
University of Passau
Faculty of Computer Science and Mathematics

Dissertation

Towards Practical Predicate Analysis

Philipp Wendler

June 17, 2017

Supervisor: Prof. Dr. Dirk Beyer

External Reviewer: Prof. Dr. Bernd Fischer

Abstract

Software model checking is a successful technique for automated program verifi-
cation. Several of the most widely used approaches for software model checking
are based on solving first-order-logic formulas over predicates using SMT solvers,
e.g., predicate abstraction, bounded model checking, k-induction, and lazy abstrac-
tion with interpolants. We define a configurable framework for predicate-based
analyses that allows expressing each of these approaches. This unifying frame-
work highlights the differences between the approaches, producing new insights,
and facilitates research of further algorithms and their combinations, as witnessed
by several research projects that have been conducted on top of this framework.
In addition to this theoretical contribution, we provide a mature implementation
of our framework in the software verifier CPAchecker that allows applying
all of the mentioned approaches to practice. This implementation is used by
other research groups, e.g., to find bugs in the Linux kernel, and has proven
its competitiveness by winning gold medals in the International Competition
on Software Verification.

Tools and approaches for software model checking like our predicate analysis
are typically evaluated using performance benchmarking on large sets of veri-
fication tasks. We have identified several pitfalls that can silently arise during
benchmarking, and we have found that the benchmarking techniques and tools
that are used by many researchers do not guarantee valid results in practice,
but may produce arbitrarily large measurement errors. Furthermore, certain
hardware characteristics can also have nondeterministic influence on the measure-
ments. In order to being able to properly evaluate our framework for software
verification, we study the effects of these hardware characteristics, and define
a list of the most important requirements that need to be ensured for reliable
benchmarking. We present as solution an open-source benchmarking frame-
work BenchExec, which in contrast to other benchmarking tools fulfills all our
requirements and aims at making reliable benchmarking easy. BenchExec was
already adopted by several research groups and the International Competition
on Software Verification.

iii

Using the power of BenchExec we conduct an experimental evaluation of our
unifying framework for predicate analysis. We study the effect of varying the
SMT solver and the way program semantics are encoded in formulas across sev-
eral verification algorithms and find that these technical choices can significantly
influence the results of experimental studies of verification approaches. This is
valuable information for both researchers who study verification approaches as
well as for users who apply them in practice. Our comprehensive study of 120 dif-
ferent configurations would not have been possible without our highly flexible
and configurable unifying framework for predicate analysis and shows that the
latter is a valuable base for conducting experiments. Furthermore, we show using
a comparison against top-ranking verifiers from the International Competition
on Software Verification that our implementation is highly competitive and can
outperform the state of the art.

iv

Acknowledgments

During the writing of this thesis, I have received a lot of support by many people,
for which I am deeply thankful.

First of all, I want to thank my supervisor Dirk Beyer for providing me with
the opportunity to write this thesis, for doing everything in his power to provide
my colleagues and me with whatever we needed, for sharing his knowledge
and guiding us, and for pushing us to achieve the best that we can. He had
always time for me when it was needed, and many good ideas came out of
our discussions.

I also want to thank Bernd Fischer, who has kindly agreed to review this thesis,
and Franz Brandenburg, without whom this project would never have started.

I want to thank all the coauthors with whom I was allowed to write a paper.
I enjoyed working with you, and I have learned a lot from you.

Furthermore, I want to thank my office colleagues in Passau for our joint
work: Matthias Dangl, Gregor Endler, Karlheinz Friedberger, Peter Häring, Malte
Rosenthal, Andreas Stahlbauer, and especially Stefan Löwe, with whom it was a
pleasure to share an office for several years. A big thank you goes to our assistants
Eva Veitweber and Eva Reichhart, who kept the whole chair running smoothly
by taking care of all the administrative duties for us. I always had a good time
together with all of you, and also with the colleagues from the neighboring chairs.

The last months’ work of this thesis was done at LMU Munich, where I want
to thank Marianne Diem, Anton Fasching, Rolf Hennicker, Annabelle Klarl, and
Philip Mayer for giving me a warm welcome and a lot of initial support.

I want to thank our student assistants Alexander Driemeyer, Thomas Lemberger,
Sebastian Ott, and Thomas Stieglmaier, and all those who I supervised for their
Bachelor’s or Master’s thesis. You contributed a lot of high-quality work to our
projects. The same holds for all other developers and users of CPAchecker
and BenchExec.

Last but not least, I want to thank my fiancée Teresa, my family, and my friends,
who have supported me and accepted that I could often spend less time with
them than desired.

v

Contents

1. Introduction . 1

I. A Flexible Domain Based on Predicates 9

2. Motivation . 13

3. Background . 19

4. Predicate CPA . 31

5. Applications . 57

6. Implementation in CPACHECKER . 73

7. Related Work . 81

II. Reliable Benchmarking 89

8. Motivation . 93

9. Requirements for Reliable Benchmarking 99

10. Limitations of Existing Methods . 105

11. Impact of Hardware Characteristics on Parallel Tool Executions 111

12. State-of-the-Art Benchmarking with Cