 0 means, that both approaches obtain the
same number of results for the respective category.

From Table 4.2 one can see, that for half of the categories, namely, for the categories
BitVectorsReach ControlFlow, Floats, Loops, and Simple it does not make a big
difference whether to use this CEGAR approach or not, because over these five
categories, the approach with CEGAR solves in total a mere 9 verification tasks
more.

For the category DeviceDriversLinux64, the CEGAR approach performs nicely,
as 271 verification tasks can be solved, which remain unsolved by the plain value
analysis. The CEGAR approach works well for more instances in this category,
because, while they contain a large number of program variables, often only few
of them are needed to reason about the verdict of the verification task, and our
interpolation technique is able to identify these. The plain value analysis cannot
make this distinction, but instead tracks each and every program variable, which
blows up the state space and renders the verification infeasible in many cases.

For the category ECA, the CEGAR approach fails, not solving a single verification
task. These verification tasks do not contain many relevant program variables,
however, they have an extremely complex control flow containing thousands of nested
assume operations within an endless loop. What we observe here is also related
to state-space explosion, or more precisely, to path explosion, because a precision
has to be computed for every single error path that is found during the analysis of
such a verification task. Due to the high branching rate in this class of verification

48

4.8 Evaluation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total∆ 48 48 2 120 1 140 81 141 597 62 46 4 283

solved∆ 0 3 271 −588 −1 5 −207 −24 2 −539

correct∆ 0 3 253 −588 −1 2 −207 −17 2 −553
true∆ 0 0 181 −254 −1 2 −70 0 1 −141
false∆ 0 3 72 −334 0 0 −137 −17 1 −412

incorrect∆ 0 0 18 0 0 3 0 −7 0 14
true∆ 0 0 0 0 0 0 0 0 0 0
false∆ 0 0 18 0 0 3 0 −7 0 14

Table 4.2: Table showing the difference in verification effectiveness between the plain
value analysis and the value analysis with CEGAR

tasks, a huge number of different abstract error paths exist, each of which has to be
refuted in its own interpolation-based refinement step. In the end, the search for a
precision that is strong enough proves to be too costly for these verification tasks,
and the verification process runs out of time. The degradations in the categories
ProductLines and Sequentialized can also be explained by this effect, because
the verification for verification tasks in these categories also runs into a timeout after
hundreds of refinements that do not yield a suitable precision.
In total, the value analysis with CEGAR solves 539 verification tasks fewer than

the plain value analysis. A prime reason why the CEGAR approach fails can be
drawn from the scatter plot shown in Figure 4.4. The plot puts in relation the time
needed to verify a verification task using the plain value analysis to the time needed
to verify the same verification task using the value analysis with CEGAR. The color
of a data point tells how many refinements are necessary to verify the respective
verification task using the value analysis with CEGAR, i. e., a deep blue data point
signals that no more than 100 refinements are needed, and a red data point signals
that 1 000 refinements and more are performed during the course of the analysis. For
the visualization we omit data points for those verification tasks that both analyses
cannot solve, i. e., where both approaches run out of resources.
In this plot there are three clusters distinguishable. One, in a blueish hue in

the lower left corner. This cluster represents tasks that can be solved efficiently
by both approaches. This cluster is shifted a bit above the diagonal because of
the overhead that the CEGAR approach has to invest for performing refinements —

49

4 Value Analysis with CEGAR and Interpolation

1 10 100 1 0001

10

100

1 000

CPU time of the plain value analysis

C
PU

tim
e
of

va
lu
e
A
na

ly
sis

w
ith

C
EG

A
R

0

100

200

300

400

500

600

700

800

900

1 000

N
um

be
r
of

R
efi

ne
m
en
ts

Figure 4.4: CPU time for the plain value analysis versus CPU time for the value
analysis with CEGAR, with the color of the data points indicating the
number of refinements performed during the CEGAR approach

even for simpler tasks. Another cluster can be seen on the far right border of the
plot, representing those 329 verification tasks where the CEGAR approach pays off,
because only the value analysis with CEGAR is able to solve these —mostly with
relatively few refinements, indicated by the blueish to greenish hue. Finally, the last
cluster is on the top border of the plot. These 868 data points refer to verification
tasks that only the plain value analysis can solve. With the high number of reddish
data points in that cluster, the scatter plot provides evidence that the value analysis
with CEGAR performs poorly on these verification task because of the huge number
of refinements that are performed during the analysis.

50

4.8 Evaluation

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

VA-Plain
VA-Cegar

Figure 4.5: The quantile plot for the value analysis with CEGAR, and for the plain
value analysis, where the latter performs strictly better

Differences in Verification Efficiency

For discussion of the verification efficiency of the value analysis with CEGAR, we
refer to the quantile plot shown in Figure 4.5. The graph indicates clearly, that this
CEGAR approach is not yet ready for prime time. Not only ends the graph for
the value analysis with CEGAR more to the left than the one for the plain value
analysis —the lower verification effectiveness was already discussed— but it also runs
above the graph for the plain value analysis, which means it is also less efficient. In
total, the value analysis with CEGAR needs around 570 hours to run on all 4 283
verification tasks. This is an increase of over 30 % when compared to the 440 hours
that the plain value analysis needed.

51

4 Value Analysis with CEGAR and Interpolation

4.9 Conclusion

In this chapter we introduced an interpolation-based refinement component for the
value analysis. Based on an example, we showed how a CEGAR approach is able to
circumvent the problem of state-space explosion occurring in the plain value analysis
presented before (cf. Chapter 3). We then defined a precision, a feasibility check,
and a refinement procedure for the value domain, that together with the state-space
exploration algorithm of the plain value analysis form a complete analysis based on
CEGAR. Finally, an evaluation, in which we compared our novel approach to the
plain value analysis allowed us to draw some valuable conclusions on which we reflect
in the following.

4.9.1 Lessons Learned

In the course of this chapter, we gained insights on how to design a CEGAR
component that is applicable to the value domain. We were able to incorporate the
main ideas of lazy abstraction [69], and an evaluation proved that our first approach
to enable CEGAR in the value domain allows the successful verification of verification
tasks that the plain value analysis cannot solve. However, for now, we still face the
challenge, that the number of verification tasks the CEGAR approach can solve is
lower than what the plain value analysis can solve.

4.9.2 Challenge

During the evaluation presented in the previous section it became apparent, that the
low performance of the value analysis with CEGAR seems to be linked to the high
number of refinements that the CEGAR approach performs in search for a precision
that is strong enough. In addition, during each such refinement, new interpolants
have to be computed, which often requires tens or even hundreds of thousands
interpolation queries to be performed for a single verification task, which eventually
renders the verification infeasible.

4.9.3 Proposition

The main reasons that slow down the CEGAR approach are the costly interpolation
queries, and the high number of refinements. So, we need to lower the overhead
imposed by the refinement component in order to make the value analysis with
CEGAR competitive. The procedure Interpolate, as presented in Section 4.6.2, is kept
simple and straight-forward, and we propose to investigate potential optimizations
to reduce the computational cost. Furthermore, we will try to reduce the number of

52

4.9 Conclusion

refinements by generating stronger precisions so that one refinement excludes more
potential abstract error paths at once.

4.9.4 Solution

In order to speed up the interpolation process, heuristics can be implemented that
still return valid interpolants, but with less interpolation queries. For reducing
the number of refinements, the model checker Blast adds predicates —its precision
elements— not only at the locations dictated by the interpolant, but also adds them
at a wider scope in order to avoid similar, repeated refinements [18]. Besides that,
other techniques to reduce the overhead of the CEGAR approach are worth to be
investigated, e. g., a technique we refer to as global refinement. There a refinement is
not started immediately for every target state, but several abstract error paths are
collected first, before then a single refinement computes interpolants for all collected
error paths at once, with the hope that the overall process converges faster.

53

5 Value Analysis with Improved CEGAR
and Interpolation

In the course of the previous chapter a refinement component for the value analysis
was defined and evaluated. While the evaluation identified a few strong points of
our novel approach, it also revealed several shortcomings, which disallow the value
analysis with CEGAR to be effective and efficient on a wider set of verification
tasks. Therefore, in this chapter, we will focus on various techniques to improve the
verification effectiveness and verification efficiency of the CEGAR approach for the
value analysis.

5.1 Motivation

The value analysis with CEGAR performs slightly better in the SV-COMP categories
ControlFlow, Loops, and Simple, and solves almost 300 verification tasks more in
the category DeviceDriversLinux64 than the plain value analysis does, which alone
is reason enough to not give up on the CEGAR approach for the value domain,
but rather try to improve it, such that it surpasses the plain value analysis, and
becomes a competitive analysis — on our whole benchmark set, and beyond. The first
challenge we take up is to reduce the high number of value interpolation queries that
are performed during each refinement step, and in the following we present several
techniques that greatly help to achieve that goal. We evaluated these techniques in
the same experimental setup as described before (cf. Section 3.5), and we refer to the
results throughout this section.

5.2 Reducing the Number of Value Interpolation Queries

The procedure Interpolate, presented in Algorithm 3, is a costly operation for itself,
and during the refinement of one infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉,
in the worst case, this procedure has to be called up to n times, once for each
operation along the path. In order to give an idea of the extent of potential savings,
in the evaluation we performed to compare the different optimizations for the
interpolation process, the value analysis with CEGAR and all optimizations for
the interpolation process disabled needs around 24 hours to solve 2 120 verification

55

5 Value Analysis with Improved CEGAR and Interpolation

tasks. The interpolation process alone needs 6 hours —around 25 % of the total
time— in which an enormous amount of close to 30 million interpolation queries are
performed. Note that none of these interpolation optimizations affect the strength
of the resulting interpolants, i. e., they do not become stronger, as the number of
refinements stays the same, no matter if using none or all optimization techniques at
once (cf. Table 5.1).

5.2.1 Iterative, Inductive Interpolation

The refinement step has to ensure the availability of a sufficient precision at each
program location along an infeasible error path σ. To achieve this, an interpolant
has to be computed at each offset i along the path σ = 〈(op1, l1), . . . , (opn, ln)〉, with
0 < i < n. Other than perhaps indicated by the signature of Interpolate(γ−, γ+)
(cf. Algorithm 3), it is not the case that at the i-th offset, and at the i-th call to
Interpolate, the abstract variable assignment v in v := ŜPγ−(>) is computed from
the constraint sequence 〈op1, . . . , opi〉. Instead, there γ− often corresponds only
to a small fraction of 〈op1, . . . , opi〉, in fact, only the relevant fraction. This can
actually be seen in the procedure Refine (cf. line 6 in Algorithm 4), where an inductive
interpolant is computed by calling Interpolate with Γ ∧ 〈opi〉 as the first parameter,
i. e., the next interpolant is computed from the current interpolant Γ conjugated
with the current operation opi, and the suffix γ+.

Arguably, the computation of inductive interpolants is not really an optimization,
but rather a requirement to obtain a valid precision for excluding an infeasible error
path. However, it leads to a less costly computation of v := ŜPγ−(>) in Interpolate,
because the sequence γ− usually is far shorter than 〈op1, . . . , opi〉, as γ− only contains
the relevant constraints of 〈op1, . . . , opi〉.

5.2.2 Interpolation over Deepest Infeasible Suffix

An actual optimization that allows the procedure Interpolate to work more efficiently
comes from the insight, that Interpolate can only compute non-empty, or non-trivial in-
terpolants for the deepest infeasible suffix of an error path σ = 〈(op1, l1), . . . , (opn, ln)〉,
where the deepest infeasible suffix σ⊥ of σ is defined as σ⊥ = 〈(opi, li), . . . , (opn, ln)〉,
with ŜPσ⊥(>) = ⊥ and ŜP〈(opi+1,li+1),...,(opn,ln)〉(>) 6= ⊥.

To help better understand this optimization, consider the loop starting at line 2
of procedure Interpolate (cf. Algorithm 3). There we check via an interpolation
query for each variable individually, if its valuation is needed to make the suffix
γ+ contradicting. Consequently, if the suffix γ+ is contradicting in itself, i. e., if
ŜPγ+(>) = ⊥ holds, then no variable valuations are needed to ensure the infeasibility
of the suffix γ+ and Interpolate would return the empty, i. e., the trivial, constraint
sequence, but not before needlessly performing interpolation queries.

56

5.2 Reducing the Number of Value Interpolation Queries

So by construction of the procedure Interpolate, what actually is being interpolated
during the course of a refinement is not the complete error path σ, but instead
only the deepest infeasible suffix σ⊥. Therefore, we can introduce a short-cut that
first checks if ŜPγ+(>) = ⊥ holds, and if so, return the empty constraint sequence
as interpolant right away. Assuming that the abstract variable assignment v in
v = ŜPγ−(>) would contain assignments for n variables, this optimization saves, in
each call to Interpolate where ŜPγ+(>) = ⊥ holds, n− 1 interpolation queries.

For similar reasons, no further calls to Interpolate are necessary if ŜPΓ∧〈opi〉(>) = ⊥
holds, i. e., once the current prefix is contradicting, because the contradiction is
reached in the original infeasible error path σ, after which no precision, and hence,
no interpolants are needed anymore.

For the 2 120 verification tasks solved, this optimization alone safes over 5 million
interpolation queries.

5.2.3 Interpolant-Equality Heuristic

The heuristic based on equality of the current interpolant and a candidate interpolant
is another technique to avoid costly, and also needless interpolations.
For understanding the approach of this heuristic, assume that, before the call

to Interpolate (cf. line 6 in Algorithm 4), we have the current interpolant Γ for the
offset opi. We know that we can obtain an interpolant that is valid also up to
the next operation opi+1 by computing v = ŜPΓ∧〈opi+1〉(>) and directly assemble
the next interpolant Γ′ from v, i. e., we call Interpolate but skip the loop (cf. line 2
in Algorithm 4) and hence, the weakening of the candidate interpolant by not
performing any interpolation queries. This interpolant can never be too weak, but
it could potentially be stronger than needed. However, as experiments show, if we
limit this heuristic to cases where the candidate interpolant Γ′ equals the current
interpolant Γ, i. e., it did not become stronger for this operation opi+1, then it pays
off to immediately return Γ′ as next interpolant and effectively save all interpolation
queries in this call to Interpolate.
To explain this heuristic in more detail, consider the following example. Assume

that for the call to Interpolate the current interpolant Γ is non-trivial, e. g., lets assume
it equals the constraint sequence 〈[var = 0]〉 over a global variable int var . Let
us further assume the next operation opi+1 is the assignment of the global variable
int bar to the value of another global variable int foo , i. e., bar = foo , both
which are not referenced in the current interpolant Γ. In the first line of Interpolate,
we would then compute v as v := ŜP〈[var = 0]〉∧〈bar = foo〉(>), which evaluates to the
abstract variable assignment v = {var 7→ 0}, and, according to the heuristic, we
could assemble and return the interpolant Γ′ = 〈[var = 0]〉 = Γ, without performing
any interpolation queries.

57

5 Value Analysis with Improved CEGAR and Interpolation

Note that for this example, no interpolation queries are needed, and the interpolant
Γ′ returned by the heuristic is the best possible. This is because the only interpolants
we can assemble from v are the empty constraint sequence and the constraint sequence
〈[var = 0]〉. The empty constraint sequence cannot be a valid interpolant here,
because this would mean that ŜPγ+(>) = ⊥ holds, i. e., γ+ is contradicting in itself,
thus, the trivial, empty interpolant would suffice, which however cannot be the
case, because for the previous operation opi, we had the non-empty interpolant
〈[var = 0]〉. Therefore, the only possible interpolant is Γ′ = 〈[var = 0]〉 = Γ.
So, in conclusion, whenever the interpolant directly assembled from v equals the

current interpolant, then we can reuse the current interpolant. This heuristic always
yields a valid interpolant, and, as experiments show, this heuristic practically always
returns the same interpolant as procedure Interpolate, but at far lower computational
cost.
For the 2 120 verification tasks solved, this optimization alone safes almost 14

million interpolation queries.

5.2.4 Interpolant-Equivalence Heuristic

Furthermore, when interpolating an error path, there is another optimization possible,
e. g., in the case where parameters of function are part of the interpolant.
Again, consider the global variable int var is needed for refuting an infeasible

error path, and let us assume that the current interpolant holds the constraint [var
= 0]. Let us further assume that the operation opi for which to compute the next
interpolant is the call to the function var = foo(var) , for which the signature is
int foo(int bar) . In this case, we do not have to perform an actual interpolation,
but can simply remove the constraint [var = 0] for the current interpolant and
replace it by the constraint [foo::bar = 0] 1, because what basically happens here
is a renaming from var to foo :: bar .

Due to technical reasons, in the implementation similar renamings are performed
when processing return statements or when a function jumps back to the call site.

For the 2 120 verification tasks solved, this optimization alone safes over one million
interpolation queries.

5.2.5 Evaluation of the Optimizations for the Value Interpolation

In order to allow reproducibility of the evaluation, an example for a complete
command line to run the value analysis with the optimizations presented above as
well as the full results and raw data are available on our supplementary web page 2

1Namespaces, as done with prefix foo for variable bar , are needed for inter-procedural analyses.
2http://www.sosy-lab.org/research/phd/loewe/#valueAnalysisCegarItpOptimizations

58

http://www.sosy-lab.org/research/phd/loewe/#valueAnalysisCegarItpOptimizations

5.3 Reducing the Number of Refinements

T
im

e
fo
r
In
te
rp
ol
at
io
n
(h
)

N
um

be
r
of

R
efi

ne
m
en
ts

N
um

be
r
of

It
p-
Q
ue

rie
s

R
ed

uc
tio

n
of

It
p-
Q
ue

rie
s

NoOptimizations 5.9 153 496 29 164 794 7

DeepestInfeasibleSuffix 4.3 153 496 23 867 772 5 297 022
InterpolantEquality 3.3 153 496 14 930 702 14 234 092
InterpolantEquivalence 5.6 153 496 27 706 464 1 458 330

AllOptimizations 1.8 153 496 9 607 674 19 557 120

Table 5.1: Overview of the different optimization techniques and how they relate to
not applying any optimizations and applying all optimizations

In Table 5.1 we summarize the savings achieved by the respective optimizations.
Note that it is possible to apply all optimizations together at once. The result of this
can be seen in the row named AllOptimizations. When applying all optimizations at
once, the number of interpolation queries can be reduced to around 33 % if compared
to the non-optimized variant. A similar reduction rate is achieved for the interpolation
time, which decreases from almost 6 hours down to under 2 hours.
Despite these positive results, only 20 verification tasks more can be solved if

applying the combination of all optimizations. This indicates that the interpolation
technique is not the real bottleneck, and so in the next section, we now investigate on
ways to reduce the number of refinements, i. e., we try to get the CEGAR approach
to converge faster.

5.3 Reducing the Number of Refinements

In Section 3.4.2 we introduced the concept of a precision for the value analysis, and
later in Section 4.4 we concretized the precision for the value domain, which is defined
as a function π : L 7→ 2X , that maps from locations to program variables. One of the
main ideas of lazy abstraction [69] is the use of a parsimonious, or localized precision,
i. e., the mapping from program locations to precision elements —in case of the value
analysis, these are program variables— is only defined for those program locations
where the interpolation procedure identified precision elements to be required for
excluding an infeasible error path.
While this approach keeps the precision coarse, it may also force the analysis to

enumerate all abstract error paths one by one, if the relevant precision elements

59

5 Value Analysis with Improved CEGAR and Interpolation

are spread over different program paths and locations. This fits well our experience
in case the value analysis is configured to use a localized precision, as we then
often notice that consecutive refinements extract precisions containing the same set
of program variables, but with each refinement they are associated with different
program locations.

In order to avoid this effect for the value analysis, we propose to extend the range
of the precision elements, i. e., the program variables, to the respective scope of the
program variables. Mind that a similar optimization is also implemented in the
software model checker Blast [69]. In contrast to the normal localized precision, the
result is, what we call, a scoped precision. So, in case the interpolation procedure
identifies a global variable to be relevant at any location, the resulting precision
will advise the analysis to track this global variable throughout verification task.
Similar for local variables, if the interpolation procedure identifies a local variable
to be relevant at any location within a function, the resulting precision will signal
the analysis to track this local variable at all program locations belonging to the
function.

Mind that a scoped precision can turn out to be disadvantageous for the analysis,
because program variables are tracked at program locations where they actually
do not need to be tracked, potentially adding again to the problem of state-space
explosion. So, it is important that there is a good balance between the reduction of
refinements and the overhead of tracking superfluous information.

As it turns out, if we run the value analysis with CEGAR using the scoped precision
instead of the localized, parsimonious precision, as advocated by the lazy abstraction
principle, then we are able to reduce the number of refinements significantly. In
our evaluation we achieved a reduction of 85 % —from 145 007 down to only 20 910
refinements— for the 2 087 verification tasks that both approaches can solve. At the
same time there are hardly any negative effects from tracking superfluous information,
as there are only 32 verification tasks that are exclusively solved using the localized
precision, while there are 729 verification tasks that are exclusively solved using the
scoped precision.

In summary, the switch from the localized precision to the scoped precision greatly
improves the performance of the overall analysis, on which we report in more detail
during the next section.

5.4 Evaluation

In this section, we again evaluate the value analysis with CEGAR, but now with
improved CEGAR and interpolation, i. e., we run it with the optimizations for
the interpolation procedure, and with the scoped precision introduced above. In
order to allow drawing comparisons with the previous evaluations from Sections 3.5

60

5.4 Evaluation

and 4.8, respectively, we reuse the same benchmark verification tasks in the identical
experimental setup, including the use of BenchExec just as in the previous evaluation
sections.

5.4.1 Configuration

We again take CPAchecker in revision 20 406, and provide the main configuration
file valueAnalysis-Cegar-Optimized, along with the options to skip descending in
recursive function calls and not performing counterexample checks, same as in the
evaluations before.
Besides applying the optimizations from Sections 5.2 and 5.3, we also choose to

restart the analysis from the initial state with the new precision after a refinement,
i. e., we fully disable lazy abstraction. While for most categories it hardly makes a
difference whether to continue from the pivot state or restart the analysis after a
refinement, our experiments show, that this is especially beneficial for the categories
ECA and ProductLines. This is the case, because both these classes of verification
tasks have a rather complex control flow with a high degree of branching, and the
program variables identified as relevant by a refinement are not only relevant in a
couple of sub-trees of the ARG, but are relevant throughout the verification task.
Therefore, for these verification tasks, it is more efficient to add them to the precision
at the top-level once.
In order to allow reproducibility of the evaluation, an example for a complete

command line to run the value analysis with improved CEGAR and interpolation as
well as the full results and raw data are available on our supplementary web page 3.

5.4.2 Results

We now present the results of running the value analysis with improved CEGAR
and interpolation in the same experimental setup as in the previous evaluations. For
a complete overview of the results obtained by this instance of the value analysis,
we refer the reader to Table 5.2. From there one can see, that the value analysis
with improved CEGAR and interpolation now can solve 72 %, or 3 088 of the 4 283
verification tasks. This means, that, due to the improvements discussed in this
chapter so far, the value analysis with improved CEGAR and interpolation can solve
a total of 969 verification tasks more than without the improvements.
In terms of verification effectiveness, the biggest improvement is achieved in the

category ECA, where now 587 verification tasks can be solved, while without the
improvements, none are solved. Other categories, where the verification effective-
ness is now considerably improved are DeviceDriversLinux64, ProductLines, and

3http://www.sosy-lab.org/research/phd/loewe/#ValueAnalysisCegarPlus

61

http://www.sosy-lab.org/research/phd/loewe/#ValueAnalysisCegarPlus

5 Value Analysis with Improved CEGAR and Interpolation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

unsolved 2 3 452 553 1 27 137 20 0 1 195

solved 46 45 1 668 587 80 114 460 42 46 3 088

correct 25 45 1 583 587 37 63 460 31 27 2 858
true 14 27 1 390 287 15 22 283 8 3 2 049
false 11 18 193 300 22 41 177 23 24 809

incorrect 21 0 85 0 43 51 0 11 19 230
true 0 0 0 0 0 0 0 0 0 0
false 21 0 85 0 43 51 0 11 19 230

Table 5.2: Table showing the verification effectiveness of the value analysis with
improved CEGAR

Sequentialized such that now the value analysis with improved CEGAR and in-
terpolation clearly out-performs the plain value analysis in terms of verification
effectiveness, as shown in the next section.

5.4.3 Comparison to the Plain Value Analysis

We now present a comparison between the plain value analysis and the value analysis
with the now improved approaches for CEGAR and interpolation.

Similar as in Section 4.8.3, we show the differences in verification effectiveness of
the two approaches in a table representing the cell-wise difference of Table 5.2 and
Table 3.2, respectively.

From the resulting table (cf. Table 5.3) we can see that the value analysis with
CEGAR is now clearly more effective than the plain value analysis, as the approach
based on CEGAR can solve 430 verification tasks more. The biggest improvement
coming from the optimizations detailed in the previous section is due the good results
in the category ECA— remember that without the optimizations no verification task
can be solved there. Also, on the category DeviceDriversLinux64, the improved
approaches for CEGAR and interpolation allow even better results, as now 569
verification tasks can be solved that the plain value analysis cannot solve.

The results in the category ProductLines remain the only blemish of the value
analysis with CEGAR, as a total of 137 verification tasks less can be solved when

62

5.4 Evaluation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

solved∆ 0 3 569 −1 −1 3 −137 −10 4 430

correct∆ 0 3 525 −1 −1 2 −137 −8 4 387
true∆ 0 0 423 33 −1 2 −49 0 2 410
false∆ 0 3 102 −34 0 0 −88 −8 2 −23

incorrect∆ 0 0 44 0 0 1 0 −2 0 43
true∆ 0 0 0 0 0 0 0 0 0 0
false∆ 0 0 44 0 0 1 0 −2 0 43

Table 5.3: Table showing the difference in verification effectiveness between the plain
value analysis and the value analysis with improved CEGAR

relying on the value analysis with CEGAR. An explanation for this effect is given in
this next section (cf. Section 5.4.4).

In order to compare the verification efficiency of the plain value analysis with that
of the value analysis with and without improved CEGAR and interpolation, we refer
to the quantile plot shown in Figure 5.1.

The graph corresponding to the value analysis with improved CEGAR and inter-
polation is the lowest of all, which tells us that this analysis is the most efficient for
solving the verification tasks in our benchmark set. Only at the far left, there are
a few verification tasks where the plain value analysis is a tiny bit faster. This is
due to the overhead that the CEGAR approach comes with for finding a suitable
abstraction first, but it is surprising that this overhead is basically compensated.
The value analysis with improved CEGAR and interpolation is also clearly better
suited for harder verification tasks, because the graph corresponding to the plain
value analysis goes almost straight up for tasks needing more than 100 s, while the
graph corresponding to the value analysis with improved CEGAR and interpolation
tends further to the right, i. e., it solves more of the harder tasks as already discussed
above.

5.4.4 Level of Non-Determinism

So far in this chapter we showed that a CEGAR approach for the value analysis is
able to out-perform the plain value analysis in terms of verification efficiency. Still,

63

5 Value Analysis with Improved CEGAR and Interpolation

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

VA-Plain
VA-Cegar
VA-Cegar-Optimized

Figure 5.1: The quantile plot for the plain value analysis, for the value analysis with
CEGAR, and for the value analysis with improved CEGAR, where the
latter performs best

for some verification tasks, the CEGAR approach does not pay off, which seemingly
is true for large parts of category ProductLines (cf. Table 5.3). However, we argue
that it is not the case that the value analysis with CEGAR performs bad there, but
that it is rather the case, that the plain value analysis performs extremely well there.
We back this claim by referring to, what we call, the level of non-determinism of a
verification task, and we compute the level of non-determinism for a verification task
as follows. We run the value analysis without CEGAR, counting the total number
of branching nodes, i. e., assume operations like [a == 1] or [a >= b] , that are
traversed during the analysis. The analysis also takes note how many of the assume
operations have two successors states. Mind that if the plain value analysis computes
two successors for an assume operation, this indicates that the assume operation
could not be evaluated to a deterministic value, i. e., non-determinism is present in
the respective verification task. This fact is of interest here, because if there exists a

64

5.4 Evaluation

successor for both the then branch as well as for the else branch of an assume
operation, then this means that two independent branches need to be explored by
the analysis, and if that happens often, then the state space of the verification task
may become huge. In contrast, if most assume operations only allow at most a
single successor, than the state space of the verification task is limited, it even may
degenerate to a path program if each and every assume operation can be evaluated
deterministically. Interestingly, the latter is the case for many verification tasks in
the category ProductLines, and therefore, verification tasks from this category can
be solved easily by the plain value analysis, as it tracks as much information as
possible without ever performing abstraction computations.

In contrast, the value analysis with CEGAR does not perform particularly well in
the category ProductLines. To give an intuition why this is the case, lets assume
several refinements were performed already and only a subset of all relevant program
variables is being tracked. Because not all program variables referenced in assume
operations are being tracked, there is a lot of case splitting going on, i. e., both
branches of an assume operation have to be explored in many cases. But at the
same time, because program variables are already being tracked, and these have
different valuations in different branches, there is also less chance for coverage
when two independent branches meet again. So now there exist many independent
branches that end in states where the variable valuations are different, so coverage
is not possible and each branch must be explored individually which eventually
leads to state-space explosion. Furthermore, the verification tasks in the category
ProductLines require many program variables to be tracked in order to be able to
exclude all infeasible error paths, and the effort spent for the continuous computation
of refinements also hinders the value analysis with CEGAR to perform well here.

The scatter plot in Figure 5.2 provides evidence for our claims, covering verification
tasks of the categories ECA and ProductLines, that the plain value analysis or the
value analysis with CEGAR is able to solve. In this plot, the x-coordinate of a
data point corresponds to the CPU time needed to solve the respective verification
task with the plain value analysis, and the y-coordinate corresponds to the CPU
time needed to solve the very same verification task with the value analysis with
CEGAR. The color of the data point reflects the level of non-determinism —the
measure we briefly sketched above— which ranges from 0 % to 100 %. A low level
of non-determinism, i. e., close to 0 % is drawn in a bluish hue, while a high level
of non-determinism is drawn in a reddish hue. The plot makes two points rather
clear. First, the verification tasks in the ECA and ProductLines expose a rather low
level of non-determinism, as practically all data points are colored blue. Second, the
plain value analysis is better suited for almost all these verification tasks, as only a
few data points are located in the lower triangle below the diagonal, while many are
positioned close to border on the top, indicating that the plain value analysis can

65

5 Value Analysis with Improved CEGAR and Interpolation

1 10 100 1 0001

10

100

1 000

CPU time of the plain value analysis

C
PU

tim
e

of
th

e
va

lu
e

an
al

ys
is

w
ith

C
EG

A
R

0

10

20

30

40

50

60

70

80

90

100

Le
ve

lo
fN

on
-D

et
er

m
in

ism

Figure 5.2: Scatter plot comparing the CPU time of the plain value analysis (x-axis)
to the CPU time of the value analysis with CEGAR (y-axis) over the
verification tasks in the categories ECA and ProductLines, with the color
of the data points indicating the level of non-determinism of the respective
verification task

solve the respective verification tasks, but that the value analysis with CEGAR runs
out of time when trying to solve them.
In contrast, the plot in Figure 5.3 covers verification tasks from all categories

except for ECA and ProductLines, and here now, the level of non-determinism is
particularly higher, as witnessed by the high number of data points with a reddish
hue. Interestingly, for verification tasks exposing a high level of non-determinism,
the value analysis with CEGAR is superior over the plain value analysis, which can
be seen from the massive number of reddish data points along the right border of
the plot, which represent verification tasks with a higher level of non-determinism
that the value analysis with CEGAR can solve but the plain value analysis cannot.
To give an intuition why this is the case, consider a verification task that is highly

66

5.4 Evaluation

1 10 100 1 0001

10

100

1 000

CPU time of the plain value analysis

C
PU

tim
e

of
th

e
va

lu
e

an
al

ys
is

w
ith

C
EG

A
R

0

10

20

30

40

50

60

70

80

90

100

Le
ve

lo
fN

on
-D

et
er

m
in

ism

Figure 5.3: Scatter plot comparing the CPU time of the plain value analysis (x-axis)
to the CPU time of the value analysis with CEGAR (y-axis) over all
verification tasks except those from the categories ECA and ProductLines,
with the color of the data points indicating the level of non-determinism
of the respective verification task

non-deterministic, i. e., many assume operations in this verification task cannot be
evaluated to a deterministic value, hence, always both paths need to be considered
by the value analysis, independent of the fact whether the value analysis relies on
CEGAR or not. However, what makes the difference here is that the plain value
analysis —running with full precision— tracks all program variables within the
different paths, while the value analysis with CEGAR normally only tracks a small
fraction of all the program variables. According to our evaluation, on average over
the commonly solved tasks, the value analysis with CEGAR tracks less than 25 %
of the program variables the plain value analysis tracks. This means that coverage
relations are more likely for the value analysis with CEGAR, which reduces the
number of paths that have to be explored independently, and ultimately allows the

67

5 Value Analysis with Improved CEGAR and Interpolation

analysis to finish in time.
So, after having established that the value analysis with CEGAR is beneficial for

verification tasks with a higher level of non-determinism, while the plain value analysis
is best suited for rather deterministic verification tasks, an obvious suggestion would
be to combine the two approaches in a composite analysis. A simple approach could
first start the plain value analysis, and let it run for, e. g., 100 s as most verification
tasks the plain value analysis solves are finished in under 100 s anyway. After these
100 s, the value analysis with CEGAR could then use the remaining time to solve as
many verification tasks as possible. However, while this approach is valid, and yields
more results than a single analysis alone, it also is not very interesting, because,
using the data from our evaluation, we can compute an estimated number of solved
verification tasks for this approach by counting each verification task that was either
solved by the plain value analysis in under 100 s or by the value analysis with CEGAR
in 800 s or less.
A more sophisticated approach for a composite analysis would be to base the

decision on which analysis to use on the level of non-determinism that the current
verification task exposes, e. g., by delaying the abstraction computation until the
level of non-determinism is above a certain threshold, as detailed in a later chapter
(cf. Section 9.1). However, while some combination of two value analyses might lead
to some improvements, we believe that a composite analysis of two analyses backed
by two different domains is far more interesting and powerful.
But, before focusing on the composition of the value analysis with a symbolic

analysis (cf. Chapter 6), we first discuss some other interesting research directions
for the value analysis.

5.5 Versatility of Value-Analysis Refinement

In the previous section we discussed the benefits that our novel refinement component
has for the value analysis. In addition, the availability of such a refinement component
opens up several more possibilities, and on two of these we will briefly report on.

5.5.1 Applicability to other Analyses

Besides the value analysis presented in this thesis, there exist many other analyses
based on various abstract domains, like for example the interval domain [46], which is
also rather imprecise but allows an efficient analysis, too, or the polyhedra domain [48],
which is more precise but comes with huge memory costs.

The octagon domain [89] is yet another abstract domain, which is aimed to
perform, in terms of verification expressiveness and verification efficiency, somewhere
in between the interval domain and the polyhedra domain. This octagon domain is

68

5.5 Versatility of Value-Analysis Refinement

based on difference-bound matrices which are able to express constraints of the form
±v1 ± v2 ≤ c with v1, v2 ∈ X and c ∈ Z. The octagon domain allows to manipulate
these constraints with an O(n2) worst-case memory cost per abstract state and
an O(n3) worst-case time cost per abstract operation, with n being the number of
program variables [89].

Analyses based on these abstract domains often join abstract states when control
flow meets [47], in order to avoid state-space explosion, and to increase the verification
efficiency of the analysis. However, this is to the disadvantage of the precision of the
analysis, which usually leads to reporting many incorrect false verdicts.

The verification framework CPAchecker also holds an implementation of an analysis
based on the octagon domain, and there exists work that integrates the value-analysis
refinement along with the value interpolation into the octagon analysis. In an
evaluation of 2 300 verification tasks the octagon analysis with CEGAR is able to
solve 1 800 verification tasks, while the octagon analysis without CEGAR can only
solve 1 500 — both using mergesep as merge operator. The memory consumption is
reduced to around 50 % on average if the CEGAR approach is used. More importantly,
the CEGAR approach also solves clearly more verification tasks than the classic
approaches based on joining and widening, while also reporting far less incorrect
false verdicts 4.

Symbolic execution [25,37,75,78,101] also suffers from state-space explosion. In its
original form it tracks a symbolic value for each program variable and explores each
program path individually. For a verification task containing n assume operations
up to 2n different paths have be to explored, which often is too expensive for any
non-trivial verification task.
The verification framework CPAchecker also has an analysis based on symbolic

execution, and there exists an extension that adds interpolation and refinement,
similar as it is presented here for the value analysis, to the analysis based on symbolic
execution. In an evaluation using the verification tasks of SV-COMP’16, symbolic
execution with CEGAR achieves impressive results [25] by solving well over 2 700
verification tasks, while the original approach only solves 921 verification tasks 5.

This shows that the concepts of interpolation and refinement, as introduced in this
thesis, are applicable to a whole range of abstract domains, and even to analyses
that track the program state symbolically, like symbolic execution.

5.5.2 Regression Verification

In the software industry of today, regression testing is an established and well-
understood technique [61, 95]. However, as with any testing approach, regression

4The experimental setup was similar as presented throughout this thesis.
5The experimental setup was again similar as presented throughout this thesis.

69

5 Value Analysis with Improved CEGAR and Interpolation

testing is incomplete, i. e., it is not powerful enough to verify that an arbitrary piece of
code is free of errors, nor is it capable of exhaustively checking an arbitrary verification
task for errors. Augmenting regression testing with regression verification [27, 65, 99]
seems like a legit idea. However, verifying a single verification task once is already
considered costly, especially when compared to testing, and this is magnified in the
light of regression verification, where not a single verification task has to be verified
once, but many, and this over and over again, from revision to revision. Thus, naive
approaches for regression verification are bound to fail in an industrial setting.

But consider this. Any approach based on CEGAR, be it the value analysis with
CEGAR, or a predicate analysis, or any other analysis based on CEGAR, all of
them have to invest quite some effort first into repeatedly exploring and refining the
state space until the abstract model becomes precise enough to be reasoned about
undisputedly. For many verification tasks the effort spent up to the final refinement
is by far higher than the effort needed after the final refinement. This means that
reasoning about an abstract model that reflects the relevant characteristics of the
actual verification task just precisely enough is often inexpensive, and naturally it
is less of an effort than having to go through the whole process of computing that
abstract model over several refinement iterations.

The concept of precision reuse can be exploited for regression verification. The main
idea there is to reuse the set of precisions —those that are extracted in the respective
refinements during the verification process— for verifying future revisions [27].
With the definition of refinement and precision for the value analysis, plus for-

malizing an exchange format for writing and reading these precisions, the technique
for efficient regression verification based on precision reuse becomes immediately
available for the value analysis, too [27]. In an evaluation on an industrial scale,
precision reuse for efficient regression verification was evaluated for the value analysis
with CEGAR on 4 193 verification tasks, stemming from 62 Linux kernel device
drivers spanning over a total of 1 119 revisions. The verification of these 4 193 verifi-
cation tasks took 13 000 s when verifying each verification task from scratch, but only
4 900 s when using precision reuse, underlining that efficient and robust regression
verification is now also available for the value analysis [27].

So, precision reuse may enable efficient regression verification, but note that in
case the precision for the initial revision is not suitable for an efficient verification,
e. g., because it forces the unrolling of a complex loop, then the verification of
future revision will likely fail, too. Therefore, during a refinement, it is crucial to
find a suitable precision that neither is too strong nor forces the analysis to unroll
loops. We will present such techniques in Chapter 7, but before that, we shed some
light on alternative approaches we investigated in our quest for effective verification
techniques.

70

5.6 Further Considerations

5.6 Further Considerations

Before concluding this chapter, we give a short overview of alternative interpolation
and refinement techniques for the value analysis. Some of these approaches were
already suggested before in other domains, e. g., for the predicate analysis, and
our intuition was that they also perform well for the value domain. While this
held to be true to some extent, our studies and evaluation prove that none of
these techniques presented below are groundbreaking. Nevertheless, they represent
interesting concepts and allow a deeper understanding of the whole matter, especially
as it becomes clear why the respective approaches are inferior to the approaches
discussed in earlier chapters of this work.

5.6.1 Static Refinement

If refinement based on value interpolation is performed, (cf. Section 4.7) then in order
to obtain interpolants for an infeasible error path parts of this infeasible error path
are evaluated repeatedly, giving this approach a dynamic character.
Of course, this interpolation-based approach is not the only way to compute the

precision of the value analysis, and in the following we present an idea of computing
a new precision by performing a purely static backwards analysis along the infeasible
error path, hence, we call it static refinement.

Extracting Precisions from Use-Def Chains

This approach is based on the simple idea, that, in order to exclude an infeasible
error path, it is sufficient to track all program variables that are referenced in the
use-def chains [1, 56,74] computed over all assume operations.
In Algorithm 5 we present the procedure ObtainInUseFunction. This procedure

computes for an infeasible error path σ the in-use function υσ, which maps from
locations l ∈ L to sets of program variables χ ∈ 2X . To extract the program variables
being defined or used in an operation op ∈ Ops, the procedure delegates to defs(op)
and to used(op), respectively. For the simple imperative programming language
on which our formalism is based on defs(op) returns, as singleton set, the program
variable on the left hand side of op if op is an assignment operation and the empty set
if op is an assume operation. The call uses(op) returns the set of program variables
on the right hand side of op if op is an assignment operation and the set of all
program variables in op if op is an assume operation. The in-use function υ is then
computed by traversing the path σ once in reverse order. For an assume operation
at a location l all program variables occurring in this assume operation are added to
the current set χinUse and then to υ(l). When processing an assignment operation
at a location l, it first is checked if the program variable being assigned, i. e., the

71

5 Value Analysis with Improved CEGAR and Interpolation

program variable currently in the set χdefs, is in use, i. e., if it is in χinUse. Only
if that is the case, then the program variable being assigned is removed from the
current set χinUse, and all program variables used in that assignment operation are
added to the current set χinUse and then to υ(l).
A non-empty set χ = υ(l) for a location l means that the program variables

contained in χ are needed to allow the evaluation of an assume operation after the
location l. As the path σ is infeasible there exists at least one contradicting assume
operation in σ such that ŜPσ(>) = ⊥ holds, and a precision computed from υ is
strong enough to exclude the infeasible error path σ. Transforming the function
υ : L 7→ 2X to a precision is trivial, because υ already conforms to the definition of a
precision, being π : L 7→ 2X .

Comparison to Value Interpolation

The technique presented above is not based on value interpolation. After all, this
purely static approach does not deal with abstract variable assignments or constraint

Algorithm 5: ObtainInUseFunction(σ)
Input : an infeasible error path σ = 〈(op1, l1), . . . , (opn, le)〉
Output : the in-use function υ : L 7→ 2X , mapping from locations l ∈ L to sets

of variables χ ⊆ X
Variables : sets of variables χdefs ⊆ X,χuses ⊆ X,χinUse ⊆ X

1 χinUse = ∅;
2 foreach l ∈ L do
3 υ(l) := ∅
4 for i = n to i = 1 do

// set of variables being written in opi
5 χdefs := defs(opi);

// set of variables being read in opi
6 χuses := uses(opi);

// any uses in assume operation always become in-use
7 if isAssumeOperation(opi) then
8 χinUse := χinUse ∪ χuses;

// uses of def in in-use become in-use
9 else if χdefs ∩ χinUse 6= ∅ then

10 χinUse := (χinUse \ χdefs) ∪ χuses;
// add in-use to function υ at location li

11 υ(li) := χinUse;
12 return υ;

72

5.6 Further Considerations

sequences but only operates on identifiers of program variables, and for these the
formalisms like contradiction, implication and others (cf. Section 4.6) are undefined.

Due to the static nature of the approach, it is not known which assume operations
along a path actually are contradicting, and so the approach has to consider all assume
operations to be contradicting. This is also the reason why precisions computed
by procedure ObtainInUseFunction are never weaker, i. e., they always contain at
least the program variables that precisions contain which are computed using value
interpolation (cf. Algorithm 4).
In the evaluation we performed, again in the same experimental setup as in the

sections before, this approach solves 231 verification tasks more than the plain value
analysis. But compared to the value analysis with CEGAR and interpolation it
fails to solve 199 verification tasks that can be solved with the optimized refinement
approach from before (cf. Section 5.4). Hence, the extra effort spent for the value
interpolation pays off, and due to that insight, we do not try to improve this static
refinement approach directly. However, we note that static refinement may profit
dramatically from the technique presented in Chapter 7, which allows to modify an
infeasible error path prior to computing a (static) refinement in such a way that at
most a single contradicting assume operation remains in the respective infeasible
error path. Consequently, the static refinement approach does not need to consider
all assume operations to be contradicting, but it suffices to compute the use-def-chain
starting from the single contradicting assume operation, often allowing a far more
concise precision increment.

5.6.2 Global Refinement

Another technique that we studied and that has already been suggested for the
predicate domain computes refinements not for a single error path but for multiple
error paths at once [3], i. e., for error paths forming a directed acyclic graph. In the
classic CEGAR approach a refinement is initiated as soon as the first target state has
been identified, and for each such target state being found during the course of the
analysis a refinement is performed. When refining a set of paths at once, this is done
differently. In the extreme case, the analysis first enumerates —according to the
current precision— all reachable states of the current verification task. If no target
state is found, the analysis returns the verdict true, and if a feasible counterexample
is detected, the analysis returns the verdict false, just as in the classic CEGAR
approach. In all other cases the refinement procedure is tasked to compute a single
precision increment that is strong enough to exclude all infeasible error paths present
in the computed state space. We call this global refinement and we propose to use
that also for our value analysis.

73

5 Value Analysis with Improved CEGAR and Interpolation

With the value analysis it is often too expensive to always unroll the complete
reachable state space between subsequent refinements when analyzing more complex
verification tasks, so for our work with the value analysis, we favour a trade-off
between the one extreme that always triggers a refinement right after having found a
new target state and the other extreme that always unrolls the complete reachable
state space before initiating a refinement. To this end, we can configure the value
analysis such that a refinement is initiated (1) once a certain amount of target states
have been found, or (2) once a certain number of abstract states have been computed
after having found the next target state. This allows us to choose any configuration
between the two extremes mentioned above.

There are three main benefits that we aim to achieve. First, as multiple error paths
are identified between two subsequent refinements, the chance of finding a feasible
error path within less refinements is higher, so we hope to find bugs faster. Second,
with this approach the number of refinements needed to solve a verification task is
expected to be lower compared to the classic CEGAR approach, and therefore the
number of re-explorations of the state space are also reduced, potentially speeding
up the overall verification process. Third, there are now several infeasible error paths
scheduled for interpolation during one refinement step, so synergy effects for the
interpolation procedure may emerge.

To explain the last aspect in more detail, we show the source code of an illustrative
example verification task on the left in Figure 5.4. This verification task contains
four assert statements, each representing a target location. Note that all of them
are actually unreachable, so the verdict of this verification task is true. If we give
this verification task as input to the value analysis with CEGAR and enable global
refinement, due to the initially empty precision, the analysis reaches all four target
locations and identifies all of them as infeasible. On the right side of Figure 5.4, a
tree structure shows the interpolants computed for the global refinement, the four
error paths that end in the four target states, as well as the relevant abstract states.
The tree structure should be interpreted like the following. After going from N4
to N6, the interpolant {[a = 1]} at N6 indicates that the valuation of int a is
needed for excluding an infeasible error path — in this case the infeasible error
path leading to the assert statement in line 7 is excluded. Coming from N6 and
going on to N10, no information is needed for excluding any infeasible error path, as
indicated by the “empty” interpolant at N10. But right after that, the interpolant
{[b = 1]} is strong enough to exclude the remaining infeasible error paths. With
global refinement enabled, the refinement component has to compute this tree of
interpolants instead of a single sequence of interpolants. Of course it would be
possible to extract each error path from this tree and compute interpolants for each
path individually, but this would waste two opportunities for optimizations. First, it
is possible to skip the interpolation of some error paths completely, because some

74

5.6 Further Considerations

1 #include <assert . h>
2 int main () {
3

4 int a = 1 ;
5

6 i f (a == 0) {
7 assert (0) ;
8 }
9

10 int b = 1 ;
11

12 i f (b == 0) {
13 assert (0) ;
14 }
15

16 else i f (b == 2) {
17

18 int c = 1 ;
19

20 i f (c == 0) {
21 assert (0) ;
22 }
23

24 else i f (c == 2) {
25 assert (0) ;
26 }
27 }
28 }

〈〉
N 4

〈[a = 1]〉
N 6

⊥
N 7

assert(0);

〈〉
N10

〈[b = 1]〉
N12

⊥
N13

assert(0);

〈[b = 1]〉
N16

⊥
N18

⊥
N20

⊥
N21

assert(0);

⊥
N24

⊥
N25

assert(0);

a = 1;

[a == 0][a != 0]

b = 1;

[b == 0] [b != 0]

[b == 2]

c = 1

[c == 0] [c != 0]

[c == 2]

Figure 5.4: A simple verification task with an interpolant tree

target states might already be excluded by interpolants computed for a target state
for which the interpolation was performed earlier. Second, redundant interpolations
over common prefixes of infeasible error paths can sometimes be avoided, because
some error paths share a common prefix with other error paths. In the example here
we can avoid the interpolation of the error path to the assert statement in line 25,
because the interpolant at the branching state N20 is already set to ⊥, meaning that
an interpolant further up the tree already guarantees that this state is unreachable.
Moreover, assume that the path to the assert statement in line 13 was already
interpolated over, and we decide to interpolate next over the path to the assert
statement in line 21. Here we can check, if the already existing interpolant {[b =
1]} at the branching state N12 is strong enough to serve as initial interpolant for
the partial interpolation of the suffix from N12 to the assert statement in line
21. As that is the case, we can save some interpolation queries, and in addition, we
can assure that the precision stays smaller, because no new program variables are

75

5 Value Analysis with Improved CEGAR and Interpolation

added to the precision. To sum up, in this example one single refinement is enough
to exclude all infeasible error paths, while an approach using the normal CEGAR
approach might need up to four individual refinements.

So, in theory, the reduction of refinements as well as potential for optimizations in
the interpolation procedure are what makes global refinement attractive. However,
when comparing this to the results from Section 5.4, of course under the same
experimental setup, it turns out that global refinement does not lead to any signifi-
cant improvement, because for the total of 4 283 verification tasks it only solves 4
verification tasks more than the default refinement procedure is able to solve.

We conclude from this that the effort saved through the improvements for the
interpolation and refinement procedures are roughly the same as the overhead
introduced with continuing the state-space exploration after having identified the
first target state. This result is not a total surprise, because with the improvements
described earlier in this chapter, the limiting factor of the value analysis with
CEGAR seems to be the construction of the abstract model. Sometimes this model is
concise, because suitable interpolants are identified, but sometimes it is not, because
the interpolants that are identified lead, for example, to repeated loop unrollings.
Whether or not using global refinement has no direct influence on the choice of
interpolants, so only by chance one approach may lead to more suitable interpolants
and a more concise abstract model, and only in those few cases one of the approaches
is significantly faster than the other. Therefore, we do not investigate the concept of
global refinements any further, but we refer to the technique presented in Chapter 7,
because it enables us to guide the interpolation process towards suitable interpolants,
which then allow the analysis to obtain a more concise abstract model which leads
to a more efficient verification process.

5.6.3 Impact-Like Refinement for the Value Analysis

Finally, we also experimented to combine the value analysis with lazy abstraction with
interpolants [88], a technique which was first introduced for the predicate domain.
In the original work it was shown that the underlying algorithm, called Impact, was
far more efficient than the approach taken by Blast [18], which by that time was
the best implementation of an analysis based on predicate abstraction. The reason
why the Impact approach may perform better for a given verification task is due to
the fact, that it may solve verification tasks with far less refinements than classic
lazy predicate abstraction. More recent work [33] formalized both approaches in
an unified algorithm, which can be parametrized to either perform lazy predicate
abstraction (Blast) or lazy abstraction with interpolants (Impact). This work shows
that adding adjustable-block encoding (ABE) [24] to this unified algorithm, and

76

5.6 Further Considerations

thus making it available to both approaches, closes the gap between lazy predicate
abstraction (Blast) and lazy abstraction with interpolants (Impact).

For the value analysis, there is no concept available like ABE, and therefore, again
with the goal of finding counterexamples faster with the value analysis, we propose a
refinement schema for the value analysis that is based on global refinement (cf. Section
5.6.2) and also borrows ideas from the Impact algorithm.
For detailed insights on the Impact algorithm we refer to the literature [33, 88],

and we only focus here on the most relevant bits. The main difference between
lazy predicate abstraction (Blast) and lazy abstraction with interpolants (Impact)
is that after a refinement the later does not delete and re-explore states in the
ARG, but instead it strengthens the abstract states by conjunctively adding the
corresponding interpolant directly to the state formula wrapped in the abstract state.
This strengthening effects the coverage relation between abstract states, and thus
might lead to inconsistencies in the coverage relation. The algorithm has to restore
the coverage relation to a consistent state, which comes at an extra cost.

We adapt the idea of the Impact algorithm to strengthen abstract states of the value
analysis with interpolants provided by the value-analysis interpolation (cf. Section 4.6).
If the value analysis finds a target state, interpolants are computed for the respective
error path, and similar to the Impact algorithm, we strengthen the abstract states,
i. e., the abstract variable assignments, with the value-domain interpolants, which
can also be interpreted as abstract variable assignments. In contrast to Impact, we
deliberately leave the coverage relation inconsistent after strengthening abstract
states in a refinement in order to save the extra cost.

For our intent this is acceptable, because our goal is to find counterexamples more
rapidly. However, we need to deal with a few consequences. Assume we find a target
state with this approach. If it turns out to be a real counterexample, the algorithm
terminates and returns the verdict false. If the error path is infeasible a refinement
is performed, in which the abstract states are strengthened. This possibly leaves the
coverage relation in an inconsistent state. Despite that, the algorithm continues the
exploration, and it either finds another target state and performs again a refinement
by strengthening the abstract states using interpolants, or no more target states
are found. In the later case, we cannot return the verdict true for the verification
task, because the current ARG represents an under-approximation, due to a possibly
inconsistent coverage relation. So once the state-space exploration is complete, our
approach performs a full restart of the state-space exploration in order to rebuild
the ARG with a consistent coverage relation. Only if the ARG resulting from such a
re-exploration is free of target states, then we can return the verdict true for the
verification task. If another target state is found, then this refinement loop starts
anew.

77

5 Value Analysis with Improved CEGAR and Interpolation

This approach indeed finds some counterexamples faster than the CEGAR approach
we presented in earlier chapters. Despite that, we did not pursue this concept any
further, because in our evaluation —performed in the same experimental setup as
before— it does not only perform worse in proving true verdicts, which was expected,
but also is not competitive in regard to finding counterexamples. Especially on the
verification tasks in the categories ECA and ProductLines this approach fails to find
counterexamples efficiently. As already stated earlier (cf. Section 5.4), a good strategy
for these verification tasks is to track program variables globally right from the start,
but this contradicts the Impact approach, which refines a single infeasible error path
after the other, and, instead of continuing the re-exploration after a refinement at
the initial state, it continues deep in the ARG, similar to the value analysis based on
CEGAR and lazy abstraction (cf. Section 4.8), which also did not work well for the
categories ECA and ProductLines. We could improve this for the Impact approach
by restarting the analysis more frequently, i. e., be more eager, but then this would
be almost identical to the standard value analysis with CEGAR, leaving us without
any justification for having the Impact-like approach in the first place.

5.7 Conclusion

In this chapter we presented several techniques that allow the value analysis with
CEGAR to become a competitive analysis.
The most important step that we needed to take was to lower the number of

refinements that the original CEGAR component of the value analysis requires. We
achieved that goal by applying a scoped precision and by restarting the analysis after
each refinement. Several optimizations for the interpolation procedure further speed
up the analysis.
In addition, we detailed on the versatility of the refinement component of the

value analysis, and we reported on several ideas that, despite not living up to our
expectations, at least firmed our belief that the key for optimizing the CEGAR
component lies in finding better interpolants.

5.7.1 Lessons Learned

An interesting insight is that lazy abstraction, for the benchmark set we use, is not
beneficial for the value analysis. A location-based precision, i. e., a parsimonious
precision, is one of the two main arguments brought forward by the lazy-abstraction
principle to facilitate an efficient verification process. However, for the value analysis,
this reasoning does not apply, because the same information is needed in many
different paths, making a location-based precision too fine-grained and leading to
many repeated refinements. If deciding against lazy abstraction, then the value

78

5.7 Conclusion

analysis with CEGAR clearly out-performs the plain value analysis in terms of
verification efficiency, becoming a competitive analysis on its own.

5.7.2 Challenge

With the findings from this chapter we have available a competitive analysis, which
is able to provide a verdict for many verification tasks from our benchmark set.
However, the addition of CEGAR to the value analysis does not make the analysis
more precise, and as such, the analysis still returns an incorrect false verdict for
some verification tasks, especially for verification tasks where the reachability of the
target state depends on non-determinism, e. g., caused by uninitialized variables. So
before further improving the verification efficiency of the value analysis, we now turn
the attention to the design of an efficient and precise analysis.

5.7.3 Proposition

A straight-forward approach would be to add symbolic capabilities directly to the
value analysis. We did not follow this path, because we would risk breaking one of the
main design decisions of the value analysis, namely its simple, low-overhead approach,
which so far has proven highly valuable. So instead of tightly integrating symbolic
capabilities to the value analysis, we rather make use of what the CPAchecker
framework provides, which already has highly capable symbolic analyses on board.

5.7.4 Solution

In order to obtain a precise and efficient analysis based on the current state of the
value analysis, we suggest to combine the value analysis with the existing predicate
analysis of CPAchecker, with both analyses making use of the CEGAR approach. In
order to allow this novel composite analysis to stay as efficient as possible, the value
analysis will remain to be the main driver of the composite analysis, and it will only
turn to the predicate analysis when encountering an infeasible counterexample that it
cannot refute itself. The next chapter will cover the details of this novel approach.

79

6 Precise and Efficient Composite
Analysis based on CEGAR

The optimizations detailed in the previous chapter are targeted at the verification
effectiveness and verification efficiency of the value analysis, suggesting several
improvements for the refinement approach and the interpolation procedure in the
value domain. In this section we continue to improve the verification effectiveness of
the analysis, but now by lowering the number of incorrect false verdicts that the
value analysis reports, while still guaranteeing an efficient verification process.

6.1 Motivation
1 #include <assert . h>
2 int main () {
3

4 int a ;
5

6 i f (a != 1) {
7 i f (a == 1)
8 assert (0) ;
9 }

10 }

Figure 6.1: Example verifica-
tion task exposing
non-determinism
due to missing
initializer

Reporting incorrect false verdicts greatly hinders
the verification effectiveness of any analysis, and so
far in this work we neglected to limit the number
of incorrect false verdicts which the value anal-
ysis reports. One reason why the value analysis
raises false alarms is due to the aforementioned non-
determinism that, at least to some degree, most
verification tasks expose. This non-determinism
is introduced on purpose by the authors of the
verification task, e. g., to simulate user input or
communication with external libraries, with the
goal to generalize the verification task such that
the size of the state space that the analysis has to
cover is increased. Without any non-determinism,
each verification task would represent a path program, and the verification of these
is not of major interest.
By design, the value analysis is not particularly good in dealing with non-

determinism, making it prone to reporting false alarms, as shown by the tiny
example verification task in Figure 6.1. This verification task defines a local variable
int a , that does not have an initializer. Therefore, a verifier has to explore both the
then branch as well as the else branch of the assume operation [a != 1] . The
value analysis is not able to derive any valuation for the variable int a from the

81

6 Precise and Efficient Composite Analysis based on CEGAR

assume operation [a != 1] in the then branch, and eventually will also compute a
successor for the then branch of the assume operation [a == 1] , despite the fact
that the two assume operations [a != 1] and [a == 1] obviously are contradicting.
A symbolic analysis, like an analysis based on predicate abstraction [60] or symbolic
execution [78] can easily pick up this contradiction and prove the verdict true of the
verification task, but the value analysis for itself reports a false alarm instead.

Again, we clearly distance ourselves from introducing any symbolic capabilities
into the value analysis, because we believe that the straightforwardness of the value
analysis is one of its major advantages. Instead, to resolve this dilemma and to
maintain the straightforwardness of the value analysis while also allowing an efficient
and effective verification process, we suggest to combine the value analysis with a
predicate analysis [24].

6.2 Related Work

Predicated lattices [57] is a concept that joins data-flow analyses with a predicate
analysis. The idea is to increase the precision of resulting data-flow analysis, as not
only lattice elements are tracked but also a set of predicates. The latter partitions the
state space of the verification task in such a way that the normally path-insensitive
data-flow analysis becomes as path-sensitive as needed, i. e., paths that must be
analyzed in isolation are not joined.

Dynamic precision adjustment [22] is another concept that also combines a value
analysis and a predicate analysis. There, the verification effort imposed on either of
the analyses depends on a predefined, static threshold. Initially, a variable is tracked
by the value analysis, but once the number of distinct valuations of this variable
exceeds the threshold, the variable is tracked symbolically by the predicate analysis.
In contrast to these two approaches our composite analysis performs CEGAR

in both the value analysis and the predicate analysis, and therefore, because only
relevant facts are tracked by either one of the component analyses, each can be run
in a path-sensitive configuration and still avoid the problem of state-space explosion
in many cases.
Just recently, a CEGAR framework targeted at symbolic transition systems was

presented [63]. This approach also combines an explicit analysis and a predicate anal-
ysis, with both analyses incorporating CEGAR, interpolation and lazy abstraction,
making it quite similar to our approach. While the authors state that their prototype
implementation is unable to compete with state-of-the-art tools, they confirm our
results that the composite analysis leads to a performance boost compared to running
the explicit analysis or the predicate analysis in isolation.

82

6.3 Composition of a Value Analysis and a Predicate Analysis

Besides performing CEGAR in both component analyses, another novelty of our
approach is that the decision which information is tracked by which analysis is based
on the level of expressiveness of the component analyses. The details of our approach
are subject of the next section.

6.3 Composition of a Value Analysis and a Predicate
Analysis

The analysis, as composition of the value analysis and the predicate analysis, works
basically the same as any analysis based on CEGAR (cf. Algorithm 2). The analysis
is started with an empty precision, i. e., neither the value analysis nor the predicate
analysis track any variables or predicates, respectively. If this composite analysis finds
an error path, then this path is first checked for feasibility in the value domain. If it
is infeasible, then a refinement of the value domain is performed (cf. Section 4.7), and
the composite analysis continues the CEGAR loop. If the path is feasible according
to the semantics of the value domain, then the path is also checked for feasibility in
the predicate domain. If the predicate domain confirms the feasibility of the path,
the verdict false is returned with this error path as counterexample.

If, however, the path is found to be infeasible under the semantics of the predicate
domain, then the value domain is not expressive enough to refute that program path,
e. g., due to non-determinism encoded in the verification task. In such a case, we ask
the predicate analysis to refine its precision along that path, which yields a refined
predicate precision that eliminates this error path by considering facts along that
path in the predicate domain.
We argue that, in general, the post-operations of the predicate analysis are more

expensive than the post-operations of the value analysis, hence, we always try to
perform a refinement for the, supposedly, cheaper value analysis first, and only use
refinements for the predicate analysis as fallback, in case the expressiveness of the
value analysis does not suffice to exclude an infeasible error path.

As a further enhancement, and similar as for dynamic precision adjustment [22],
the composite analysis can decide to remove variables from the precision in the
value domain once the number of different valuations for a variable along a path
exceeds a certain threshold. Because these variables are relevant for excluding an
infeasible error path —after all they were part of the value analysis precision— a
later predicate refinement will automatically add predicates about these variables to
the precision in the predicate domain. We regard this as a particularly nice property
of our approach, because when we decide to manually decrease the precision of the
value analysis, then the auxiliary predicate analysis will automatically compensate
the loss of precision of the overall analysis.

83

6 Precise and Efficient Composite Analysis based on CEGAR

In conclusion, after a refinement step, either the precision of the value analysis
is refined, which normally is preferred, or the precision of the predicate analysis is
refined. Note that this refinement-based, parallel composition of a value analysis
and predicate analysis is strictly more powerful than a mere parallel product of
the two analyses, because the value domain tracks exactly what it can efficiently
analyze, while the predicate domain takes care of what is beyond that, resulting in
an analysis that allows both an efficient and effective verification process, as shown
in the evaluation in the next section.

6.4 Evaluation

In the following we present the results of evaluating the composition of the value
analysis and the auxiliary predicate analysis described above. The main purpose of
this evaluation is to show that the addition of the auxiliary predicate analysis to
the value analysis (1) still allows for an efficient verification process, i. e., despite
the now increased precision the composite analysis still remains efficient, and that
the addition of the auxiliary predicate analysis to the value analysis (2) reduces the
number of incorrect false verdicts which the stand-alone value analysis reports.
Again, in order to be able to draw comparisons with the evaluations from the

previous Sections 3.5, 4.8 and 5.4, we reuse the same benchmark verification tasks in
the identical experimental setup, and we again take CPAchecker in revision 20 406.
The benchmarking framework BenchExec is used and configured the same way as
before.

6.4.1 Configuration

The composite analysis is based on the configuration of the value analysis with
improved CEGAR from Section 5.4, but is extended by a CPA performing predicate
analysis, which is configured to perform abstraction computations at loop-head
locations and locations where control flow joins [24]. The predicate analysis relies
on SmtInterpol [40] as SMT solver and interpolation engine. In addition, a custom
refiner is put in place that, according to the logic described above, either delegates to
the refiner for the value analysis or to the refiner for the predicate analysis. As in all
previous evaluations we again disable explicit recursion and counterexample checks.
In order to allow reproducibility of the evaluation, an example for a complete

command line to run this composite analysis based on CEGAR as well as the full
results and raw data are available on our supplementary web page 1.

1http://www.sosy-lab.org/research/phd/loewe/#CompositeAnalysisBasedOnCEGAR

84

http://www.sosy-lab.org/research/phd/loewe/#CompositeAnalysisBasedOnCEGAR

6.4 Evaluation

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

unsolved 3 3 509 605 7 49 149 23 0 1 348

solved 45 45 1 611 535 74 92 448 39 46 2 935

correct 26 45 1 562 535 42 85 448 39 46 2 828
true 20 27 1 395 264 23 47 279 16 22 2 093
false 6 18 167 271 19 38 169 23 24 735

incorrect 19 0 49 0 32 7 0 0 0 107
true 5 0 2 0 2 0 0 0 0 9
false 14 0 47 0 30 7 0 0 0 98

Table 6.1: Table showing the verification effectiveness of the composition of the value
and predicate analysis

6.4.2 Results

For the sake of completeness, we show an overview of the verification effectiveness of
the composition of the value analysis and the predicate analysis in Table 6.1. The
most important fact we can draw from this table is that the composite analysis indeed
allows for an efficient verification process, as it solves 69 % of the 4 283 verification
tasks, so we can rightfully claim that hypothesis 1 from above is fulfilled.
In order to get a better impression of the differences in verification effectiveness

of the composition of the value analysis and the predicate analysis and the stand-
alone value analysis with improved CEGAR we show their differences in verification
effectiveness first via Table 6.2, which represents the cell-wise difference of Table 6.1
and Table 5.2, respectively, i. e., similar as already done before in Sections 4.8.3
and 5.4.3.
Note that there is no category where the number of solved instances is increased

for the composition of the value analysis and the predicate analysis, and in total the
more precise approach solves 153 tasks less.
There are two main reasons for this, which we discuss shortly. First, because of

the addition of the auxiliary predicate analysis, more effort is spent to allow a more
precise analysis. This extra effort is even spent when it would actually not be needed.
For example, in the categories ECA and ProductLines no predicate refinements are
needed (cf. row refinementPA), but there alone 64 verification tasks less can be solved

85

6 Precise and Efficient Composite Analysis based on CEGAR

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

solved∆ −1 0 −57 −52 −6 −22 −12 −3 0 −153

correct∆ 1 0 −21 −52 5 22 −12 8 19 −30
true∆ 6 0 5 −23 8 25 −4 8 19 44
false∆ −5 0 −26 −29 −3 −3 −8 0 0 −74

incorrect∆ −2 0 −36 0 −11 −44 0 −11 −19 −123
true∆ 5 0 2 0 2 0 0 0 0 9
false∆ −7 0 −38 0 −13 −44 0 −11 −19 −132

refinementPA 23 0 177 0 32 61 0 11 38 342

falseVA
incorrect 7→ truePA

correct 6 0 18 0 8 25 0 8 19 84
falseVA

incorrect 7→ unsolvedPA 1 0 20 0 5 19 0 3 0 48
falseVA

incorrect 7→ falsePA
incorrect 14 0 47 0 30 7 0 0 0 98

falseVA
correct & refinementPA 2 0 97 0 0 14 0 0 19 132

Table 6.2: Table showing the verification effectiveness of the composition of the value
and predicate analysis in comparison to the value analysis with improved
CEGAR

with the compositional approach, because the predicate analysis performs SAT checks
as the analysis progresses 2. We already discussed that the verification tasks in the
categories ECA or ProductLines have a rather deterministic nature, which allows the
stand-alone value analysis to solve these verification tasks efficiently, while the effort
of the compositional approach basically gets wasted here. But of course, not all of
the effort of the compositional approach is wasted, after all, with it 44 more correct
true verdicts are reported. This is mainly because the predicate analysis can deal
better with the loop structures occurring in the categories BitVectorsReach and
Loops, and also has support for pointer-aliasing that occurs in the category Simple,
allowing the compositional approach to outperform the stand-alone value analysis.
The second reason why the compositional approach solves less verification tasks

in total is because it avoids a lot of incorrect false verdicts that the stand-alone

2As possible optimization, the implementation could delay SAT checks to after the first unsuccessful
value-analysis refinement, i. e., to the point where it is clear that the value analysis alone is not
capable of analyzing the verification task alone, but this would introduce coupling between the
two CPAs, so this optimization is not implemented.

86

6.5 International Competition on Software Verification 2013

value analysis reports, i. e., hypothesis 2 from above is fulfilled as well. From the 230
incorrect false verdicts the stand-alone value analysis reports, the compositional
approach avoids 132 of those, as it turns 84 into correct true verdicts, 48 run out of
resources with the compositional approach, while 98 remain incorrect false verdicts.
The latter case may happen because the SAT-based predicate abstraction and its
implementation as predicate analysis within CPAchecker are not able to reason about
each and every detail of the programming language C, so incorrect answers remain
an issue.
Also, note row falseVAcorrect & refinementPA from Table 6.2. This row shows the

sum of verification tasks where the stand-alone value analysis reported a supposedly
correct false verdict, however, when combined with the predicate analysis, the
respective counterexample is refuted by the predicate analysis in a total of 132 cases.
So the addition of the predicate analysis does not only allow to avoid incorrect
false verdicts, it also significantly raises the confidence that a false verdict in fact
represents a bug in the respective verification task. Note that we do not claim to
perform witness checking here [16] but rather propose an approach to integrated
counterexample checking.

6.5 International Competition on Software Verification 2013

The combination of the value analysis and the predicate analysis demonstrated its
potential in SV-COMP’13 3, winning the silver medal in the categories ControlFlow,
DeviceDriversLinux64, SystemC, as well as in Overall [11, 83]. That edition of
SV-COMP also introduced the notion of a score-based quantile plot, which are
particularly helpful for visualizing the different aspects of verification quality [11].
In such a score-based quantile plot each data point (x, y) of a graph yields the
maximum run time y for the n fastest correct verification results with the accumulated
score x of all incorrect results and those n correct results [11]. Hence, the graph
of a verification tool that reports many incorrect verdicts starts far in the negative
range, while a precise verification tool will start around an accumulated score of 0. If
the graph corresponding to a verification tool spreads over large parts of the x-axis,
then this means that the verification tool returns many correct answers, and the
verification tool whose graph stretches the farthest to the right is regarded as the
most successful, as it achieves the highest score.
In Figure 6.2 we show the score-based quantile plot comparing the stand-alone

value analysis with improved CEGAR, the composition of the value analysis and the
predicate analysis, and the default predicate analysis of CPAchecker [24,86]. From
the graphs we can easily identify some key differences between the approaches.

3http://sv-comp.sosy-lab.org/2013/results/

87

http://sv-comp.sosy-lab.org/2013/results/

6 Precise and Efficient Composite Analysis based on CEGAR

−4 000 −3 000 −2 000 −1 000 0 1 000 2 000 3 000 4 000

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

VA-Cegar-Optimized
PA-Default
VA-PA-Composition

Figure 6.2: The score-based quantile plot, based on the scoring schema of
SV-COMP’16, for the value analysis with improved CEGAR, the de-
fault predicate analysis of CPAchecker, and the composition of the two
analyses

First, the graph for the stand-alone value analysis with improved CEGAR starts
furthest to the left, i. e., in the more negative range of the x-axis, which signals that
the stand-alone value analysis with improved CEGAR reports more incorrect verdicts.
Second, the graph for the composition of this value analysis and the predicate analysis
stretches further to the right, i. e., in the more positive range of the x-axis, which
signals that this approach has a higher overall verification quality, because it reports
less incorrect verdicts, and at the same time, also performs about the same amount of
successful, correct verification work as the stand-alone value analysis with improved
CEGAR. The graph of the default predicate analysis runs between the two other
graphs, i. e., the predicate analysis performs somewhere between the two other
approaches. In total, the stand-alone value analysis obtains a score of 1 227, while
the composition of this value analysis and the predicate analysis achieves a total of
3 065 points, and comes out of the comparison as the clear winner.

88

6.6 Conclusion

6.6 Conclusion

This section introduced a novel composition of a value analysis and a predicate
analysis, where the verification effort is split up based on the expressiveness of the
two domains. Letting the predicate analysis accompany the value analysis allows for
a more precise (composite) analysis that still is efficient, and which is on a par with
the world’s leading tools for software verification, as attested by SV-COMP’13.

6.6.1 Lessons Learned

We achieved a significant improvement, especially in terms of verification effectiveness,
by building a composite analysis of the value analysis and a predicate analysis that
integrates a CEGAR approach over both analyses. Because both analyses complement
each other very well, the composite analysis forms a verification approach that is
more effective and efficient than both the value analysis or the predicate analysis
running on their own.

6.6.2 Challenge

Of course we strive to design an analysis that can solve as many verification tasks as
possible. In its current form, the value analysis with CEGAR performs well on many
benchmarks, but still suffers from state-space explosion occasionally. Combining the
value analysis and the predicate analysis avoids many incorrect false verdicts, but
same as for the value analysis, the predicate analysis also diverges for many verification
tasks, because the analyses are not always able to find suitable abstractions for a
given verification task.

6.6.3 Proposition

In order to avoid divergence of both the value and the predicate analysis we propose
to improve the quality of the abstract model. The size and form of the abstract
model is influenced by the precision that the analysis employs, and, as both analyses
are based on CEGAR with interpolation, the precision is build from interpolants. So
in order to improve the quality of the abstract model, we actually need to improve
the quality of the interpolants.

6.6.4 Solution

Often times, an infeasible error path contains several reasons of infeasibility, and in
theory, one could compute interpolants, extract a precision and perform a refinement
based on any of these reasons of infeasibility. However, both for the value and the
predicate analysis, the standard interpolation engines do not allow any control over

89

6 Precise and Efficient Composite Analysis based on CEGAR

the interpolation process. Therefore, we propose an algorithm that allows to extract
from one single infeasible error path a set of infeasible paths, where each one can be
used for precision refinement, thus enabling the possibility of selecting interpolants
such that different abstract models of different quality can be computed.
Also note that, now, with the value analysis being fit for CEGAR, any advances

regarding CEGAR or interpolation can be applied to the predicate analysis as well
as to the value analysis, or any analysis that implements refinement based on value
interpolation (cf. Section 4.7), e. g., the analyses based on the octagon domain or on
symbolic execution, both which are available in CPAchecker (cf. Section 5.5).

90

7 Refinements over Infeasible Sliced
Prefixes

In Chapter 4 we defined CEGAR for the value analysis, and in Chapter 5 several
optimization to the CEGAR approach were presented, that allow the value analysis
with CEGAR to be competitive on a wide range of verification tasks. Additionally, in
Section 5.6 we elaborated on several techniques to further increase the performance
of the value analysis with CEGAR, which, however, fell short of our expectations,
such that there are still verification tasks that the plain value analysis can solve
but the value analysis with CEGAR cannot solve. This indicates that the abstract
model being built during the CEGAR iterations is not ideal, and in the following we
present a technique that may help an analysis based on CEGAR to steer away from
the problem of state-space explosion in many cases.

7.1 Motivation

There are a couple of explanations for the effect described above. Specifically for the
value analysis, one explanation is that several verification tasks expose only very little
non-determinism or even are fully deterministic. As already motivated in Section 5.4,
the full precision of the plain value analysis does no harm there, because, in the
extreme, only a single program path has to be explored, while the value analysis
with CEGAR first has to find a suitable abstraction by learning fact after fact from
successive refinements.
Another reason that can explain the divergence of an analysis based on CEGAR

lies in the fact that there exists not only a single abstraction for a given verification
task, but in general infinitely many —some of which are more suitable than others—
and it can easily happen that the analysis diverges because no suitable abstraction is
found for a given verification task.
Ultimately, in the context of analyses using interpolation-based CEGAR, the

interpolants dictate how the abstract model of a verification task will finally look like,
and therefore the choice of interpolants influences the performance of the analysis
significantly. Figure 7.1 gives an example. In this verification task, the analysis
will typically find the shown error path, which is infeasible for two different reasons.
Both the value of int i and the value of int b can be used to find a contradiction

91

7 Refinements over Infeasible Sliced Prefixes

1 #inc lude <assert . h>
2 extern int f (int x) ;
3 int main () {
4 int b = 0 ;
5 int i = 0 ;
6

7 while (1) {
8 i f (i > 9) {
9 break ;

10 }
11 f (i ++);
12 }
13

14 i f (b != 0) {
15 i f (i != 10) {
16 assert (0) ;
17 }
18 }
19 }

(a) verification task

N4

N5

N8

N14

N15

N16

assert(0);

b = 0;

i = 0;

[i > 9]

[b != 0]

[i != 10]

(b) error path

〈〉

〈〉

〈[i = 0]〉

⊥

⊥

⊥

assert(0);

(c) bad sequence

〈〉

〈[b = 0]〉

〈[b = 0]〉

〈[b = 0]〉

⊥

⊥

assert(0);

(d) good sequence

Figure 7.1: From left to right, (a) a verification task, (b) an infeasible error path, and
a (c) “bad” interpolant sequence and a (d) “good” interpolant sequence
for this infeasible error path

in the error path. In general, it is now beneficial for the verifier to track the value
of the variable int b —having boolean character— and not to track the value of
the variable int i —being a loop-counter variable— because the latter has many
more possible values, and tracking it would usually lead to an expensive unrolling of
the loop. Instead, if only variable int b is tracked, the verifier can conclude the
verdict true of the verification task without unrolling the loop. Thus, we would
like to use for refinement the interpolant sequence shown on the right, with only
the boolean variable, and not the left one with the loop-counter variable. However,
interpolation engines typically do not allow to guide the interpolation process towards
“good”, or away from “bad” interpolant sequences. Mind that interpolation engines
inherently cannot do a better job here. They do not have access to information
such as whether a specific variable is a loop counter and should be avoided in the
interpolant. Instead, which interpolant is returned depends solely on the internal
algorithms of the interpolation engine. For the illustrative example above procedure
Interpolate (cf. Algorithm 3) would return the “bad” interpolation sequence to the
left, and the analysis cannot avoid this because the interpolation engine does not
allow any control over the interpolation engine from the outside. The same applies
to most SMT-based model checkers, which often rely on off-the-shelf interpolation

92

7.2 Related Work

engines. Normally these cannot be controlled on such a fine-grained level, and the
model checker querying the interpolation engine is stuck to what the interpolation
engine returns, be it good or bad for the verification process.

The straight-forward approach to allow more control over the interpolation process
is to implement such a feature into the interpolation engine of choice, however, as of
now, CPAchecker has implementations for two interpolation algorithms —one for
the value analysis and one for analysis based on symbolic execution— and maintains
interfaces to four different SMT-based interpolating solvers to be used together
with the predicate analysis. Implementing such a feature in a single interpolation
engine is already a considerable effort, so implementing and maintaining this for
all supported solvers and interpolation algorithms would be tedious. Instead, we
propose a technique that is capable of remodeling a given interpolation problem
in such a way, that we can extract different interpolants from it, thus enabling a
selection process to be incorporated into any interpolation-based CEGAR algorithm.
We expect that, in many cases, this allows a successful verification process where
the standard approach diverges. Furthermore, this approach is highly versatile,
because it is independent from both specific properties of the interpolation engines
and from particular characteristics of the abstract domains, allowing its application
in SMT-based predicate analysis, as well as in analyses based on numeric abstract
domains, like for example the value analysis or the octagon analysis.

Finally, note that, while we use interpolation to compute the refined precisions, our
method is not bound to interpolation, because invariant-generation techniques for
refinement, such as path invariants [20], can equally benefit from the new possibility
of selection.

7.2 Related Work

The desire to control which interpolants an interpolation engine produces, and trying
to make the verification process more efficient by finding good interpolants, is not
new. The first work in this direction suggested to control the interpolant strength [52]
such that the user can choose between strong and weak interpolants. This approach
is unfortunately not implemented in standard interpolation engines, and it requires
to rewrite the algorithm that extracts interpolants from resolution proofs.

The technique of interpolation abstractions [96], a generalization of term abstrac-
tion [5], can be used to guide solvers to pick good interpolants. This is achieved by
extending the concrete interpolation problem by so called templates (e. g., terms,
formulas, uninterpreted functions with free variables) to obtain a more abstract
interpolation problem. An interpolant for the abstract interpolation problem is also
a solution to the concrete interpolation problem. Suitable interpolants can be chosen
using a cost function, because these interpolation abstractions form a lattice. In

93

7 Refinements over Infeasible Sliced Prefixes

contrast to interpolation abstractions, our approach does not rely on SMT solving
and is independent from the interpolation engine and abstract domain, so it is also
applicable to, e. g., the value and the octagon domain.
Path slicing [77] is a technique that was introduced to reduce the burden of the

interpolation engine. Before the constraints of the path are given to the interpolation
engine, the constraints are weakened by removing facts that are not important for
the infeasibility of the error path, i. e., a more abstract error path is constructed. In
our approach, we also make the error path more abstract, but in different directions
to obtain different interpolant sequences, from which we can choose one that yields a
suitable abstract model. While path slicing is interested in reducing the run time
of the interpolation engine by omitting some facts, we are interested in reducing
the run time of the verification engine by spending more time on interpolation and
selection allowing us to create a better abstract model.

SMT solvers can extract unsatisfiability cores [42] from a proof of unsatisfiability,
and there is an analogy between a set of unsatisfiability cores extracted from a
formula and the approach proposed here. However, our approach is more general,
because it is applicable also to domains that are not based on SMT formulas, such as
value domains. Furthermore, SMT solvers typically strive for small unsatisfiability
cores [42], but this alone does not guarantee a verifier to be effective. It would be
interesting to investigate the extraction of several unsatisfiability cores during a
single refinement, with the goal of selecting a refinement based on characteristics of
the unsatisfiability core, similar as proposed by our work here.
The software verification framework Ultimate Automizer computes a proof of

infeasibility for a trace in form of a single inductive sequence of state predicates,
e. g., via Craig interpolation. Current versions of Ultimate Automizer compute not
only a single inductive sequence, but two, one via the strongest–post-condition
predicate transformer, and one via the weakest-precondition predicate transformer.
This improves the generalization from the infeasible trace to a set of infeasible traces,
and thus more infeasible traces can be regarded as irrelevant in the further course of
the analysis [67]. By design, this approach is limited to solving at most two different
interpolation problems, while our technique usually leads to a wide choice of different
interpolation problems during a single refinement step, as shown in the evaluation
section later in this chapter.

7.3 Introducing Infeasible Sliced Prefixes

An analysis based on CEGAR encounters an infeasible error path if the precision
is too coarse. An infeasible error path contains at least one assume operation for
which the reachability algorithm computes a non-contradicting abstract successor
based on the current precision, but computes a contradicting successor if the concrete

94

7.4 Extracting Infeasible Sliced Prefixes

semantics is used. Every infeasible error path contains at least one such contradicting
assume operation, but often there exist several independently contradicting assume
operations in an infeasible error path, which leads to the notion of sliced prefixes.
A path ϕ = 〈(op1, l1), . . . , (opw, lw)〉 is a sliced prefix for a program path σ =
〈(op1, l1), . . . , (opn, ln)〉 if w ≤ n and for all 1 ≤ i ≤ w, we have ϕ.li = σ.li and
(ϕ.opi = σ.opi or (ϕ.opi = [true] and σ.opi is assume op)), i. e., a sliced prefix results
from a program path by omitting pairs of operations and locations from the end,
and possibly replacing some assume operations by no-op operations. If a sliced prefix
for σ is infeasible, then σ is infeasible.

7.4 Extracting Infeasible Sliced Prefixes

Algorithm 6 extracts from an infeasible error path a set of infeasible sliced prefixes.
The algorithm iterates through the given infeasible error path σ. It keeps incrementing
a feasible sliced prefix σf that contains all operations from σ that were seen so far,
except contradicting assume operations, which were replaced by no-op operations.
Thus, σf is always feasible. For every element (op, l) from the original path σ

(iterating in order from the first to the last pair), it is checked whether (op, l)
contradicts σf , which is the case if the result of the strongest post-operator for the
path σf ∧ (op, l) is contradicting (denoted by ⊥). If so, the algorithm has found a
new infeasible sliced prefix, which is collected in the set Σ of infeasible sliced prefixes.

Algorithm 6: ExtractSlicedPrefixes(σ)
Input : an infeasible path σ = 〈(op1, l1), . . . , (opm, lm)〉
Output : a non-empty set Σ = {σ1, . . . , σn} of infeasible sliced prefixes of σ
Variables : a path σf that is always feasible

1 Σ := ∅
2 σf := 〈〉
3 foreach (op, l) ∈ σ do
4 if ŜPσf∧(op,l)(>) = ⊥ then

// add σf ∧ (op, l) to set Σ of infeasible sliced prefixes
5 Σ := Σ ∪ {σf ∧ (op, l)}

// append no-op
6 σf := σf ∧ ([true], l)
7 else

// append original pair
8 σf := σf ∧ (op, l)
9 return Σ

95

7 Refinements over Infeasible Sliced Prefixes

The feasible sliced prefix σf is extended either by a no-op operation (Line 6) or by
the current operation (Line 8). When the algorithm terminates, which is guaranteed
because σ is finite, the set Σ contains infeasible sliced prefixes of σ, one for each
reason of infeasibility. There is always at least one infeasible sliced prefix because
σ is infeasible.

Mind that Algorithm 6 only needs an operator for computing abstract successors,
e. g., ŜP, for which contradiction must be defined, i. e., there must be means to check
if ŜPσ(>) = ⊥ holds for a path σ. If this dependency is fulfilled for a domain, which
clearly is the case for the value domain or the domain of predicate abstraction, then
this algorithm can be applied there. Furthermore, note that the infeasible sliced
prefixes computed by Algorithm 6 have some interesting characteristics:

1. Each infeasible sliced prefix ϕ starts with the initial operation op1, and ends
with an assume operation contradicting the previous operations of ϕ, i. e.,
ŜPϕ(>) = ⊥.

2. The i-th infeasible sliced prefix, excluding its (final and only) contradicting
assume operation and location, is a prefix of the (i + 1)-st infeasible sliced
prefix.

3. All infeasible sliced prefixes differ from a prefix of the original infeasible error
path σ only in their no-op operations.

The visualizations in Figure 7.2 capture the details of applying Algorithm 6 on
an infeasible error path σ = 〈(op1, l1), . . . , (opz, le)〉. Figure 7.2a shows the original
error path σ. Nodes represent program locations and edges represent operations
between these locations. The operation are either assignments to program variables
or assume operations over program variables. To allow easier distinction, program
locations that are followed by assume operations are drawn as diamonds, while other
program locations are drawn as squares. Program locations before contradicting
assume operations are drawn with a gray background. The sequence of operations
ends in the target state, denoted by le. Figure 7.2b depicts the cascade of sliced
prefixes that the algorithm builds during its progress. Figure 7.2c shows the three
infeasible sliced prefixes that Algorithm 6 returns for this example.
The refinement procedure can now use any of these infeasible sliced prefixes to

create interpolation problems, and is not bound to a single, specific interpolant
sequence for the original infeasible error path. A selection of refinements from
different precisions is now possible. The following lemma states that this is a valid
refinement process.

Lemma 7.4.1. Let σ be an infeasible error path and ϕ be the i-th infeasible sliced
prefix for σ that is extracted by Algorithm 6, then all interpolant sequences for ϕ are
also interpolant sequences for σ.

96

7.4 Extracting Infeasible Sliced Prefixes

l1

lc

lg

ly

le

op1

[opb]

[opf]

[opx]

opz

(a) Infeasible error path

l1

lc

lc

lg

lg

ly

ly

le

op1

[opb]

[true]

[opf]

[true]

[opx]

[true]

opz

(b) Cascade of sliced prefixes

l1

lc

op1

[opb]

l1

lc

lg

op1

[true]

[opf]

l1

lc

lg

ly

op1

[true]

[true]

[opx]

(c) Infeasible sliced prefixes

Figure 7.2: From one infeasible error path to a set of infeasible sliced prefixes

Proof. Let σ = 〈(op1, l1), . . . , (opn, ln)〉 and ϕ = 〈(op1, l1), . . . , (opw, lw)〉. Let Γϕj
be the j-th interpolant of an interpolant sequence for ϕ, i. e., for the two constraint
sequences γ−

ϕj
= 〈op1, . . . , opj〉 and γ+

ϕj
= 〈opj+1, . . . , opw〉, with 1 ≤ j < w.

Because ϕ is infeasible, the two constraint sequences γ−
ϕj

and γ+
ϕj

are contradicting,
and therefore, Γϕj exists (cf. Lemma 4.6.2). The interpolant Γϕj is also an interpolant
for γ−

σj
= 〈op1, . . . , opj〉 and γ+

σj
= 〈opj+1, . . . , opn〉, if the following is valid:

1. the implication γ−
σj

=⇒ Γϕj holds,

2. the conjunction Γϕj ∧ γ+
σj

is contradicting, and

3. the interpolant Γϕj contains only variables that occur in both γ−
σj

and γ+
σj
.

Consider that γ−
ϕj

was created from γ−
σj

by replacing some assume operations by
no-op operations, and that γ+

ϕj
was created from γ+

σj
by replacing some assume

operations by no-op operations and by removing the operations 〈opw+1, . . . , opn〉 at
the end. Thus, both γ−

ϕj
and γ+

ϕj
do not contain any additional constraints (except

for no-op operations) than γ−
σj

and γ+
σj
, respectively.

97

7 Refinements over Infeasible Sliced Prefixes

Because Γϕj is an interpolant for γ−
ϕj

and γ+
ϕj
, we know that γ−

ϕj
=⇒ Γϕj holds,

and because γ−
σj

can only be stronger than γ−
ϕj
, Claim (1) follows. The conjunction

Γϕj ∧ γ+
ϕj

is contradicting, and γ+
σj

can only be stronger than γ+
ϕj
. Thus, Claim (2)

holds. Because Γϕj references only variables that occur in both γ−
ϕj

and γ+
ϕj
, which

do not contain more variables than γ−
σj

and γ+
σj
, respectively, Claim (3) holds.

7.5 Refinements over Infeasible Sliced Prefixes

Extracting good precisions from infeasible error paths is key to the CEGAR technique,
and the choice of interpolants influences the quality of the precision and the abstract
model, and thus, ultimately determines the effectiveness of the verification process.
Based on the results from the previous section, the refinement procedure is now able
to control, by selecting a precision that is derived from an available infeasible sliced
prefix, how the abstract model may evolve.
This is possible because ExtractSlicedPrefixes (cf. Algorithm 6) extracts from a

given infeasible error path not only one single interpolation problem for obtaining
a refined precision, but a set of (more abstract) infeasible sliced prefixes and thus,
a set of interpolation problems, from which a refined precision can be extracted.
The interpolation problems for the extracted paths can be given, one by one, to the
interpolation engine, in order to derive interpolants for each infeasible sliced prefix
individually. Hence, the refinement component of the analysis is no longer dependent
on what the interpolation engine produces, but instead it is free to choose from a
set of interpolant sequences the one that it finds most suitable. The move from
solving a single interpolation problem to solving multiple interpolation problems,
and understanding the selection of refinements as an optimization problem, is a key
insight of our novel approach.
Algorithm Refine+ (cf. Algorithm 7), which represents an extension of Algorithm

Refine (cf. Algorithm 4), may be plugged in the CEGAR algorithm (cf. Algorithm 2),
where, instead of using an infeasible program path directly for a standard interpolation-
based refinement, we can now use the new module Refine+, because the latter can
substitute the refinement procedure in analyses based on CEGAR.

This new module first calls ExtractSlicedPrefixes to extract a set of infeasible sliced
prefixes, which are more abstract than the original program path. Second, Refine+

calculates the precision for each infeasible sliced prefix using a regular refinement
procedure, e. g., Refine, and stores the pairs in the set τ . Third, the algorithm selects
a refinement from τ . This selection is implemented in a method SelectRefinement
and can access various details of the precisions, e. g., which variables are referenced in
the precision. Each implementation of SelectRefinement, i. e., each heuristic, receives

98

7.6 Evaluation

Algorithm 7: Refine+(σ)
Input : an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output : a precision π ∈ Π
Variables : a set Σ of infeasible sliced prefixes of σ,

a set τ of pairs of an infeasible sliced prefix and a precision
1 Σ := ExtractSlicedPrefixes(σ)

// compute refinement for each infeasible sliced prefix, using
Algorithm 4

2 foreach ϕj ∈ Σ do
3 τ := τ ∪ {(ϕj ,Refine(ϕj))}

// select a refinement based on the original path, the infeasible
sliced prefix, and their respective precision

4 return SelectRefinement(σ, τ)

as input the original infeasible path as well as the set of all pairs of infeasible sliced
prefix and respective precisions.
The remainder of this chapter sheds some light on the characteristics and the

potential of selecting refinements, before the next chapter presents heuristics that
can be used for proper implementations of the procedure SelectRefinement.

7.6 Evaluation

In the previous section we presented a technique for extracting from a single infeasible
error path a set of infeasible sliced prefixes, where each of these infeasible sliced
prefixes can be used for performing a refinement, thus ultimately enabling the
selection of refinements.
There are two major requirements that need to be fulfilled such that selection of

different infeasible sliced prefixes can actually have an effect.

1. During the course of the verification process there must be at least one refine-
ment where more than one infeasible sliced prefix is available, otherwise no
actual selection is possible.

2. The interpolation engines must be able to derive different interpolants and
precisions from different infeasible sliced prefixes. Only this way it is possible
to compute a precision from one infeasible sliced prefix that then would lead
to another, ideally better abstraction than when computing a precision using
the original infeasible error path.

99

7 Refinements over Infeasible Sliced Prefixes

In order to show that selecting different infeasible sliced prefixes actually has an
effect we performed an evaluation utilizing Algorithm ExtractSlicedPrefixes to extract
infeasible sliced prefixes. For the evaluation we again used the same experimental
setup as before, e. g., as in Sections 3.5, also relying on BenchExec the same way as
before.

7.6.1 Infeasible Sliced Prefixes for the Value Analysis

In a first evaluation we examine the effects of selecting different infeasible sliced
prefixes for the value analysis. We present here the characteristics for two simplistic
selection heuristics, namely Length-Min and Length-Max. These select from a set of
infeasible sliced prefixes the shortest and longest infeasible sliced prefix, respectively.
Several characteristics of the application of these two selection heuristics are presented
in Table 7.1.
In order to allow reproducibility of the evaluation, an example for a complete

command line for applying refinements over infeasible sliced prefixes to the value
analysis as well as the full results and raw data are available on our supplementary
web page 1.

Note that for 1 274 of the 4 283 verification tasks there is no selection of infeasible
sliced prefixes possible (cf. row no selection), i. e., in every refinement there was at
most one infeasible sliced prefix to choose from. However, for 481 of these verifications
tasks, there is no refinement needed at all (cf. row no refinements), and for another
702 verifications tasks a single refinement is enough for both selection heuristics to
come to a verdict. So we note that selection of infeasible sliced prefixes is possible in
most cases and we conclude that requirement 1 from above is fulfilled.
The same is true for requirement 2. For the categories DeviceDriversLinux64,

ECA, ProductLines, and Sequentialized the two approaches show significant differ-
ences in verification effectiveness (cf. row solvedMin and solvedMax). In addition, for
the set of commonly solved verification tasks (cf. row solvedCom) the two approaches
differ considerably in CPU time (cf. rows CPU timeMin and CPU timeMax) and
number of iterations (cf. rows iterationsMin and iterationsMax) needed for solving the
respective verification tasks. For example, relying on the selection heuristic Length-
Min for category BitVectorsReach, one can save around 33 % of the CPU time
compared to when using the heuristic Length-Max. Yet, for category ProductLines
it is the other way round, because when using the selection heuristic Length-Max
the verification process only takes 38 % of the CPU time compared to when using
heuristic Length-Min. In addition, the number of iterations differs by an order of
magnitude. With the selection heuristic Length-Max a total of 14 million iterations
are needed, with heuristic Length-Min it takes up to 100 million iterations.

1http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesVa

100

http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesVa

7.6 Evaluation

BitVectorsReach

ControlFlow

DeviceDriversLinux64

ECA

Floats

Loops

ProductLines

Sequentialized

Simple

Overall

to
ta
l

48
48

21
20

11
40

81
14

1
59

7
62

46
42

83
no

se
le
ct
io
n

23
11

10
31

0
80

93
0

0
36

12
74

no
re
fin

em
en
ts

15
2

40
0

0
14

43
0

0
7

48
1

so
lv
ed

M
in

46
45

16
51

49
7

81
11

2
46

7
38

46
29

83
so
lv
ed

M
ax

46
45

17
73

51
6

80
11

5
36

1
31

46
30

13
so
lv
ed

C
om

46
45

16
22

45
8

80
11

2
35

6
29

46
27

94
C
PU

tim
e M

in
(h
)

0.
12

0.
26

14
16

0.
08

2
0.

15
2.

6
0.

43
0.

16
34

C
PU

tim
e M

ax
(h
)

0.
18

0.
26

11
16

0.
08

3
0.

15
0.

99
0.

22
0.

15
29

ite
ra
tio

ns
M
in

(×
10

6)
0.

32
1.

8
46

0
85

0
0.

00
38

0.
08

2
10

0
21

1.
6

14
00

ite
ra
tio

ns
M
ax

(×
10

6)
0.

61
1.

9
31

0
81

0
0.

00
38

0.
08

2
14

11
1.

5
11

00
re
fin

em
en
ts

M
in

96
44

7
54

17
41

08
83

11
5

35
46

58
8

32
3

14
72

3
re
fin

em
en
ts

M
ax

10
4

46
1

43
30

35
48

83
11

3
15

20
53

5
30

0
10

99
4

av
g.

pr
efi

xe
s M

in
2.

4
1.

8
4.

7
17

0
1

2.
2

6.
9

13
1.

7
52

av
g.

pr
efi

xe
s M

ax
14

2.
5

5.
5

32
0

1
3.

5
5.

9
19

2.
1

11
0

Ta
bl
e
7.
1:

Ta
bl
e
sh
ow

in
g
th
e
eff

ec
ts

of
tw

o
di
ffe

re
nt

se
le
ct
io
n
he

ur
ist

ic
s
fo
r
th
e
va
lu
e
an

al
ys
is

101

7 Refinements over Infeasible Sliced Prefixes

1 10 100 1 0001

10

100

1 000

Heuristic Length-Min

H
eu

ris
tic

Le
ng

th
-M

ax

(a) Length-Min vs. Length-Max

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

R
an

do
m

(b) None vs. Random

Figure 7.3: Scatter plots comparing the CPU time of the value analysis using different
heuristics for selecting infeasible sliced prefixes

As both approaches only differ in the selection heuristic, this means that depending
on the selection heuristic different interpolants are found from which different precision
are extracted, which sometimes are better and sometimes are worse for obtaining a
concise abstract model. Note also that the number of refinements needed by both
approaches differ, and that the heuristic Length-Max needs less refinements for the
commonly solved instances in the categories DeviceDriversLinux64 and ECA, plus
being able to solve considerably more verification tasks there. This indicates that
for these classes of verification tasks the heuristic Length-Max is well suited to find
good abstractions. For the category ProductLines it is again the other way round,
there Length-Min performs far better in terms of solved instances, but interestingly,
as stated above, for the commonly solved instances Length-Min needs considerably
more CPU time and iterations than with the heuristic Length-Max.

The differences between different heuristics, in regard to verification effectiveness,
can also be seen from the scatter plots in Figure 7.3. In the left one, we compare the
CPU time of the heuristic Length-Min with the CPU time of the heuristic Length-
Max. In the right one, we compare the CPU time when not using a heuristic, i. e.,
we pass the original error path to the interpolation procedure, with the CPU time of
the heuristic Random, which randomly picks one of the available infeasible sliced
prefixes, and this infeasible sliced prefix is then passed to the interpolation procedure.
In both plots, there are hundreds of data points positioned along the border of the
respective plot, which indicates that for such a verification task a verdict can be

102

7.6 Evaluation

obtained only by using one of the two heuristics. In the plot the 1 274 verification
tasks where no selection of infeasible sliced prefixes is possible are highlighted in color
red. Basically all of them are aligned along the diagonal, i. e., the plot underlines
that the implementation of ExtractSlicedPrefixes (cf. Algorithm 6) does not cause
any relevant overhead for the 1 274 verification tasks where no selection of infeasible
sliced prefixes is possible.
After having reported on the effects of selecting infeasible sliced prefixes for the

value analysis, we now turn our attention to the predicate analysis, and report on
the effect that selecting infeasible sliced prefixes has in that domain.

7.6.2 Infeasible Sliced Prefixes for the Predicate Analysis

Same as for the value analysis, we want to know if a meaningful selection of infeasible
sliced prefixes is possible also for the predicate analysis, i. e., we want to find out if the
requirements 1 and 2 from above are fulfilled. For this evaluation we use the predicate
analysis of CPAchecker—configured to perform single-block encoding (SBE) [15]—
for which we implemented the procedures ExtractSlicedPrefixes and Refine+, i. e.,
Algorithms 6 and Algorithms 7, as well. We use the same experimental setup as
before (cf. Section 3.5), and for gaining first insights of selecting infeasible sliced
prefixes for the predicate analysis we again use the selection heuristics Length-Min
and Length-Max.
In order to allow reproducibility of the evaluation, an example for a complete

command line for applying refinements over infeasible sliced prefixes to the predicate
analysis in a SBE configuration as well as the full results and raw data are available
on our supplementary web page 2.

The results of this evaluation are summarized in Table 7.2, and from that, we can
draw similar conclusions as for the value analysis. For 1 120 of the 4 283 verification
tasks no selection is possible — but from those a total of 440 verification tasks are
solved without requiring any refinement at all and another 581 verification tasks are
solved with only a single refinement.
So, same as for the value analysis, in those cases where several refinements are

needed for solving a verification task, there selection of infeasible sliced prefixes
is possible in most cases, meaning that requirement 1 is fulfilled. According to
the results in Table 7.2, requirement 2 is also fulfilled, because for the categories
ControlFlow, DeviceDriversLinux64, ECA, ProductLines, and Sequentialized,
there are significant differences for the two selection heuristics Length-Min and Length-
Max, in the number of solved verification tasks (cf. rows solvedMin and solvedMax) and
in the number of refinements (cf. rows refinementsMin and refinementsMax). For the
set of commonly solved verification tasks (cf. row solvedCom), e. g., in the categories

2http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesSbe

103

http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesSbe

7 Refinements over Infeasible Sliced Prefixes

BitVectorsReach

ControlFlow

DeviceDriversLinux64

ECA

Floats

Loops

ProductLines

Sequentialized

Simple

Overall

total
48

48
2120

1140
81

141
597

62
46

4283
no

selection
20

9
962

0
71

58
0

0
0

1120
no

refinem
ents

7
2

397
0

14
20

0
0

0
440

solved
M
in

41
43

1477
189

73
96

365
27

44
2355

solved
M
ax

39
31

1565
215

73
90

332
20

43
2408

solved
C
om

39
31

1426
162

73
88

292
20

43
2174

C
PU

tim
eM

in
(h)

0
.23

0.89
13

9
.5

0.099
0.53

2.3
0.79

1.2
29

C
PU

tim
eM

ax
(h)

0
.58

1.3
10

7
.1

0.097
0.61

2.9
1.1

2.3
26

iterationsM
in

(×
10 6)

0
.14

0.81
92

41
0.0028

0.11
1.4

0.69
1.1

140
iterationsM

ax
(×

10 6)
0
.55

1.3
61

28
0.0029

0.12
5.1

1.9
2.9

100
refinem

entsM
in

239
628

4353
1856

73
605

2376
428

940
11498

refinem
entsM

ax
268

659
3104

1523
72

599
1380

427
1042

9074
avg.

prefixesM
in

2
.7

2.4
2.8

46
1
.2

1.7
5.7

14
3
.2

11
avg.

prefixesM
ax

7
.9

6.7
3.5

50
1
.2

6.8
9

17
11

14

Table
7.2:Table

show
ing

the
effects

oftwo
different

selection
heuristics

for
the

predicate
analysis

104

7.6 Evaluation

1 10 100 1 0001

10

100

1 000

Heuristic Length-Min

H
eu

ris
tic

Le
ng

th
-M

ax

(a) Length-Min vs. Length-Max

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

R
an

do
m

(b) “None” vs. “Random”

Figure 7.4: Scatter plots comparing the CPU time of the predicate analysis using
different heuristics for selecting infeasible sliced prefixes

DeviceDriversLinux64 or ECA, there are also massive differences in CPU time
and number of iterations between the selection heuristics Length-Min (cf. rows CPU
timeMin and iterationsMin) and Length-Max (cf. rows CPU timeMax and iterationsMax).
Following the argumentation from above the two different heuristic are capable of
identifying different interpolants, such that different abstract models are built, and
the predicate analysis performs differently depending on the selection heuristic being
employed (cf. column Overall). Again, the two scatter plots in Figure 7.4 emphasize
this fact even more, because in both plots there are many data points aligned along
the top or right border, which indicates that each verification task associated with
such a data point can be solved using the one heuristic but cannot be solved using
the other. Note that the selection of infeasible sliced prefixes does not impose any
noticeable overhead for the predicate analysis either. We can show this by looking at
those verification tasks for which no selection is possible — again highlighted in color
red, and again aligned along the diagonal. Mind that this is not granted per se, after
all, in Algorithm ExtractSlicedPrefixes, we check during each refinement for an error
path σ = 〈(op1, l1), . . . , (opn, ln)〉 up to n times whether or not ŜPσf∧(op,l)(>) = ⊥
holds. For the predicate analysis this means we have to perform up to n satisfiability
checks over formulae with length 1 to n. This can only be done in a timely manner by
SMT solvers that support efficient incremental solving [41], otherwise our approach
based on the extraction of infeasible sliced prefixes would not scale for the predicate
analysis. Fortunately, this is the case and from our evaluation we can draw the

105

7 Refinements over Infeasible Sliced Prefixes

conclusion that also for the predicate analysis, using SBE, refinements for different
infeasible sliced prefixes lead to significant differences in the verification effectiveness
of the overall analysis.

7.6.3 Infeasible Sliced Prefixes with Large-Block Encoding

The above evaluation for the predicate analysis does not discuss the effects of selecting
infeasible sliced prefixes when combined with large-block encoding (LBE) [15]. Other
than with SBE [15] where such a block b = 〈(op, l)〉 always only spans over a single
pair of an operation and a location, with LBE such a block b = 〈(op1, l1), . . . , (opn, ln)〉
may span over multiple pairs of an operation and a location, i. e., a block may span
over the statements of whole functions or loops, and may contain an arbitrary number
of assume operations, and therefore, may represent an arbitrary number of different
paths through the respective block.

At first it is unclear how extracting infeasible sliced prefixes could be combined with
LBE, i. e., how to efficiently run Algorithm 6 on a path that is large-block encoded,
because such a “path” in fact may encode many different paths, and simply picking
a single representative from this set of paths is not a valid strategy, because there is
no guarantee that an infeasible sliced prefix extracted from such a representative is
also an infeasible sliced prefix for all the other paths encoded by the block. Using all
encoded paths as input for Algorithm 6 might not scale, and it remains unclear how
one would combine the resulting infeasible sliced prefixes into an infeasible sliced
block prefix.

In consideration of the rather complex and unclear approaches sketched above, we
refrain from exploring any of these in this thesis in favor of a simpler approach that
we briefly outline in the following. First off, note that efficient satisfiability checks
are also possible with ABE [24], i. e., today’s SMT solvers are able to efficiently
answer queries whether a single (large) block or a sequence of (large) blocks is
contradicting or not. Furthermore, if we take a step back and realize that a path
encoded with SBE also consists of blocks —blocks that only span over a single
statement— then, from a theoretical point of view, it is rather straight-forward to
apply the notion of infeasible sliced prefixes to ABE, too. We present a variant
of the original algorithm (cf. Algorithm 6) in Algorithm ExtractSlicedBlockPrefixes
(cf. Algorithm 8), which also supports ABE. Instead of iterating over the pairs (op, l)
of an operation and a location of a path σ and deciding whether the current sliced
prefix extended by the current element is feasible or not, it iterates over the blocks
of a path σ, in order from the first to the last block, and decides whether the current
sliced block prefix is feasible or not when extended by the next block of the path.
Same as in the original algorithm, if the resulting sliced block prefix is infeasible, a

106

7.6 Evaluation

Algorithm 8: ExtractSlicedBlockPrefixes(σ)
Input : an infeasible block-encoded path σ = 〈b1, . . . , bm〉, in SSA form
Output : a non-empty set Σ = {σ1, . . . , σn} of infeasible sliced block prefixes
Variables : a path σf that is always feasible

1 Σ := ∅
2 σf := 〈〉
3 foreach b = 〈(opk, lk), . . . , (opp, lp)〉 ∈ σ do
4 if ŜPσf∧b(>) = ⊥ then

// add σf ∧ b to set Σ of infeasible sliced block prefixes
5 Σ := Σ ∪ {σf ∧ b}

// append block of no-ops
6 σf := σf ∧ 〈([true], lk) ∧ . . . ∧ ([true], lp)〉
7 else

// append original block
8 σf := σf ∧ b
9 return Σ

new infeasible sliced block prefix is added to the set of infeasible sliced block prefixes,
and the current block is replaced by a block representing no-op operations.

It is important to note that Algorithm 8 is correct, despite the fact that not only
contradicting assume operations are replaced by no-op operations but all operations
contained in the replaced block are made ineffective by no-op operations. This might
appear wrong at first, as this potentially removes assignment operations from the
path. But hold in mind that the path is in static single assignment form, so an assume
operation over a program variable written in an earlier, removed block can never lead
to a contradiction or an infeasible sliced block prefix, because the respective program
variable referenced in the assume operation appears as it would be unassigned.

The insight of thinking in blocks instead of pairs of operations and locations
allows us to develop a single variant of Algorithm 8 which works for any block-
encoding strategy, because different block-encoding strategies only affect the size of
the resulting blocks, which is not relevant for our variant of Algorithm 8.
Note however, that the larger the block size is, the less infeasible sliced block

prefixes can be extracted for a given infeasible path σ. This is because, first, the
larger the blocks, the fewer blocks are available for a given path, and consequently
the chance for extracting infeasible sliced block prefixes decreases. Imagine the
extreme case where a path is encoded with just a single block, in which case no
extra infeasible sliced block prefix different from the input can be extracted. Second,
in case an infeasible sliced block prefix is found, the current block is replaced by a

107

7 Refinements over Infeasible Sliced Prefixes

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

Le
ng

th
-M

ax

(a) None vs. Length-Max with SBE

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

Le
ng

th
-M

ax

(b) None vs. Length-Max with ABE-lj

(c) None vs. Length-Max with ABE-lf

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

Le
ng

th
-M

ax

(d) None vs. Length-Max with ABE-l

1 10 100 1 0001

10

100

1 000

Heuristic None

H
eu

ris
tic

Le
ng

th
-M

ax

Figure 7.5: Scatter plots comparing the CPU time of the predicate analysis if using
the selection heuristic Length-Max and not explicitly using a selection
heuristic for different ABE-block sizes

block of no-op operations, and with that, no statement in the replaced block may
lead to a contradiction with a following block. Again, the larger the blocks are, the
more statements are replaced by no-op operations, and that lowers the chance for
extracting infeasible sliced block prefixes along the remaining path.

Concretely, if we apply ABE and let blocks span over whole functions or loops, we

108

7.6 Evaluation

expect less of an effect of refining over infeasible sliced block prefixes than compared
to if using it with SBE, simply because with large blocks there are less infeasible
sliced block prefixes available per refinement.
In order to allow reproducibility of the evaluation, an example for a complete

command line for applying refinements over infeasible sliced prefixes to the predicate
analysis in an ABE configuration as well as the full results and raw data are available
on our supplementary web page 3.
In Figure 7.5 we show a comparison of the selection heuristic Length-Max with

the case where no selection heuristic is explicitly set for four different block-sizes,
namely for SBE (cf. Figure 7.5a), where a new block starts at each operation, for
ABE-lj (cf. Figure 7.5b), where a new block starts at loop heads or whenever control
flow joins, for ABE-lf (cf. Figure 7.5c), where a new block starts at loop heads or at
function entries or exits, and for ABE-l (cf. Figure 7.5d), where a new block starts at
loop heads, only. As before, data points for verification tasks where only a single
infeasible block prefix is available, and thus no selection being possible, are drawn in
red color. With that one can see easily that larger blocks often prohibit a selection
process, as way more data points are drawn in red color in the plots for ABE-lf and
ABE-l. Another interesting observation from these two plots is, that many of the
verification task where no selection process is possible are no longer aligned along the
diagonal, i. e., despite no selection being possible, the extraction of infeasible sliced
block prefixes influences the efficiency of the verification process. This is not because
the extraction of infeasible sliced block prefixes would introduce an overhead —after
all, the red data points spread about equally on both sides of the diagonal— but
with the extraction of an infeasible sliced block prefix and the replacement of the
respective contradicting block, it may happen that another contradiction present in
the original path is no longer present in the path after having extracted the infeasible
sliced prefix.
We demonstrate the last point by an example verification task taken from the

official SV-COMP’16 repository (cf. Figure 7.6). In Figure 7.6a we present the source
code of the verification task, and in Figure 7.6b a possible error path of the verification
task is shown, where each horizontal line denotes the start of a new ABE-block.
For this example we refer to an ABE-lf configuration, i. e., a new block starts after
each function entry and exit (lines 2 and 15 in Figure 7.6b) and whenever a loop
head is passed (lines 4, 8 and 12 in Figure 7.6b). The shown path contains two
contradictions, first [!(y < 1024)] does not hold, and second, [cond == 0] does
not hold, because int x is always 0 at this location, so int cond always equals
1 here. For the first contradiction we can only find interpolants referencing the
loop-counter variable int y , and with that, the loop gets unrolled iteration after

3http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesAbe

109

http://www.sosy-lab.org/research/phd/loewe/#InfeasibleSlicedPrefixesAbe

7 Refinements over Infeasible Sliced Prefixes

1 extern void VERIFIER_error () ;
2 void VERIFIER_assert (int cond) {
3 i f (! (cond)) {
4 ERROR: VERIFIER_error () ;
5 }
6 return ;
7 }
8

9 int main (void) {
10 unsigned int x = 1 ;
11 unsigned int y = 0 ;
12 while (y < 1024) {
13 x = 0 ;
14 y++;
15 }
16

17 VERIFIER_assert (x == 0) ;
18 }

(a) Source code of verification task

1 main () ;

2 x = 1 ;
3 y = 0 ;

4 [y < 1024]
5 x = 0 ;
6 y = y + 1 ;

8 [y < 1024]
9 x = 0 ;

10 y = y + 1 ;

12 [! (y < 1024)]
13 VERIFIER_assert ((x == 0)
14 ? cond = 1
15 : cond = 0) ;

15 [cond == 0]
16 VERIFIER_error () ;

(b) Error path over two loop iteration

Figure 7.6: Verification task const_true-unreach-call1.c taken from the official
SVCOMP’16 repository, and a possible infeasible error path when ana-
lyzing the task with ABE-lf

iteration. The interpolants for the second contradiction would be of great value,
because they assure that int x is 0 and int cond is 1 after at least one loop
iteration, which is enough to prove the verdict of the verification task being true.

However, if we extract infeasible sliced block prefixes as proposed by Algorithm 8
then we are not able obtain interpolants for that second contradiction mentioned
above. This is because, according to Algorithm ExtractSlicedBlockPrefixes, a block
that leads to a contradiction has to be replaced by no-op operations, such that
the path σf remains feasible for future feasibility checks. In the example, the first
block b that leads to the infeasibility of ŜPσf∧b(>) is the block from lines 12 to 15.
Yet, with replacing the operations of this block with no-op operations there is no
longer a contradiction in the path σf for the program variable int cond , because
the (conditional) assignment cond = 1 has been replaced by a no-op operation.
Consequently, we can only extract one single infeasible sliced block prefix for this
infeasible error path, hence, no selection of infeasible sliced block prefixes is possible,
and for the one infeasible sliced block prefix we obtain, the resulting interpolants
lead to repeated unrollings of the loop, forcing the analysis to exhaust all available
resources.
This example explains why with larger block sizes the selection heuristics may

have an influence on the verification efficiency, despite the fact that no selection is

110

7.6 Evaluation

even possible. The example we refer here to can also be easily spotted in Figure 7.5c
—it is the red data point on the far left aligned at the top border— i. e., it is solved in
under 10 s without an explicit selection heuristic, and despite no selection is possible
—as there always is just one infeasible sliced block prefix— if the selection heuristic
is applied, the verification task cannot be solved within the timeout. We make
similar effects responsible for those cases where significant performance differences
exist between using no explicit selection heuristic and using a selection heuristic in
combination with larger blocks (cf. Figure 7.5). Minor modifications to Algorithm
ExtractSlicedBlockPrefixes, e. g., iterating in reverse over the blocks of the infeasible
error path, solve this problem for our example verification task, however, this would
not be a general solution, and we did not investigate this any further.

In conclusion, if the predicate analysis is configured to use larger blocks, then the
effect of refinements over different infeasible sliced block prefixes is not as drastic
when compared to running the predicate analysis with SBE.

7.6.4 Further Applications of Infeasible Sliced Prefixes

The main benefit that we think we can gain from infeasible sliced prefixes is the
ability to perform guided refinement selection, i. e., the ability to choose favorable
refinements while avoiding refinements that would make the analysis diverge, a
technique that is covered in more detail during the next chapter.
Besides that, a few other techniques that are discussed in this work may benefit

from infeasible sliced prefixes, such as for example, static refinement (cf. Section 5.6.1).
The main problem with static refinement is, that the program variables referenced in
the use-def chain of all assume operations are added to the precision increment. With
the introduction of infeasible sliced prefixes, there is always at most a single infeasible
assume operation left, and so it suffices to add the program variables contained in
the use-def chain of exactly this infeasible assume operation, which often allows for a
more compact precision increment.
The combination of infeasible sliced prefixes and the use-def-chain allows also to

speed up the value interpolation (cf. Section 4.6). This is because a value interpolation
query has only be performed for those operations that are referenced in the use-def
chain of the single infeasible assume operation which is left in the infeasible sliced
prefixes, because all other operations in the infeasible sliced prefix cannot influence
the feasibility of the infeasible sliced prefix.
Furthermore, the same way infeasible sliced prefixes are applicable to the value

or the predicate analysis, there is also work [25] that reports great success for an
analysis based on symbolic execution (cf. Section 5.5). Beyond that, infeasible sliced
prefixes are also applicable to Impact (cf. Section 5.6.3), and may be used to control
the refinement process of global refinement (cf. Section 5.6.2). There, usually not just

111

7 Refinements over Infeasible Sliced Prefixes

a single target state exists but multiple, forming a tree-like structure (cf. Figure 5.4).
With infeasible sliced prefixes one may now try to compute refinements in such a
way that each infeasible error path is refuted with a different precision increment,
or all with the same, or try to find a refinement where the pivot state is shallow to
refute all infeasible error paths with a single refinement, or the other way round, to
have pivot states that are as deep as possible such that each infeasible error path is
refuted with its own refinement.
The respective selection heuristics that actually allow such a fine-grained control

over the refinement process are presented after a brief summary of this chapter.

7.7 Conclusion

In this chapter we introduced the notion of infeasible sliced prefixes, and we presented
an algorithm that extracts from a single infeasible error path a set of infeasible sliced
prefixes. Along with that, we provided a proof that any of these infeasible sliced
prefixes can be used to perform a refinement of the analysis such that the original
infeasible error path is excluded from subsequent state-space explorations. This
result allows us to formulate a novel refinement procedure Refine+ (cf. Algorithm 7)
where we can now select a particular refinement from a set of available refinements,
each computed from a different infeasible sliced prefix. This makes the selection of
refinements possible, and in a first evaluation for both the value analysis and the
predicate analysis we obtained a first impression of its potential.

7.7.1 Lessons Learned

Our first hypothesis was that a selection of infeasible sliced prefixes would be available
for a large portion of verification tasks, and our second hypothesis was that different
selections would influence the verification effectiveness for these verification tasks to
some extent. The evaluation we performed confirmed both hypotheses for the value
analysis and the predicate analysis, and that leads us to believe that other heuristics
for selecting infeasible sliced prefixes allow us to reliably obtain a verdict for many
verification tasks that so far cannot be solved by either of the two analyses.

7.7.2 Challenge

In the evaluation we performed, we only investigated rather simplistic and naive
heuristics, which are not targeted towards a particular goal that would let us believe
that the resulting abstract models become superior in general. The same is true for
the case where no selection of infeasible sliced prefixes is performed, because there
the selection is also random, in the sense that the selection adheres to the heuristics

112

7.7 Conclusion

of the interpolation engine, without any chance for controlling that from the outside.
Our evaluation underlines that relying on the heuristics of the interpolation engine
is not the best approach, however, so far it is also totally unclear how to steer the
selection of infeasible sliced prefixes such that the number of solved verification tasks
can be maximized.

7.7.3 Proposition

The heuristics for selecting infeasible sliced prefixes investigated so far either pick
refinements randomly, or select the refinement corresponding to the shortest or
longest infeasible sliced prefix, so the whole potential of selecting refinements literally
lies somewhere in between these heuristics. To improve on that, we propose novel
heuristics for selecting refinements that lead to concise abstract models, such that
the verification process does not diverge.

7.7.4 Solution

In this chapter we learned that different heuristics for selecting infeasible sliced
prefixes may lead to different precisions and that this may have a significant impact
on how the analysis eventually performs. Because the precision, computed from
interpolants, strongly influences how the abstract model for a verification task
evolves, the next chapter will focus on defining and evaluating heuristics for selecting
refinements that try to assess the quality of refinements based on the interpolants
associated with the respective refinements, so that the refinement process is guided
towards abstract models that allow the verification process to converge in a timely
manner.

113

8 Guided Refinement Selection

In the previous chapter we introduced refinements of infeasible sliced prefixes. This
technique is an extension of the standard CEGAR approach, because instead of
computing a single refinement for a single infeasible error path our novel technique
computes a set of refinements for each infeasible sliced prefix. In an extra step added
to the CEGAR loop, we then have the chance to select a specific refinement. The
heuristics for selecting refinements we evaluated so far are rather ad hoc and simplistic,
but showed that selecting different refinements has a significant impact on verification
effectiveness. We now want to define and evaluate heuristics for guided refinement
selection that are specifically geared towards optimizing verification effectiveness. In
addition to that, we propose refinement selection to be used for a composite analysis,
where refinement selection is not only performed within each component analysis,
but also dictates, for a given infeasible error path, which of the component analyses
ought to be preferred for a refinement.

8.1 Motivation

In order to avoid state-space explosion and divergence during the verification process,
we need to keep the precision of the analysis as coarse as possible. Existing approaches
that use interpolation to extract precision information from infeasible error paths
assign a lot of choice to the interpolation engine, because infeasible error paths are
often infeasible for a number of reasons, and it is left to the interpolation engine
which one it chooses to form a proof of unsatisfiability. This choice influences
the resulting precision, and one precision might be more suited for the further
progress of the analysis than another. We noticed such differences already in the
evaluation performed in the previous chapter (cf. Section 7.6), and our motivation
here is to learn how to select the refinement that is best suited for the further
progress of the analysis. For example, one particular verification task, namely
parport_true-unreach-call.i.cil.c in the category Simple of SV-COMP could
not be solved by the standard ABE-l configuration of the predicate analysis, because a
loop in that verification task was getting unrolled continuously. However, the analysis
avoided the loop unrolling and was able to solve this verification task efficiently if ABE-
lf was applied as block-encoding strategy. The difference in verification efficiency for
this single verification task sparked the design of novel traversal and block-encoding

115

8 Guided Refinement Selection

strategies, the latter being as sophisticated as taking clustering techniques for the CFA
into account. None of these approaches improved the situation for the verification
task parport_true-unreach-call.i.cil.c nor did they have a major influence on
the verification efficiency for other SV-COMP categories. In contrast, with guided
refinement selection the analysis is in fact able to select suitable refinements, and for
this example verification task from above, our novel approach allows to avoid the
loop unrollings both for the ABE-l and the ABE-lf case. We would like to generalize
this technique to more analyses and configurations, and therefore, we perform a
detailed inspection of the interpolant sequences associated with each refinement,
where we, for example, try to assess the quality of a refinement by looking at the
program variables being referenced in the interpolant sequences, or by estimating the
effort needed for re-exploration based on the location of the pivot states associated
with the interpolant sequences.

8.2 Related Work

In many programming languages the type of a variable is quite coarse and only
imposes an upper limit on the range of values a variable of this respective type can be
assigned to. For example, the C type int is typically used also for program variables
having boolean character, i. e., program variables that are only ever assigned to either
0 or 1. For this purpose, domain types [6] have been proposed, which refine the type
system of a programming language and allow to classify program variables according
to their actual range or usage in a verification task. It was shown that distinguishing
variables on a more fine-grained level can be beneficial for verification [6, 50, 97, 105].

Lazy abstraction [69] suggests to always prune and re-explore the state space
beginning at the pivot state, i. e., at that state in the ARG that is closest to the
initial state and for which the current refinement contains new precision elements,
i. e., new interpolants. The advantage of this is that, compared to simply restarting
the exploration with the new precision, less parts of the state space have to be pruned
and re-explored. For an arbitrary verification task, it is not immediately clear if it
is better to restart the exploration with the new precision, or to continue from the
pivot state. With the availability of refinement selection there is now even more
choice from where to prune and re-explore, because there are potentially multiple
refinements to select, and each of those might have a different pivot state.

8.3 Heuristics for Guided Refinement Selection

We first focus on tuning refinement selection for a single analysis, and afterwards we
propose several heuristics of which we think might lead to suitable refinements.

116

8.3 Heuristics for Guided Refinement Selection

8.3.1 Selection by Domain-Type Score of Path Precision

Our first heuristic inspects the types of variables in the resulting precisions and
prefers refinements with simpler or smaller types. With domain types [6], one can
distinguish between variables that are used as booleans, variables that are used
in equality relations only, in arithmetic expressions, or in bit-level operations, and
variables that share characteristics of a loop counter.

Loop counters are a class of variables that a program analysis should ideally
omit from the abstract model of a verification task in many cases. But because
loop-counter variables occur in assume operations at the loop exit, they often relate
to a reason of infeasibility of a given infeasible error path. Thus, those variables
are often included in the interpolant sequence that a standard interpolation engine
might produce, forcing the program analysis to track them. Therefore, a promising
heuristic is to avoid precisions that contain loop counters, and prefer precisions with
only program variables of a “simpler”, e. g., boolean type. The rationale behind
this heuristic is that variables with only a small number of different valuations have
less values to grow the state space, and therefore are to be preferred. If, however,
reasoning about the specification demands unrolling a loop, then the termination
of the verification process may be delayed by first refining towards other, irrelevant
properties of the verification task.
In order to compute the domain-type score for a precision π, we first define a

function δ : X 7→ N \ {0} that assigns to each program variable its domain-type score.
The domain type for all program variables can be inferred by an efficient data-flow
analysis [6], and we use low score values for variables with small ranges, e. g., boolean
variables, and a specifically high value for loop counters. Thus, we define the domain-
type score of a precision as the product over the domain-type scores of every variable
referenced in the precision: DomainTypeScoreOfPrecision(π, δ) = ∏

x referenced in π
δ(x).

This function, as well as the design of function δ, are mere proposals for assessing
the quality of a precision. However, we experimented with several different imple-
mentations for both functions, and come to the conclusion that the most important
requirement to be fulfilled is that precisions with only boolean variables should be
associated with a low score, and precisions referencing loop-counter variables should
be penalized with a high score.

8.3.2 Selection by Depth of Pivot Location of Path Precision

The structure of a refinement, i. e., which parts of the path and the state space are
affected, can also be used for refinement selection. For example, refining close to
the target state may have a different effect than refining close to the program entry.
We define the pivot location of an infeasible error path σ as the first location in σ

117

8 Guided Refinement Selection

where the precision is not empty. If using lazy abstraction [69], this pivot location is
associated with the pivot state, i. e., the state from which on the reached state space
is pruned and re-explored after the refinement. The depth of this pivot location can
be used for comparing possible refinements and selecting one of them. Formally,
for a precision π extracted for a path σ = 〈(op1, l1), . . . , (opn, ln)〉, the depth of the
pivot location is defined as PivotDepthOfPrecision(π, σ) = min {i | π(li) 6= ∅}. Mind
that the minimum always exists, because there is always at least one location with a
non-empty precision.
Selecting a refinement with a deep pivot location (close to the end of the path)

is similar to counterexample minimization [5]. It has the advantage that (if using
lazy abstraction) only a fraction of the state space has to be pruned and re-explored,
which can be more efficient for some verification tasks. Furthermore, the precision
will specify to track preferably information local to the target state and thus avoid
unfolding the state space in other parts of the verification task. However, preferring
a deep pivot location may have negative effects if some information close to the
program entry is necessary for reasoning over a verification task (e. g., initialization
of global variables). Refining at the beginning of an error path might also help to
rule out a large number of similar error paths with the same precision, which might
otherwise be discovered and refined individually.

8.3.3 Selection by Width of Path Precision

Another heuristic that is based on the structure of a refinement is to use the
number of locations in the infeasible error path for which the precision is not
empty, which we define as the width of a precision. This corresponds to how long
on a path the analysis has to track additional information during the state-space
exploration, and thus correlates to how long the precision contributes to the state-
space unfolding. Similarly to the depth of the pivot location, this heuristic also
deals with some form of locality, but instead of using the locality in relation to
the depth, it uses the locality in relation to the width. Formally, for a precision π
extracted for a path σ = 〈(op1, l1), . . . , (opn, ln)〉, the width of the precision is defined
as WidthOfPrecision(π, σ) = 1 + max I −min I, where I = {i | π(li) 6= ∅} is the set
of indices along the path with a non-empty precision.
It may seem that narrow precisions are in general preferable, because it means

tracking additional information only in a smaller part of the state space. However,
narrow precisions favor loop counters because in many loops the statements for
assigning to the loop counter are close to the loop-exit edges. Thus, selecting a
narrow precision often leads to loop unrollings.

118

8.3 Heuristics for Guided Refinement Selection

8.3.4 Selection by Length of Infeasible Sliced Prefix

Selecting the shortest or longest infeasible sliced prefix, respectively, are two other
heuristics that are applicable for refinement selection as well. We presented these two
heuristics already in the previous chapter. While both these heuristics are legitimate
and may work on some benchmarks, we do not regard them as systematical, in the
sense that they are not guided towards what we consider as a beneficial characteristic
of a precision. However, we resort to using this heuristic as a tie-breaker, such that
we choose either the refinement that is associated with the shorter or with the longer
infeasible sliced prefix, in case the main selection heuristic, e. g., the one based on
domain types, computes the same score for two or more refinements. Mind that this
heuristic always returns one distinct refinement, and therefore is well suited as a
tie-breaker.

8.3.5 Composition of Heuristics

Using the length of the infeasible sliced prefixes as tie-breaker can already be seen as
a composition of selection heuristics. Furthermore, it is possible to build composite
heuristics from the heuristics introduced above. For example, as the heuristic based
on the width of precisions is prone to favour a precision based on loop counters as
explained above, one can first select those refinements that have a precision with a
low width, and from this subset select those having a low domain-type score in order
to try avoiding refinements that reference loop counters in their precision. Following
this schema, many compositions of selection heuristics are possible, simply by first
selecting by one heuristic, then selecting from the result with the next heuristic, until
only a single refinement is left, which then matches the required characteristics the
closest.

8.3.6 Tailor-Made Heuristics using Domain Knowledge

Besides selecting refinements based on the characteristics of the precisions associated
with the refinements, one can also design a custom selection heuristics that take
domain knowledge into account. For example, we designed a heuristic for refinement
selection specifically tailored to the verification tasks of the RERS challenge 2014.
This significantly improved the verification effectiveness of CPAchecker and allowed it
to obtain good results in that competition 1. This shows that using domain knowledge
in the refinement step of CEGAR is a promising direction, and a specific heuristic
for refinement selection is a suitable place to define this.

1Results available at http://www.rers-challenge.org/2014Isola/

119

http://www.rers-challenge.org/2014Isola/

8 Guided Refinement Selection

8.4 Evaluation of Intra-Analysis Refinement Selection

8.4.1 Configuration

We use Algorithm ExtractSlicedPrefixes (cf. Algorithm 6) to generate infeasible sliced
prefixes during a refinement performed by Algorithm Refine+ (cf. Algorithm 7), i. e.,
same as introduced in the previous chapter (cf. Section 7.4). In order to properly
evaluate the effect of the precisions that are chosen by the refinement-selection
heuristic, we configure the analysis to interpret the precision globally, i. e., instead
of a mapping from program locations to sets of precision elements, the discovered
precision elements get used at all program locations. Note that this does not change
the precision as seen by the refinement-selection heuristic, but only the precision
that is given to the state-space exploration. For the same reason, we also restart the
state-space exploration with the refined precision from the initial program location
after each refinement. Otherwise, i. e., if we used lazy abstraction and re-explored
only the necessary part of the state space, not only the new precision but also the
amount of re-explored state space would differ depending on the selected refinement,
which would have an undesired influence on the experiment.

As before, the predicate analysis uses SmtInterpol [40] as SMT solver and inter-
polation engine 2, and it is configured to use single-block encoding [24], because,
as shown in the evaluation during the previous chapter, for larger blocks there is
less chance for actual refinement selection. Furthermore, for the value analysis a
concept similar ABE is not applicable, and in order to compare the effects of guided
refinement selection for the value analysis with those for the predicate analysis it
makes sense to limit the predicate analysis to SBE.
Throughout the evaluation in this chapter we again use the same experimental

setup as before (cf. Section 3.5), except that we executed each verification run on
two instead of four CPU cores in order to run more verification tasks in parallel
which allows a more timely execution of the almost 150 000 verification runs in this
evaluation.

Refinement-Selection Heuristics

We experiment with implementations of the procedure SelectRefinement in Algo-
rithm 7 based on the heuristics from Section 8.3, specifically such that it returns
the precision for (1) the shortest (Length-Min) or (2) longest (Length-Max) infea-
sible sliced prefix, the precision with the (3) narrowest (Width-Min) or (4) widest
(Width-Max) precision, with the (5) the shallowest (Depth-Min) or (6) with the

2With MathSAT 5 we observed similar effects if guided refinement selection is used.

120

8.4 Evaluation of Intra-Analysis Refinement Selection

deepest (Depth-Max) pivot location, or with the (7) lowest (Score-Min) or (8) highest
(Score-Max) domain-type score 3.

We also experiment with compositions of heuristics, where at first a primary
heuristic is asked, and if this does not lead to a unique selection, a secondary
heuristic is used as a tie breaker to select one of those refinements that are ranked
best by the primary heuristic. We use the composition of lowest domain-type score
(Score-Min) plus narrowest precision (Width-Min) as new composite heuristic named
Score & Width, and narrowest precision (Width-Min) plus lowest domain-type score
(Score-Min) as the new composite heuristic Width & Score. For comparison, we
report the results of a heuristic that selects refinements randomly (Random), as well
as for the case where no explicit refinement selection is performed (None), i. e., where
the precision extraction is based on the complete, original infeasible error path and
the choice of refinements is solely left to the interpolation engine.
In all heuristics for refinement selection, if necessary, we use the length of the

infeasible sliced prefix as a final tie breaker, and select from equally ranked refinements
the one with the longest infeasible sliced prefix 4.

8.4.2 Refinement Selection for the Predicate Analysis

We first evaluate the presented heuristics for refinement selection when applied to
the predicate analysis.
In order to allow reproducibility of the evaluation, an example for a complete

command line for performing guided refinement selection for the predicate analysis as
well as the full results and raw data are available on our supplementary web page 5.

In Table 8.1 we list the number of verification tasks that the predicate analysis
can solve for the refinement-selection heuristics mentioned above. Numbers printed
in bold digits highlight the best configuration(s) for a category, and we print the
categories BitVectorsReach, Floats, Loops, and Simple in light gray, because
for the configuration used in this evaluation refinement selection hardly makes a
difference in these categories.
In addition, we include the two meta heuristics Optimal and Oracle. The meta

heuristic Optimal represents, for each category, the maximum of verification tasks
that one of the actual heuristics can solve, i. e., assuming we would pick the refinement-
selection heuristic performing best for a given category, then this amount of verification
tasks could be solved. The meta heuristic Oracle denotes, for each category, the
total of verification tasks that any of the actual heuristics can solve, i. e., assuming

3We do not expect the precision with a high domain-type score to be actually useful, we report its
results merely for comparison.

4Experiments show no relevant difference between selecting by the shortest or the longest infeasible
sliced prefix in case of a tie in the primary selection heuristic.

5http://www.sosy-lab.org/research/phd/loewe/#GuidedRefinementSelectionPa

121

http://www.sosy-lab.org/research/phd/loewe/#GuidedRefinementSelectionPa

8 Guided Refinement Selection

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

Length Min 41 43 1 471 177 73 96 356 27 44 2 328
Max 39 31 1 564 194 73 90 332 20 42 2 385

Width Min 41 37 1 464 280 73 98 346 24 43 2 406
Max 39 36 1 545 174 73 90 312 27 41 2 337

Depth Min 39 34 1 526 152 73 90 358 26 44 2 342
Max 41 36 1 468 206 73 97 329 24 43 2 317

Score Min 41 40 1592 217 73 95 339 29 44 2470
Max 38 23 1 459 191 73 89 302 20 43 2 238

Score & Width 41 39 1 563 214 73 98 345 29 44 2 446
Width & Score 41 37 1 463 279 73 98 338 24 43 2 396

Random 43 42 1 526 192 73 99 341 26 44 2 386

None 43 42 1 525 218 73 97 324 28 43 2 393

Optimal 43 43 1 592 280 73 99 358 29 44 2 561
Oracle 43 43 1 650 337 73 99 412 31 44 2 732

Table 8.1: Number of solved verification tasks for the predicate analysis with refine-
ment selection using different heuristics

an oracle would exist that answers which of the actual heuristics presented above is
best for a given verification task, then the respective number of verification tasks
could be solved.

In addition to the tabular overview, we show in Figure 8.1 a quantile plot for the
refinement-selection heuristics Score-Max, Score-Min, as well as Oracle, and compare
it against the case where no explicit refinement selection is performed (None).

Guided Refinement Selection Matters

The most interesting fact we learn from this first evaluation is that the configuration
which does not apply any explicit refinement-selection heuristic is never the best
configuration for any category, including category Overall. And from Figure 8.1
one can see that the heuristics for refinement selection we presented indeed allow to
guide towards different refinements that lead to significant differences in verification
effectiveness. If refinements are favoured that lead to tracking information over

122

8.4 Evaluation of Intra-Analysis Refinement Selection

0 500 1 000 1 500 2 000 2 500 3 000

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

Score-Max
None
Score-Min
Oracle

Figure 8.1: Quantile plot comparing the CPU time of predicate analysis without and
with refinement selection using different heuristics

program variables with a high domain-type score (Score-Max), then the analysis
performs far worse in comparison to not using any explicit refinement-selection
heuristic (None). In contrast, if refinements are chosen based on the refinement-
selection heuristic Score-Min, then the analysis performs clearly better overall, and,
as demonstrated by the graph of refinement-selection heuristic Oracle, given the best
refinement-selection heuristic for a verification task is known beforehand, guided
refinement selection has an impressive effect on the verification effectiveness of the
analysis. This shows that the heuristics of the interpolation engine —with which
we are stuck without diligent refinement selection— are not always well suited for
software verification, and that a deviation away from the heuristics of interpolation
engine often pays off.

According to our experiment this also holds true for a predicate analysis running in
an ABE-l or ABE-lf configuration, but the improvement of applying refinement selec-

123

8 Guided Refinement Selection

tion, e. g., using heuristic Score-Min, is limited to category DeviceDriversLinux64,
while for all other categories no real improvements are noticeable.

Discussion

As Table 8.1 shows, none of the refinement-selection heuristics works best for all
classes of verification tasks, but instead, in each category a different heuristic is the
best. In the following, we would like to highlight and explain a few interesting results
for some categories and refinement-selection heuristics. Note that the following
discussion is based on the investigation of some samples of verification tasks, and on
our understanding of the characteristics of the verification tasks in the SV-COMP
categories, and we do not claim that our explanations are necessarily applicable to
all verification tasks.

The verification tasks of the category DeviceDriversLinux64 contain many func-
tions and loops, and aspects about the specification are encoded in global boolean
program variables that are checked right before the target state. Hence, the heuristic
Score-Min is effective because it successfully selects precisions with the “easy” and
relevant boolean program variables. The heuristics Length-Max, Depth-Min, and
Width-Max all happen to work well, too, because those relevant program variables
are initialized at the beginning and read directly before the target state, meaning
that the corresponding infeasible sliced prefix will be long, and resulting precisions
containing them will be “shallow” and “wide“, as they start tracking information
close to the program entry, and all the way to the target state. Their opposing
heuristics tend to prefer precisions about less relevant local variables.

The verification tasks in category ECA often contain only a few relevant variables,
and in the majority of verification tasks all variables have the same domain type, and
thus the heuristics Score-Min and Score-Max cannot always perform a meaningful
selection here, and it degenerates to a heuristic about the number of distinct variables
in the precision, hence, it does not have a positive impact in the category ECA. After
all, the refinement-selection heuristics Score-Min and Score-Max are only applicable
to verification tasks that contain program variables having different domain types.
Note that the verification tasks in category ECA do not contain program variables
that have loop-counter characteristics either, which leads us to believe that the
refinement-selection heuristic Width-Min is superior here exactly due to the initial
intention of the heuristic, namely, finding refinements that are associated with narrow
precisions, so that tracking additional information is only needed in a smaller part of
the state space.
As already pointed out before, the verification tasks of category ProductLines

expose only very little non-determinism, and therefore, it is beneficial to start tracking
information already from the initial program location, instead of refining deep in the

124

8.4 Evaluation of Intra-Analysis Refinement Selection

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

Length Min 46 45 1 646 489 81 112 449 37 46 2 951
Max 46 45 1764 507 80 115 361 31 46 2 995

Width Min 46 45 1 661 508 81 112 469 39 46 3 007
Max 46 45 1 746 481 80 114 357 35 46 2 950

Depth Min 46 45 1 724 530 80 113 388 42 46 3 014
Max 46 45 1 665 519 80 115 448 38 46 3 002

Score Min 46 45 1764 534 81 114 414 37 46 3 081
Max 46 45 1 665 394 80 115 364 29 46 2 784

Score & Width 46 45 1 741 561 81 112 417 39 46 3088
Width & Score 46 45 1 665 510 81 112 472 39 46 3 016

Random 46 45 1 687 529 81 112 381 39 46 2 966

None 46 45 1 661 575 80 114 453 42 46 3 062

Optimal 46 45 1 764 575 81 115 472 42 46 3 186
Oracle 46 45 1 809 631 81 115 502 47 46 3 322

Table 8.2: Number of solved verification tasks for the value analysis with refinement
selection using different heuristics

rather complex state space of these verification tasks. This explains why the heuristics
Length-Min and Depth-Min work especially well here, because these heuristics always
leads to refinements that add information occurring near the initial program location,
driving the verification towards shallow bugs without descending deep into the state
space.
Finally, the compositional heuristics for refinement selection that we suggest do

not bring any improvements for the predicate analysis, as they basically perform the
same as the respective basic heuristics.

8.4.3 Refinement Selection for the Value Analysis

We now compare the different refinement-selection heuristics if used together with
the value analysis.
In order to allow reproducibility of the evaluation, an example for a complete

command line for performing guided refinement selection for the value analysis as

125

8 Guided Refinement Selection

0 500 1 000 1 500 2 000 2 500 3 000 3 500

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

Score-Max
None
Score & Width
Oracle

Figure 8.2: Quantile plot comparing the CPU time of value analysis without and
with refinement selection using different heuristics

well as the full results and raw data are available on our supplementary web page 6.
The results are presented in Table 8.2, which is structured similarly to Table 8.1.

First off, while guided refinement selection is quite effective for the value analysis, the
configuration without explicit refinement selection performs quite well for the value
analysis, as opposed to the predicate analysis, where it was clearly under-performing.
This can be explained by the fact that the interpolation engine for the value analysis
is implemented in CPAchecker itself and is thus designed and tuned specifically
for software verification (cf. Chapter 5). In contrast, the predicate analysis uses an
off-the-shelf SMT solver as interpolation engine, which is not designed specifically
for software verification.

Similarly to the predicate analysis, none of the heuristics is the best for all classes of
verification tasks. Again, the basic heuristic that works best over all verification tasks

6http://www.sosy-lab.org/research/phd/loewe/#GuidedRefinementSelectionVa

126

http://www.sosy-lab.org/research/phd/loewe/#GuidedRefinementSelectionVa

8.5 Refinement Selection for Composite Analyses

is Score-Min, which is especially well suited for the subset DeviceDriversLinux64
for the same reasons explained above. In fact, note that for the basic heuristics
and categories of verification tasks presented in Tables 8.1 and 8.2, the number of
verification tasks solved by the value analysis often correlates closely to the number of
verification tasks solved by the predicate analysis, hence, for the respective categories
we refer to the explanations given above for why a given refinement-selection heuristic
may work well for a specific category. One difference between guided refinement
selection for the value analysis and the predicate analysis lies in the performance of
compositional refinement-selection heuristics, which in fact bring a slight improvement
in case of the value analysis. Adding the refinement-selection heuristic Width-Min
to the refinement-selection heuristic Score-Min allows the composition to just have
the edge over the basic refinement-selection heuristic Score-Min in the category
Overall, and joining the two refinement-selection heuristics the other way around
allows the resulting composite refinement-selection heuristic Width & Score to edge
out Width-Min in the category ProductLines.
In conclusion, we must say that for the value analysis no basic or composite

refinement-selection heuristics for itself leads to a greatly improved performance,
however, when taking into account the results of the meta refinement-selection
heuristics, especially those of heuristic Oracle (cf. Figure 8.2), then no one can deny
the positive effect that guided refinement selection may have.

8.5 Refinement Selection for Composite Analyses

In Chapter 6 we discussed the potential of combining a value analysis and a predicate
analysis to form a precise and efficient composite analysis based on CEGAR. There,
the choice which domain is going to be refined is made statically, i. e., the supposedly
cheaper value analysis is always preferred for a refinement.
For a given verification task this inflexible strategy may lead to an inefficient

analysis, and we believe we can do better by bringing refinement selection to the
next level, simply by making the decision whether to refine the value or the predicate
analysis on-the-fly, right before a subsequent refinement. Figure 8.3 shows this
via an example. For the given verification task, an analysis based on CEGAR,
with an initially empty precision, will find the shown infeasible error path. The
infeasibility of this path can be explained independently by both the valuations
of the variables int i and int b , respectively, as shown by the two example
interpolant sequences. As already pointed out before, it is generally advisable to
track information about variables of boolean character, like the variable int b ,
rather than loop-counter variables, such as variable int i , because the latter may

127

8 Guided Refinement Selection

1 #include <assert . h>
2

3 extern int nondet () ;
4 extern int f (int x) ;
5

6 int main () {
7

8 int b = nondet () ;
9 int i = 0 ;

10

11 i f (b != 0) {
12 while (i < 1000) {
13 f (i ++);
14 }
15 }
16

17 i f (i != 0) {
18 i f (b == 0) {
19 assert (0) ;
20 }
21 }
22 }

(a) example verification task

N8

N9

N11

N12

N17

N18

N19

assert(0);

b = nondet();

i = 0;

[b != 0]

[!(i < 1000)]

[i != 0]

[b == 0]

(b) error path

〈〉

〈〉

〈[i = 0]〉

〈[i = 0]〉

⊥

⊥

⊥

assert(0);

(c) bad sequence

〈〉

〈〉

〈〉

〈[b != 0]〉

〈[b != 0]〉

〈[b != 0]〉

⊥

assert(0);

(d) good sequence

Figure 8.3: From left to right, (a) an example verification task, (b) an infeasible error
path, and a (c) “bad” interpolant sequence and a (d) “good” interpolant
sequence for this infeasible error path, the latter being not applicable to
the value analysis, because it only contains inequalities

have far more valuations, and tracking loop counters would usually lead to expensive
loop unrollings.

The composite analysis introduced in Chapter 6 always tries first to refine the value
analysis and uses refinements of the predicate analysis only if necessary. Because
the value analysis cannot track the constraint [b != 0], the given error path of
the verification task can —by the value analysis— only be excluded by tracking the
loop-counter variable int i , which consequently would force unrolling the loop. If
instead the predicate analysis could explicitly be chosen for refinement, then it could
track the constraint [b != 0] for ruling out this infeasible error path. However, note
that the predicate analysis could also start tracking predicates over the loop-counter
variable int i and unroll the loop. Whether this would happen again depends solely
on the internal heuristics of the interpolation engine being used.

Thus, for the error path in this example, we would like the verifier to refine using
the predicate analysis, and we would like the interpolation engine to return the
interpolant sequence shown on the right, and avoid interpolant sequences such as the

128

8.5 Refinement Selection for Composite Analyses

τ

RefineVA RefinePA

(σ
1

PA , π
1

PA)

(σ
2

PA , π
2

PA)

(σ
3

PA , π
3

PA)

(σ
1

VA , π
1

VA)

(σ
2

VA , π
2

VA)

true

false

VA
πVA ║ PA

πPA

State-Space Exploration ExtractPathsVA ExtractPathsPA

 σ
1

VA = ⟨(op
1
, l

1
),…,(op

a
, l

a
)⟩

 σ
2

VA = (op⟨
1
, l

1
),…,(op

b
, l

b
)⟩

 σ
1

PA = (op⟨
1
, l

1
),…,(op

x
, l

x
)⟩

 σ
2

PA = (op⟨
1
, l

1
),…,(op

y
, l

y
)⟩

 σ
3

PA = (op⟨
1
, l

1
),…,(op

z
, l

z
)⟩

SelectRefinement

 π

(σ
1

PA , π
1

PA)

(σ
2

PA , π
2

PA)

(σ
3

PA , π
3

PA)

(σ
1

VA , π
1

VA)

(σ
2

VA , π
2

VA)

π, with (σ, π) ∈ τ

τ

Σ
VA

Σ
PA

Σ
VA

Σ
PA

inconclusive
 σ = (op⟨

1
, l

1
), …, (op

n
, l

e
)⟩

πVA = ∅

or

πPA = ∅

Figure 8.4: Visualization of inter-analysis refinement selection for a composite analy-
sis, here, consisting of a value analysis and a predicate analysis

one on the left, which references the loop counter int i .
Our evaluation in Chapter 6 already underlined the usefulness of combining different

analyses, such as a value analysis and a predicate analysis, because different facts
necessary to reason over a verification task can be handled by the analysis that can
track a fact most efficiently. The refinement step is a natural place for choosing
which of the analyses should track new information. Thus we extend the idea of
refinement selection from an intra-analysis selection to an inter-analysis selection.

Mind that this approach is not specific to the value analysis and predicate analysis,
but only requires two configurations of analyses that have support for CEGAR. Still,
for the example depicted in Figure 8.4 we refer to a combination of a value analysis
(VA) and a predicate analysis (PA). Our novel concept can be broken down into four
distinct phases. The first phase is the standard exploration phase of CEGAR. The
composite analysis performs the state-space exploration, constructing the abstract
model using the initial, empty precision for all component analyses. In the figure, we
refer to the precisions as πVA and πPA for the value analysis and the predicate analysis,
respectively. If the outcome of the state-space exploration is either the verdict true
or false then the analysis terminates. If the model contains an infeasible error
path σ, then the model is inconclusive and, according to the CEGAR algorithm, a
refinement is initiated.

With the refinement step, the second phase begins, which also marks the starting
point of our novel approach for inter-analysis refinement selection. There, for all
component analyses, we extract infeasible sliced prefixes stemming from the infeasible
error path σ. Each program analysis provides its own strongest post-operator ŜP,
with each having different expressive power, and therefore, the set of infeasible

129

8 Guided Refinement Selection

sliced prefixes might differ among the component analyses. For example, with ŜP
VA

we can extract sliced prefixes that are infeasible due to contradictions involving
non-linear arithmetic, while with ŜP

PA we get sliced prefixes that are infeasible due
to contradicting range predicates.
In the third phase, for each infeasible sliced prefix from the previous phase, a

precision is computed by delegating to the default refinement routine Refine of
the respective analysis. At the end of the third phase, the set τ contains the
available refinements (as pairs of infeasible sliced prefixes and precisions) for all of
the component analyses.

In the fourth phase, one suitable precision π (in the example, either πVA or πPA) is
selected from the set τ , which is added to the respective precision of the component
analysis for state-space exploration, finishing one CEGAR iteration. A proper
strategy for inter-analysis refinement selection can be crucial for the verification
effectiveness of the composite analysis, because, for an arbitrary verification task,
there is no analysis superior to all other analyses, but one analysis may be a good
fit for one class of verification tasks, but less suitable for another class, while it can
be the other way around for a second analysis. Suppose, for example, an infeasible
error path that can only by excluded by tracking that a certain variable is within
some interval. Refining the value analysis would mean to enumerate all possible
values of this variable, whereas the predicate analysis could track this efficiently using
inequality predicates. The evaluation we present in the following provides evidence
that inter-analysis refinement selection can be superior to statically preferring the
refinement of a specific analysis, which is an improvement over our previous approach
introduced in Chapter 6.

8.6 Evaluation of Inter-Analysis Refinement Selection

We now evaluate the effects of applying refinement selection to a composite analysis.
To this end we compare the following three different analyses: (1) a sole predicate
analysis without refinement selection, (2) a composite analysis of a value analysis
and a predicate analysis (both without refinement selection), where refinements are
always tried first with the value analysis and the predicate analysis is refined only
if the value analysis cannot eliminate an infeasible error path (cf. Chapter 6), and
(3) our novel composite analysis of a value analysis and a predicate analysis as defined
in Section 8.5, where refinement selection is used within each domain and also to
decide which domain to prefer in a refinement step.

130

8.6 Evaluation of Inter-Analysis Refinement Selection

Bi
tV

ec
to

rs
Re

ac
h

Co
nt

ro
lF

lo
w

De
vi

ce
Dr

iv
er

sL
in

ux
64

EC
A

Fl
oa

ts

Lo
op

s

Pr
od

uc
tL

in
es

Se
qu

en
ti

al
iz

ed

Si
mp

le

Ov
er

al
l

total 48 48 2 120 1 140 81 141 597 62 46 4 283

PA 43 42 1 525 218 73 97 321 28 43 2 390
VA-PA-Composition 43 45 1 561 484 73 89 390 38 46 2 769
VA-PA-Composition–RefSel 44 45 1652 472 74 98 373 32 45 2835

Table 8.3: Number of solved verification tasks for the three different analyses

8.6.1 Configuration

We use the same experimental setup as in Section 8.4. For the configuration with
inter-analysis refinement selection enabled, the predicate analysis is favoured for
performing a refinement in those cases where the value analysis only has infeasible
sliced prefixes available that reference loop-counter variables. In all other cases, the
value analysis is favoured for performing a refinement.

In order to allow reproducibility of the evaluation, an example for a complete
command line for performing inter-analysis refinement selection for the composite
analysis as well as the full results and raw data are available on our supplementary
web page 7.

8.6.2 Results

Table 8.3 shows the results for this comparison. Confirming the previous results from
Chapter 6, a composition of value analysis and predicate analysis without refinement
selection (row VA-PA-Composition) is already more effective than the predicate
analysis alone (row PA). However, the composite approach also has a weak spot, as it
fails more often in category Loops due to state-space explosion, whereas the predicate
analysis alone succeeds. The third configuration (row VA-PA-Composition–RefSel)
takes the idea of refinement selection to the next level. While in the former composite
approach the value analysis is always refined first, and the predicate analysis only
if the value analysis cannot eliminate an infeasible error path, our novel composite
analysis uses inter-analysis refinement selection to decide whether a refinement for
the value or for the predicate analysis is thought to be more effective. Consider,
for example, the results in category Loops. In this category the plain predicate

7http://www.sosy-lab.org/research/phd/loewe/#InterAnalysisRefinementSelection

131

http://www.sosy-lab.org/research/phd/loewe/#InterAnalysisRefinementSelection

8 Guided Refinement Selection

analysis (row PA) out-performs the naive composition of the value analysis and the
predicate analysis (row VA-PA-Composition). If, however, we apply inter-analysis
refinement selection to decide which analysis to refine for a given infeasible error
path, as done by our novel approach (row VA-PA-Composition–RefSel), then this
shows a higher verification effectiveness than the predicate analysis for verification
tasks where reasoning about loops is essential, i. e., in category Loops, and it clearly
out-performs the plain predicate analysis as well as the composition of the value
analysis and the predicate analysis over all verification tasks.

8.7 Conclusion

In this chapter we introduced the notion of guided refinement selection, a method
that is able to guide the construction of an abstract model in a direction that is
thought to be beneficial for the effectiveness and efficiency of the verification process.
In a thorough evaluation incorporating several refinement-selection heuristics we
underlined the great potential of refinement selection for the value analysis, for the
predicate analysis, as well as for a composite analysis of a value and a predicate
analysis for which we also introduced and validated the concept of inter-analysis
refinement selection. This opens a fundamentally new view on verification of models
with different characteristics. Instead of using portfolio checking, or trying several
different abstract domains, we can, in one single tool, fully automatically self-configure
the verifier, according to the property to be verified and the abstract domain that
can best analyze the paths that are encountered during the analysis.

8.7.1 Lessons Learned

The most interesting insight from this chapter is that an analysis may become far
more efficient if guided refinement selection is applied and not simply rely on the
interpolants provided through the standard heuristics implemented in off-the-shelf
interpolation engines, as apparently their internal heuristics are not always well suited
for software verification. The heuristics we presented allow the extraction of custom
interpolants, and the success of our heuristics underlines that guided refinement
selection matters.

8.7.2 Challenge

While the results of the meta-heuristic Oracle are highly encouraging, it also means
that we are still missing a single heuristic for guided refinement selection that
is superior in a wider range of verification tasks, e. g., over multiple categories
of SV-COMP. More research is needed in this area, and therefore, it would be

132

8.7 Conclusion

interesting to investigate heuristics that, for example, use dynamic information from
the analysis. There, instead of penalizing a loop-counter variable according to its
domain type, one could delay the penalty until a certain threshold is reached on
the number of values for this variable, similar to dynamic precision adjustment [22].
Especially for the predicate analysis, it would be interesting to investigate heuristics
that not only look at the domain type, but also how the variables are referenced
in the precision, e. g., an equality predicate for a loop counter usually leads to
unrollings of loops, while an inequality might avoid the unrolling of a loop. Similarly,
for inter-analysis refinement selection more advanced selection strategies could be
defined that always allow to systematically select the most appropriate domain for
performing a subsequent refinement.

8.7.3 Proposition

Ideas and actual solutions to tackle the challenges mentioned above would be highly
valuable, however, these are not regarded as being in the scope of this thesis. Instead,
we accepted a different challenge and participated in SV-COMP’16, with a version
of CPAchecker incorporating many concepts described throughout this thesis.

133

9 Contribution to SV-COMP’16

So far, we contributed at least one verifier to every edition of SV-COMP, and the
plain value analysis (cf. Section 3) and the value analysis based on CEGAR and
interpolation (cf. Section 4) helped the CPAchecker team to win numerous gold,
silver and bronze medals in SV-COMP over the years. Furthermore, the composite
analysis featuring the value analysis and the predicate analysis (cf. Section 6) won
four silver medals in SV-COMP’13, one of which was awarded for its 2nd place in
the overall ranking [11,83].

9.1 Configuration

For SV-COMP’16 we contributed the verifier CPA-RefSel [84], which is based on
various ideas and concepts described in this thesis. Similar to our contribution
to SV-COMP’13 it again features a composite analysis of the value analysis and
the predicate analysis, but getting a major boost from applying intra- and inter-
analysis refinement selection, as described in the previous chapter. In detail, both
the value analysis and the predicate analysis perform guided refinement selection,
and are configured to favor refinements with a low domain-type score, as this works
particularly well for many verification tasks from SV-COMP’16. In order to make
refinement selection to work best for the predicate analysis, we configured it to
perform abstraction computations at loop heads or whenever control flow joins
(cf. Section 7.6.3). Furthermore, we configured the component for inter-analysis
refinement selection in such a way, that always the one domain is refined which has
the lower domain type associated for a refinement.

Beyond incorporating refinement selection, we also added a few smaller optimiza-
tions to our verifier. For example, we augmented the predicate analysis with the
concept of a scoped precision, in a similar fashion as introduced for the value analysis
before (cf. Section 5.3). With this, predicates about a program variable are now not
only added at program locations dictated by the interpolants, but at all program
locations that are in the scope of the respective program variable, i. e., predicates
about local variables are added to all program locations of the respective function,
while predicates about global variables are added to all program locations of the
verification task.

135

9 Contribution to SV-COMP’16

Furthermore, to accommodate the better performance of the plain value anal-
ysis over the value analysis with CEGAR and interpolation for verification tasks
exposing a high level of determinism (cf. Section 5.4.4), we added a feature such
that abstraction computations for the value analysis are only performed once the
level of non-determinism reaches a certain, configurable threshold. Thus, the value
analysis with CEGAR and interpolation behaves exactly like the plain value analysis
for verification tasks that expose only very little non-determinism.
Together, all these concepts allow our verifier CPA-RefSel to be highly competi-

tive for control-flow-heavy verification tasks that encode reachability problems, as
witnessed by the good results CPA-RefSel obtained in SV-COMP’16, on which we
detail and extend in the following section.

9.2 Results of SV-COMP’16 and beyond

As already shown in the previous chapter, especially the addition of both intra- and
inter-analysis refinement selection allows for much improved results in the category
DeviceDriversLinux64 (cf. Table 8.3). We claim this to be the prime reason why
our verifier CPA-RefSel was so successful there, winning the gold medal by quite
some margin and taking the crown from the verifier Blast, which has been tuned for
this category over the last years and dominated there so far in SV-COMP.
In Figure 9.1 we present an overview of the correctly solved verification tasks

from category DeviceDriversLinux64 for a selection of verifiers that participated
in SV-COMP’16. For the plot, we used the data provided by the organizers of
SV-COMP 1, and we compare the results of our verifier CPA-RefSel to the verifiers
UAutomizer, CPA-Seq, and SMACK+Corral which achieved the 1st, 2nd, and 3rd
place, respectively, in category Overall in SV-COMP’16. CPA-Seq also got the 2nd
place in DeviceDriversLinux64. In this comparison our verifier CPA-RefSel comes
out as clear winner, as it solves considerably more verification tasks correctly than
any other verifier from SV-COMP’16.
Since SV-COMP’16, we further improved and tuned our approach on a purely

technical level. For example, we further optimized the refinement-selection heuristics,
as well as the strategy for enabling abstraction computations for the value analysis in
presence of non-determinism, and the predicate analysis no longer runs in bit-precise
mode as in SV-COMP’16. Other than for SV-COMP’16, all concepts are by now fully
integrated into the trunk version of CPAchecker, and based on this implementation
we performed a re-evaluation.

1The data is available from http://sv-comp.sosy-lab.org/2016/results/results-verified/

136

http://sv-comp.sosy-lab.org/2016/results/results-verified/

9.2 Results of SV-COMP’16 and beyond

0 500 1 000 1 500 2 000

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

UAutomizer
SMACK+Corral
CPA-Seq
CPA-RefSel

CPA-RefSel-Plus

Figure 9.1: Quantile plot comparing for several verifiers the number of correctly
solved verification tasks for category DeviceDriversLinux64

For this re-evaluation 2, we once more replicated the same experimental setup
as used in SV-COMP’16, again tasking BenchExec to enforce the same resource
limitations as defined for SV-COMP’16. In Figure 9.1 we also show the results of
running a configuration of CPAchecker similar to CPA-RefSel, which we refer to as
CPA-RefSel-Plus, and which is built using the CPAchecker trunk revision 21 270
from May the 15th, 2016.
In order to allow reproducibility of the evaluation, an example for a complete

command line for running CPA-RefSel-Plus as well as the full results and raw data
are available on our supplementary web page 3.

From the graph one can observe that CPA-RefSel-Plus solves even more verification
tasks correctly than CPA-RefSel did in the identical evaluation environment of

2Again, we do not perform any witness checking in this evaluation, so the results obtained here
differ slightly from the official results of SV-COMP’16.

3http://www.sosy-lab.org/research/phd/loewe/#CpaRefSelPlus

137

http://www.sosy-lab.org/research/phd/loewe/#CpaRefSelPlus

9 Contribution to SV-COMP’16

0 500 1 000 1 500 2 000

10

100

1 000

n-th fastest result

C
PU

tim
e

(s
)

UAutomizer
SMACK+Corral
CPA-kInd
CPA-RefSel
CPA-Seq

CPA-RefSel-Plus

Figure 9.2: Quantile plot comparing for several verifiers the number of correctly
solved verification tasks from category IntegersControlFlow

SV-COMP’16. There, CPA-RefSel solved 1 660 verification tasks correctly, while
the runner-up CPA-Seq solved only 1 479 verification tasks correctly. CPA-RefSel-
Plus is now able to solve 1 774 out of the 2 120 verification tasks from the category
DeviceDriversLinux64 correctly. Mind that, when comparing the scores using the
official scoring schema of SV-COMP’16, then CPA-RefSel-Plus obtains a score of
3 138, which clearly beats the 2 822 points of CPA-Seq, which was the best verifier
after CPA-RefSel, the latter achieving a best of 3 191 points.

The only other category for which our verifier and the contributions in this thesis are
designed for is the category IntegersControlFlow, excluding the 98 verification tasks
from the subset Recursive 4. This set contains 2 233 verification tasks and represents
the union over the complete categories ControlFlow, ECA, Loops, ProductLines,
Sequentialized, and Simple as introduced above in this thesis (cf. Table 3.1).

4None of the contributions in this thesis are targeted at recursion.

138

9.2 Results of SV-COMP’16 and beyond

We compare the same verifiers over the same criteria as before, but add the
verifier CPA-kInd which won the silver medal in category IntegersControlFlow
in SV-COMP’16. From the overview in Figure 9.2 one can see that CPA-RefSel
just out-performs CPA-kInd in terms of correctly solved verification tasks. The
portfolio-like approach of CPA-Seq, which combines up to five different verification
techniques, is best for this quite diverse set of different verification tasks which spans
over six sub-categories. While our verifier CPA-RefSel-Plus represents a significant
improvement over CPA-RefSel of SV-COMP’16, it is not able to close the gap to
CPA-Seq.

However, we firmly believe that even better results are possible if, for an individual
verification task, the most fitting heuristic for intra- and inter-analysis refinement
selection could be applied (cf. Section 8.4), and with the availability of the imple-
mentation in the CPAchecker framework, it is easily doable to integrate and extend
these approaches for the submission of the CPAchecker team to SV-COMP’17.

139

10 Summary and Future Research

In the final chapter we provide a summary of this thesis and we give a brief outlook
on further research directions that build on the presented concepts and ideas.

10.1 Summary

In this thesis we presented several concepts that may help to pave the way such that
automatic software verification becomes more relevant in practice. First, in Chapter 1,
we established that there is actual demand for automatic software verification in
practice, and we introduced the theoretical background needed for properly describing
our approaches in Chapter 2.

In our first contribution, described in Chapter 3, we introduced the value analysis,
i. e., an analysis that, other than the pre-dominant symbolic analyses, tracks the
concrete valuations of program variables in a verification task. This design decision
allows a highly efficient successor computation, and, as our evaluation showed, this
leads to an efficient overall analysis in many cases, also for verification tasks where
symbolic approaches are less well suited. However, this value analysis also comes
with the disadvantages of being prone to state-space explosion and being imprecise
in the presence of non-determinism.

Mitigating the effects of state-space explosion for the value analysis was the subject
of Chapter 4, where we proposed to extend the value analysis by the CEGAR
technique. To this end we defined, designed and built from the ground up (1) the
precision, (2) the feasibility check, and (3) the refinement procedure with a novel
value-interpolation technique for the value domain, such that together with the
state-space exploration algorithm of the value analysis the construction of a value
analysis with CEGAR and interpolation became reality. The evaluation of the value
analysis with CEGAR and interpolation revealed that our novel approach allows the
successful verification of many verification tasks that the plain value analysis cannot
solve, but also, that the plain value analysis is better suited for other verification
tasks, and in total still solves more verification tasks than the value analysis with
CEGAR and interpolation.

Consequently, in Chapter 5 we continued with several optimizations and we detailed
how we tuned both the value-interpolation component as well as the overall refinement
process of the value analysis. For the interpolation component we devised three

141

10 Summary and Future Research

heuristics, namely (1) to perform interpolation only over the deepest infeasible suffix,
(2) skip interpolation in cases subsequent candidate interpolants are equal, and
(3) skip interpolation in cases subsequent candidate interpolants are equivalent, with
the added bonus that all three heuristics are compatible with each other. Applying
all three heuristics at once revealed that the number of interpolation queries are
reduced to a third when compared to the case where none of the heuristics are used.
In order to optimize the overall refinement process, we chose to effectively disable
lazy abstraction, by installing a scoped precision and restarting the state-space
exploration after each refinement. As our evaluation showed, this allows for a far
more efficient verification process, as the number of refinements needed for most
verification tasks is greatly reduced.

Furthermore, the level of non-determinism of a verification task was identified as a
valid indicator whether to better disable or enable CEGAR for the value analysis.
Finally, we discussed the applicability of the refinement for the value domain to
other domains as well, e. g., the octagon domain or symbolic execution, and how it
facilitates regression verification.
The result of Chapter 5 marks a milestone in our work, as we then had a novel

analysis available that supports CEGAR with interpolation, and so, from this point
on, we were able to formulate any idea for CEGAR or interpolation for the value
analysis, as well as for existing analyses based on CEGAR and interpolation, such
as, e. g., a predicate analysis.
Accordingly, in the subsequent chapters, we focused on techniques that lead to

advancements in both the value analysis and the predicate analysis, with the logical
first step of combining the two analyses to obtain a precise and efficient composite
analysis, that we described in Chapter 6. The goal of this composite analysis was
—depending from the standpoint— to either make the value analysis more precise,
or to make the predicate analysis more efficient for specific classes of verification
tasks. We achieved this goal, as witnessed by our evaluation as well as by the positive
results we obtained in SV-COMP’13, where this novel approach secured us the 2nd
place in the overall ranking besides three more silver medals in other categories.

In Chapter 7 we continued with exploring techniques that may lead to advancements
in analyses based on CEGAR, and we argued that an interpolation engine should
be considered as black-box which not always is well suited for software verification.
This is because it gets as input some interpolation query and returns interpolants
according to its internal heuristics, which are usually not tuned specifically for
software verification. Due to that, a software verifier does not have much control
on which interpolants are returned, and so, it often happens that the returned
interpolants are not well suited for the further verification process. To this end, we
proposed the concept of infeasible sliced prefixes. With this concept, one is able to
extract from a single infeasible error path a set of infeasible sliced prefixes, where

142

10.2 Future Research

each of those infeasible sliced prefixes can be used to exclude the original infeasible
error path from future CEGAR iterations. We developed a general algorithm for
extracting infeasible sliced prefixes and evaluated it both for the value and the
predicate analysis, and with the availability of, in general, multiple infeasible sliced
prefixes, the refinement component is free to choose any of the infeasible sliced
prefixes for a subsequent refinement. The evaluation we performed confirmed for
both the value and the predicate analysis that selecting different infeasible sliced
prefixes may have a major influence on the verification effectiveness of the overall
analysis.
In Chapter 8 we extended this concept, as we devised various heuristics that are

geared to systematically select those infeasible sliced prefixes that lead to suitable
refinements, forming the technique we refer to as guided refinement selection. In
another large-scale evaluation we compare these heuristics for guided refinement
selection against each other, with the results that (1) the default approach without
guided refinement selection is hardly ever the best, (2) selecting refinements with a low
domain-type score works particularly well, but also, (3) that there is no clear winner
over all different refinement-selection heuristics, because each refinement-selection
heuristic works well in one class of verification tasks, but is less suited for another
class of verification tasks. Besides intra-refinement selection, we also presented the
concept of inter-analysis refinement selection, where the refinement component of a
composite analysis decides which of its component analyses is best to be refined in
order to exclude a specific infeasible counterexample. This technique marks a major
improvement over the previous approach for the composite analysis, where always a
pre-defined analysis was refined first.

Finally, in Chapter 9 we described how we plugged ideas and concepts of this thesis
together to build the software verifier CPA-RefSel, which won the gold medal in
category DeviceDriversLinux64 in SV-COMP’16, and we showed how we improved
our verifier to be also on par with the world’s leading software verifiers in the category
IntegersControlFlow.

10.2 Future Research

Despite the fact that we regard this thesis as self-contained, we would like to point
the reader to some possible directions for future research.
The plain value analysis (cf. Chapter 3) could benefit from mere technical im-

provements, like support for IEEE-754 floating-point arithmetic. Reasoning about
pointers, arrays or data structures on the heap could be added by better interfacing
to a CPA tracking concrete or symbolic memory graphs [53,85].

The technique we refer to value interpolation (cf. Chapter 4) was already applied
successfully to the octagon domain and to symbolic execution, and it would be

143

10 Summary and Future Research

interesting to evaluate its applicability to the aforementioned symbolic memory
graphs. Combining these techniques would for example allow to abstract the exact
shape of a linked list in a scenario where this information is not relevant, but in
another case, the analysis could track the elements of the linked list up to a certain
length such that an infeasible error path can be excluded. Also, adding the value
interpolation and CEGAR as devised in this thesis to an analysis based on binary
decision diagrams [32,36] would be worth investigating.
The composite analysis presented in this thesis had great success (cf. Chapter 6),

mainly because it combines two fundamentally different verification approaches.
With CPAchecker it is easy to mix and match various verification approaches, and
novel combinations of existing or new CPAs sure would yield benefits for special use
cases. Furthermore, new insights here may also have an impact on (inter-analysis)
refinement selection (cf. Chapters 8), i. e., where inter-analysis refinement selection
has to decide which analysis is better to be refined. In that regard, it would also
be possible to evaluate inter-analysis refinement selection with more than just two
different CPAs. However, before investigating that, better heuristics for intra- and
inter-analysis refinement selection would be needed. For example, so far, we only
investigated which program variables are referenced by different refinements, but for
the predicate analysis, one could also differentiate refinements based on whether more
equality predicates or more inequality predicates are being referenced. The former are
generally considered less suitable, because they may lead to loop unrollings. Symbolic
execution is being used in many fields, especially for testing, and refinement selection
helped to boost the performance of the analysis for symbolic execution in CPAchecker
significantly [25]. Hence, it would be interesting if the successful combination of
symbolic execution and refinement selection has an impact on more applications of
symbolic execution. Additionally, refinement selection and infeasible sliced prefixes
could be used for finding and generating invariants, and make them available to other
analyses [17]. Furthermore, being able to extract more infeasible sliced prefixes while
also applying ABE would perhaps allow guided refinement selection to work even
better for the predicate analysis. Finally, we firmly believe that guided refinement
selection could be even more successful if it could make use of domain knowledge,
e. g., knowing before starting the verification process which program variables are
likely to be needed for reasoning over a given verification task. We are proud that the
value analysis with CEGAR and the composite analysis of the value analysis and the
predicate analysis are actively used by practitioners and researchers as part of the
Linux Driver Verification program 1, but having more industrial partners would allow
us to obtain more insights and tune the concepts and ideas, as well as the whole
analyses themselves, in order to enable automatic software verification in practice.

1http://linuxtesting.org/ldv

144

http://linuxtesting.org/ldv

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Craig Interpretation.
In Antoine Miné and David Schmidt, editors, Proceedings of SAS, Deauville,
France, volume 7460 of LNCS, pages 300–316. Springer, 2012.

[3] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From Under-
Approximations to Over-Approximations and Back. In Cormac Flanagan
and Barbara König, editors, Proceedings of TACAS, Tallinn, Estonia, volume
7214 of LNCS, pages 157–172. Springer, 2012.

[4] Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik.
UFO: Verification with Interpolants and Abstract Interpretation (Competition
Contribution). In Nir Piterman and Scott A. Smolka, editors, Proceedings of
TACAS, Rome, Italy, volume 7795 of LNCS, pages 637–640. Springer, 2013.

[5] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and
Natasha Sharygina. An Extension of Lazy Abstraction with Interpolation for
Programs with Arrays. Formal Methods in System Design, 45(1):63–109, 2014.

[6] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexander
von Rhein. Domain Types: Abstract-Domain Selection Based on Variable
Usage. In Valeria Bertacco and Axel Legay, editors, Proceedings of HVC, Haifa,
Israel, volume 8244 of LNCS, pages 262–278. Springer, 2013.

[7] Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debugging System
Software via Static Analysis. In John Launchbury and John C. Mitchell, editors,
Proceedings of POPL, Portland, OR, USA, pages 1–3. ACM, 2002.

[8] Jiri Barnat, Lubos Brim, Vojtech Havel, Jan Havlícek, Jan Kriho, Milan Lenco,
Petr Rockai, Vladimír Still, and Jirí Weiser. DiVinE 3.0 — An Explicit-State
Model Checker for Multithreaded C & C++ Programs. In Natasha Sharygina
and Helmut Veith, editors, Proceedings of CAV, Saint Petersburg, Russia,
volume 8044 of LNCS, pages 863–868. Springer, 2013.

145

Bibliography

[9] Gérard Basler, Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening,
Michael Tautschnig, and Thomas Wahl. SatAbs: A Bit-Precise Verifier for
C Programs (Competition Contribution). In Cormac Flanagan and Barbara
König, editors, Proceedings of TACAS, Tallinn, Estonia, volume 7214 of LNCS,
pages 552–555. Springer, 2012.

[10] Dirk Beyer. Competition on Software Verification (SV-COMP). In Cormac
Flanagan and Barbara König, editors, Proceedings of TACAS, Tallinn, Estonia,
volume 7214 of LNCS, pages 504–524. Springer, 2012.

[11] Dirk Beyer. Second Competition on Software Verification (Summary of SV-
COMP 2013). In Nir Piterman and Scott A. Smolka, editors, Proceedings of
TACAS, Rome, Italy, volume 7795 of LNCS, pages 594–609. Springer, 2013.

[12] Dirk Beyer. Status Report on Software Verification (Competition Summary
SV-COMP 2014). In Erika Ábrahám and Klaus Havelund, editors, Proceedings
of TACAS, Grenoble, France, volume 8413 of LNCS, pages 373–388. Springer,
2014.

[13] Dirk Beyer. Software Verification and Verifiable Witnesses (Report on SV-
COMP 2015). In Christel Baier and Cesare Tinelli, editors, Proceedings of
TACAS, London, UK, volume 9035 of LNCS, pages 401–416. Springer, 2015.

[14] Dirk Beyer. Reliable and Reproducible Competition Results with BenchExec
and Witnesses (Report on SV-COMP 2016). In Marsha Chechik and Jean-
François Raskin, editors, Proceedings of TACAS, Eindhoven, The Netherlands,
volume 9636 of LNCS, pages 887–904. Springer, 2016.

[15] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and
Roberto Sebastiani. Software Model Checking via Large-Block Encoding. In
Armin Biere and Carl Pixley, editors, Proceedings of FMCAD, Austin, TX,
USA, pages 25–32. IEEE, 2009.

[16] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, and Andreas
Stahlbauer. Witness Validation and Stepwise Testification across Software
Verifiers. In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors,
Proceedings of FSE, Bergamo, Italy, pages 721–733. ACM, 2015.

[17] Dirk Beyer, Matthias Dangl, and Philipp Wendler. Boosting k-Induction with
Continuously-Refined Invariants. In Daniel Kroening and Corina S. Pasareanu,
editors, Proceedings of CAV, San Francisco, CA, USA, volume 9206 of LNCS,
pages 622–640. Springer, 2015.

146

Bibliography

[18] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
Software Model Checker BLAST. Software Tools for Technology Transfer,
9(5-6):505–525, 2007.

[19] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp Wendler.
Conditional Model Checking: A Technique to Pass Information between Veri-
fiers. In Will Tracz, Martin P. Robillard, and Tevfik Bultan, editors, Proceedings
of FSE, Cary, NC, USA, page 57. ACM, 2012.

[20] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko.
Path Invariants. In Jeanne Ferrante and Kathryn S. McKinley, editors, Pro-
ceedings of PLDI, San Diego, CA, USA, pages 300–309. ACM, 2007.

[21] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
Software Verification: Concretizing the Convergence of Model Checking and
Program Analysis. In Werner Damm and Holger Hermanns, editors, Proceedings
of CAV, Berlin, Germany, volume 4590 of LNCS, pages 504–518. Springer,
2007.

[22] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Program Analysis
with Dynamic Precision Adjustment. In Proceedings of ASE, L’Aquila, Italy,
pages 29–38. IEEE, 2008.

[23] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable
Software Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Proceedings of CAV, Snowbird, UT, USA, volume 6806 of LNCS, pages 184–190.
Springer, 2011.

[24] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate Abstraction
with Adjustable-Block Encoding. In Roderick Bloem and Natasha Sharygina,
editors, Proceedings of FMCAD, Lugano, Switzerland, pages 189–197. IEEE,
2010.

[25] Dirk Beyer and Thomas Lemberger. Symbolic Execution with CEGAR. In
Proceedings of ISoLA, Corfu, Greece. Springer, 2016.

[26] Dirk Beyer and Stefan Löwe. Explicit-State Software Model Checking Based on
CEGAR and Interpolation. In Vittorio Cortellessa and Dániel Varró, editors,
Proceedings of FASE, Rome, Italy, volume 7793 of LNCS, pages 146–162.
Springer, 2013.

[27] Dirk Beyer, Stefan Löwe, Evgeny Novikov, Andreas Stahlbauer, and Philipp
Wendler. Precision Reuse for Efficient Regression Verification. In Bertrand

147

Bibliography

Meyer, Luciano Baresi, and Mira Mezini, editors, Proceedings of FSE, Saint
Petersburg, Russian Federation, pages 389–399. ACM, 2013.

[28] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and Resource
Measurement. In Bernd Fischer and Jaco Geldenhuys, editors, Proceedings
of SPIN, Stellenbosch, South Africa, volume 9232 of LNCS, pages 160–178.
Springer, 2015.

[29] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Refinement Selection. In Bernd
Fischer and Jaco Geldenhuys, editors, Proceedings of SPIN, Stellenbosch, South
Africa, volume 9232 of LNCS, pages 20–38. Springer, 2015.

[30] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Sliced Path Prefixes: An
Effective Method to Enable Refinement Selection. In Susanne Graf and Mahesh
Viswanathan, editors, Proceedings of FORTE, Grenoble, France, volume 9039
of LNCS, pages 228–243. Springer, 2015.

[31] Dirk Beyer and Alexander K. Petrenko. Linux Driver Verification (Position
Paper). In Tiziana Margaria and Bernhard Steffen, editors, Proceedings of
ISoLA, Heraklion, Greece, volume 7610 of LNCS, pages 1–6. Springer, 2012.

[32] Dirk Beyer and Andreas Stahlbauer. BDD-Based Software Model Checking
with CPAchecker. In Antonín Kucera, Thomas A. Henzinger, Jaroslav Nesetril,
Tomás Vojnar, and David Antos, editors, Proceedings of MEMICS, Znojmo,
Czech Republic, volume 7721 of LNCS, pages 1–11. Springer, 2012.

[33] Dirk Beyer and Philipp Wendler. Algorithms for Software Model Checking:
Predicate Abstraction vs. Impact. In Gianpiero Cabodi and Satnam Singh,
editors, Proceedings of FMCAD, Cambridge, UK, pages 106–113. IEEE, 2012.

[34] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. Counterex-
ample to Induction-Guided Abstraction-Refinement (CTIGAR). In Armin
Biere and Roderick Bloem, editors, Proceedings of CAV, Vienna, Austria,
volume 8559 of LNCS, pages 831–848. Springer, 2014.

[35] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A Static
Analyzer for Large Safety-Critical Software. In Ron Cytron and Rajiv Gupta,
editors, Proceedings of PLDI, San Diego, CA, USA, pages 196–207. ACM,
2003.

[36] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

148

Bibliography

[37] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Richard Draves and Robbert van Renesse, editors, Proceedings of OSDI,
San Diego, CA, USA, pages 209–224. USENIX Association, 2008.

[38] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A Value Analysis for C
Programs. In Proceedings of SCAM, Edmonton, AB, Canada, pages 123–124.
IEEE, 2009.

[39] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyana-
sundaram, Marco Roveri, and R. K. Shyamasundar. Computing Predicate
Abstractions by Integrating BDDs and SMT Solvers. In Jason Baumgartner
and Mary Sheeran, editors, Proceedings of FMCAD, Austin, TX, USA, pages
69–76. IEEE, 2007.

[40] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
Interpolating SMT Solver. In Alastair F. Donaldson and David Parker, editors,
Proceedings of SPIN, Oxford, UK, volume 7385 of LNCS, pages 248–254.
Springer, 2012.

[41] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott A. Smolka,
editors, Proceedings of TACAS, Rome, Italy, volume 7795 of LNCS, pages
93–107. Springer, 2013.

[42] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A Simple and
Flexible Way of Computing Small Unsatisfiable Cores in SAT Modulo Theories.
In João Marques-Silva and Karem A. Sakallah, editors, Proceedings of SAT,
Lisbon, Portugal, volume 4501 of LNCS, pages 334–339. Springer, 2007.

[43] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement for Symbolic Model Checking.
Journal of the ACM, 50(5):752–794, 2003.

[44] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 2001.

[45] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting Finite-state Mod-
els from Java Source Code. In Carlo Ghezzi, Mehdi Jazayeri, and Alexander L.
Wolf, editors, Proceedings of ICSE, Limerick, Ireland, pages 439–448. ACM,
2000.

149

Bibliography

[46] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Properties
of Programs. In Proceedings of ISOP, Paris, France, pages 106–130. Dunod,
1976.

[47] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors,
Proceedings of POPL, Los Angeles, CA, USA, pages 238–252. ACM, 1977.

[48] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Re-
straints Among Variables of a Program. In Alfred V. Aho, Stephen N. Zilles,
and Thomas G. Szymanski, editors, Proceedings of POPL, Tucson, AZ, USA,
pages 84–96. ACM Press, 1978.

[49] William Craig. Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem. Journal of Symbolic Logic, 22(3):250–268, 1957.

[50] Yulia Demyanova, Helmut Veith, and Florian Zuleger. On the Concept of
Variable Roles and its Use in Software Analysis. In Barbara Jobstman and
Sandip Ray, editors, Proceedings of FMCAD, Portland, OR, USA, pages 226–
230. IEEE, 2013.

[51] Edsger W. Dijkstra. Notes on Structured Programming. circulated privately,
1970.

[52] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher.
Interpolant Strength. In Gilles Barthe and Manuel V. Hermenegildo, editors,
Proceedings of VMCAI, Madrid, Spain, volume 5944 of LNCS, pages 129–145.
Springer, 2010.

[53] Kamil Dudka, Petr Peringer, and Tomás Vojnar. Byte-Precise Verification of
Low-Level List Manipulation. In Francesco Logozzo and Manuel Fähndrich,
editors, Proceedings of SAS, Seattle, WA, USA, volume 7935 of LNCS, pages
215–237. Springer, 2013.

[54] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon System for
Dynamic Detection of Likely Invariants. Science of Computer Programming,
69(1-3):35–45, 2007.

[55] Stephan Falke, Florian Merz, and Carsten Sinz. LLBMC: Improved Bounded
Model Checking of C Programs Using LLVM (Competition Contribution). In
Nir Piterman and Scott A. Smolka, editors, Proceedings of TACAS, Grenoble,
France, volume 7795 of LNCS, pages 623–626. Springer, 2013.

150

Bibliography

[56] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Depen-
dence Graph and its Use in Optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[57] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joining Dataflow with
Predicates. In Michel Wermelinger and Harald C. Gall, editors, Proceedings of
FSE, Lisbon, Portugal, pages 227–236. ACM, 2005.

[58] Robert W Floyd. Assigning Meanings to Programs. Mathematical Aspects of
Computer Science, 19(19-32):1, 1967.

[59] María-del-Mar Gallardo, Jesús Martínez, Pedro Merino, and Ernesto Pimentel.
alpha SPIN: Extending SPIN with Abstraction. In Dragan Bosnacki and Stefan
Leue, editors, Proceedings of SPIN, Grenoble, France, volume 2318 of LNCS,
pages 254–258. Springer, 2002.

[60] Susanne Graf and Hassen Saïdi. Construction of Abstract State Graphs with
PVS. In Orna Grumberg, editor, Proceedings of CAV, Haifa, Israel, volume
1254 of LNCS, pages 72–83. Springer, 1997.

[61] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam A. Porter, and
Gregg Rothermel. An Empirical Study of Regression Test Selection Techniques.
In Koji Torii, Kokichi Futatsugi, and Richard A. Kemmerer, editors, Proceedings
of ICSE, Kyoto, Japan, pages 188–197. IEEE, 1998.

[62] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K.
Rajamani. Automatically Refining Abstract Interpretations. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, Proceedings of TACAS, Budapest, Hungary,
volume 4963 of LNCS, pages 443–458. Springer, 2008.

[63] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A Configurable
CEGAR Framework with Interpolation-Based Refinements. In Elvira Albert
and Ivan Lanese, editors, Proceedings of FORTE, Heraklion, Greece, volume
9688 of LNCS, pages 158–174. Springer, 2016.

[64] Arvind Haran, Montgomery Carter, Michael Emmi, Akash Lal, Shaz Qadeer,
and Zvonimir Rakamaric. SMACK+Corral: A Modular Verifier (Competition
Contribution). In Christel Baier and Cesare Tinelli, editors, Proceedings of
TACAS, London, UK, volume 9035 of LNCS, pages 451–454. Springer, 2015.

[65] R. H. Hardin, R. P. Kurshan, K. L. McMillan, J. A. Reeds, and N. J. A. Sloane.
Efficient Regression Verification. In R. Smedinga, M. P. Spathopoulos, and
P. Kozák, editors, Proceedings of WODES, Edinburgh, Scotland, pages 147–150.
Institute of Electronical Engineers, Computing and Control Division, 1996.

151

Bibliography

[66] Klaus Havelund and Thomas Pressburger. Model Checking JAVA Programs
using JAVA PathFinder. Software Tools for Technology Transfer, 2(4):366–381,
2000.

[67] Matthias Heizmann, Daniel Dietsch, Marius Greitschus, Jan Leike, Betim Musa,
Claus Schätzle, and Andreas Podelski. Ultimate Automizer with Two-track
Proofs (Competition Contribution). In Marsha Chechik and Jean-François
Raskin, editors, Proceedings of TACAS, Eindhoven, The Netherlands, volume
9636 of LNCS, pages 950–953. Springer, 2016.

[68] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMil-
lan. Abstractions from Proofs. In Neil D. Jones and Xavier Leroy, editors,
Proceedings of POPL, Venice, Italy, pages 232–244. ACM, 2004.

[69] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy Abstraction. In John Launchbury and John C. Mitchell, editors, Proceed-
ings of POPL, Portland, OR, USA, pages 58–70. ACM, 2002.

[70] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[71] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[72] Gerard J. Holzmann and Margaret H. Smith. A Practical Method for Verifying
Event-Driven Software. In Barry W. Boehm, David Garlan, and Jeff Kramer,
editors, Proceedings of ICSE, Los Angeles, CA, USA, pages 597–607. ACM,
1999.

[73] Gerard J. Holzmann and Margaret H. Smith. An Automated Verification
Method for Distributed Systems Software Based on Model Extraction. IEEE
Transactions on Software Engineering, 28(4):364–377, 2002.

[74] Susan Horwitz, Thomas W. Reps, and David Binkley. Interprocedural Slicing
Using Dependence Graphs. ACM Transactions on Programming Languages
and Systems, 12(1):26–60, 1990.

[75] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa.
TRACER: A Symbolic Execution Tool for Verification. In P. Madhusudan and
Sanjit A. Seshia, editors, Proceedings of CAV, Berkeley, CA, USA, volume
7358 of LNCS, pages 758–766. Springer, 2012.

[76] Himanshu Jain, Franjo Ivancic, Aarti Gupta, Ilya Shlyakhter, and Chao Wang.
Using Statically Computed Invariants Inside the Predicate Abstraction and

152

Bibliography

Refinement Loop. In Thomas Ball and Robert B. Jones, editors, Proceedings of
CAV, Seattle, WA, USA, volume 4144 of LNCS, pages 137–151. Springer, 2006.

[77] Ranjit Jhala and Rupak Majumdar. Path Slicing. In Vivek Sarkar and Mary W.
Hall, editors, Proceedings of PLDI, Chicago, IL, USA, pages 38–47. ACM, 2005.

[78] James C. King. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385–394, 1976.

[79] Daniel Kroening and Michael Tautschnig. CBMC — C Bounded Model Checker
(Competition Contribution). In Erika Ábrahám and Klaus Havelund, editors,
Proceedings of TACAS, Grenoble, France, volume 8413 of LNCS, pages 389–391.
Springer, 2014.

[80] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT Techniques
for Fast Predicate Abstraction. In Thomas Ball and Robert B. Jones, editors,
Proceedings of CAV, Seattle, WA, USA, volume 4144 of LNCS, pages 424–437.
Springer, 2006.

[81] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of CGO, San
Jose, CA, USA, pages 75–88. IEEE, 2004.

[82] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Proceedings
of LPAR, Dakar, Senegal, volume 6355 of LNCS, pages 348–370. Springer,
2010.

[83] Stefan Löwe. CPAchecker with Explicit-Value Analysis Based on CEGAR
and Interpolation (Competition Contribution). In Nir Piterman and Scott A.
Smolka, editors, Proceedings of TACAS, Rome, Italy, volume 7795 of LNCS,
pages 610–612. Springer, 2013.

[84] Stefan Löwe. CPA-RefSel: CPAchecker with Refinement Selection (Compe-
tition Contribution). In Marsha Chechik and Jean-François Raskin, editors,
Proceedings of TACAS, Eindhoven, The Netherlands, volume 9636 of LNCS,
pages 916–919. Springer, 2016.

[85] Stefan Löwe, Mikhail U. Mandrykin, and Philipp Wendler. CPAchecker with
Sequential Combination of Explicit-Value Analyses and Predicate Analyses
(Competition Contribution). In Erika Ábrahám and Klaus Havelund, editors,
Proceedings of TACAS, Grenoble, France, volume 8413 of LNCS, pages 392–394.
Springer, 2014.

153

Bibliography

[86] Stefan Löwe and Philipp Wendler. CPAchecker with Adjustable Predicate
Analysis (Competition Contribution). In Cormac Flanagan and Barbara König,
editors, Proceedings of TACAS, Tallinn, Estonia, volume 7214 of LNCS, pages
528–530. Springer, 2012.

[87] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In
Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceedings of CAV, Boulder,
CO, USA, volume 2725 of LNCS, pages 1–13. Springer, 2003.

[88] Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Thomas Ball
and Robert B. Jones, editors, Proceedings of CAV, Seattle, WA, USA, volume
4144 of LNCS, pages 123–136. Springer, 2006.

[89] Antoine Miné. The Octagon Abstract Domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[90] Jeremy Morse, Mikhail Ramalho, Lucas C. Cordeiro, Denis Nicole, and Bernd
Fischer. ESBMC 1.22 (Competition Contribution). In Erika Ábrahám and
Klaus Havelund, editors, Proceedings of TACAS, Grenoble, France, volume
8413 of LNCS, pages 405–407. Springer, 2014.

[91] Glenford J. Myers. The Art of Software Testing (2. ed.). Wiley, 2004.

[92] V. Natarajan and Gerard J. Holzmann. Outline for an Operational Semantics
of Promela. The SPIN Verification Systems, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS, 32:133–152, 1997.

[93] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[94] Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser. Finding Feasible
Counter-examples when Model Checking Abstracted Java Programs. In Tiziana
Margaria and Wang Yi, editors, Proceedings of TACAS, Genova, Italy, volume
2031 of LNCS, pages 284–298. Springer, 2001.

[95] Gregg Rothermel and Mary Jean Harrold. Analyzing Regression Test Selection
Techniques. IEEE Transactions on Software Engineering, 22(8):529–551, 1996.

[96] Philipp Rümmer and Pavle Subotic. Exploring Interpolants. In Barbara
Jobstman and Sandip Ray, editors, Proceedings of FMCAD, Portland, OR,
USA, pages 69–76. IEEE, 2013.

[97] Jorma Sajaniemi. An Empirical Analysis of Roles of Variables in Novice-Level
Procedural Programs. In Proceedings of HCC, Arlington, VA, USA, pages
37–39. IEEE, 2002.

154

Bibliography

[98] Roberto Sebastiani. Lazy Satisability Modulo Theories. JSAT, 3(3-4):141–224,
2007.

[99] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Incremental Up-
grade Checking by Means of Interpolation-based Function Summaries. In
Gianpiero Cabodi and Satnam Singh, editors, Proceedings of FMCAD, Cam-
bridge, UK, pages 114–121. IEEE, 2012.

[100] Pavel Shved, Mikhail U. Mandrykin, and Vadim S. Mutilin. Predicate Analysis
with BLAST 2.7 (Competition Contribution). In Cormac Flanagan and Barbara
König, editors, Proceedings of TACAS, Tallinn, Estonia, volume 7214 of LNCS,
pages 525–527. Springer, 2012.

[101] Jiri Slaby, Jan Strejcek, and Marek Trtík. Symbiotic: Synergy of Instrumen-
tation, Slicing, and Symbolic Execution (Competition Contribution). In Nir
Piterman and Scott A. Smolka, editors, Proceedings of TACAS, Eindhoven,
The Netherlands, volume 7795 of LNCS, pages 630–632. Springer, 2013.

[102] Vladimír Still, Petr Rockai, and Jiri Barnat. DIVINE: Explicit-State LTL
Model Checker (Competition Contribution). In Marsha Chechik and Jean-
François Raskin, editors, Proceedings of TACAS, Eindhoven, The Netherlands,
volume 9636 of LNCS, pages 920–922. Springer, 2016.

[103] Gonzalez Teofilo, Jorge Diaz-Herrera, and Allen Tucker. Computing Handbook,
Third Edition: Computer Science and Software Engineering. Chapman &
Hall/CRC, 3rd edition, 2014.

[104] Alan Mathison Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Journal of Math, 58(345-363):5, 1936.

[105] Arie van Deursen and Leon Moonen. Understanding COBOL Systems using
Inferred Types. In Proceedings of IWPC, Pittsburgh, PA, USA, pages 74–81.
IEEE, 1999.

155

	Introduction
	The Need For Software Verification
	Automatic Software Verification
	Contributions
	Value Analysis with CEGAR and Interpolation
	Precise and Efficient Composite Analysis based on CEGAR
	Refinements over Infeasible Sliced Prefixes
	Guided Refinement Selection
	Contribution to SV-COMP'16
	Availability of Implementations and Experimental Data

	Structure of the Thesis

	Background
	Programs, Control-Flow Automaton, and Semantics
	Configurable Program Analysis
	Abstract Domain
	Precision
	Transfer Relation
	Merge Operator
	Stop Operator
	Precision-Adjustment Operator

	CPA Algorithm
	Abstract Reachability Graph
	Counterexample-Guided Abstraction Refinement
	Interpolation
	CPAchecker as Verification Framework

	Value Analysis
	Motivation
	Related Work
	Definitions
	Value Analysis as CPA
	Abstract Domain
	Precision
	Transfer Relation
	Merge Operator
	Stop Operator
	Precision-Adjustment Operator

	Evaluation
	Setup
	Benchmarks
	Configuration
	Results

	Conclusion
	Lessons Learned
	Challenge
	Proposition
	Solution

	Value Analysis with CEGAR and Interpolation
	Motivation
	Related Work
	State-Space Exploration Algorithm for the Value Domain
	Precision for the Value Domain
	Feasibility Check for the Value Domain
	Interpolation for the Value Domain
	Interpolation for Abstract Variable Assignments
	Interpolation for Constraint Sequences

	Refinement Based on Value Interpolation
	Evaluation
	Configuration
	Results
	Comparison to the Plain Value Analysis

	Conclusion
	Lessons Learned
	Challenge
	Proposition
	Solution

	Value Analysis with Improved CEGAR and Interpolation
	Motivation
	Reducing the Number of Value Interpolation Queries
	Iterative, Inductive Interpolation
	Interpolation over Deepest Infeasible Suffix
	Interpolant-Equality Heuristic
	Interpolant-Equivalence Heuristic
	Evaluation of the Optimizations for the Value Interpolation

	Reducing the Number of Refinements
	Evaluation
	Configuration
	Results
	Comparison to the Plain Value Analysis
	Level of Non-Determinism

	Versatility of Value-Analysis Refinement
	Applicability to other Analyses
	Regression Verification

	Further Considerations
	Static Refinement
	Global Refinement
	Impact-Like Refinement for the Value Analysis

	Conclusion
	Lessons Learned
	Challenge
	Proposition
	Solution

	Precise and Efficient Composite Analysis based on CEGAR
	Motivation
	Related Work
	Composition of a Value Analysis and a Predicate Analysis
	Evaluation
	Configuration
	Results

	International Competition on Software Verification 2013
	Conclusion
	Lessons Learned
	Challenge
	Proposition
	Solution

	Refinements over Infeasible Sliced Prefixes
	Motivation
	Related Work
	Introducing Infeasible Sliced Prefixes
	Extracting Infeasible Sliced Prefixes
	Refinements over Infeasible Sliced Prefixes
	Evaluation
	Infeasible Sliced Prefixes for the Value Analysis
	Infeasible Sliced Prefixes for the Predicate Analysis
	Infeasible Sliced Prefixes with Large-Block Encoding
	Further Applications of Infeasible Sliced Prefixes

	Conclusion
	Lessons Learned
	Challenge
	Proposition
	Solution

	Guided Refinement Selection
	Motivation
	Related Work
	Heuristics for Guided Refinement Selection
	Selection by Domain-Type Score of Path Precision
	Selection by Depth of Pivot Location of Path Precision
	Selection by Width of Path Precision
	Selection by Length of Infeasible Sliced Prefix
	Composition of Heuristics
	Tailor-Made Heuristics using Domain Knowledge

	Evaluation of Intra-Analysis Refinement Selection
	Configuration
	Refinement Selection for the Predicate Analysis
	Refinement Selection for the Value Analysis

	Refinement Selection for Composite Analyses
	Evaluation of Inter-Analysis Refinement Selection
	Configuration
	Results

	Conclusion
	Lessons Learned
	Challenge
	Proposition

	Contribution to SV-COMP'16
	Configuration
	Results of SV-COMP'16 and beyond

	Summary and Future Research
	Summary
	Future Research

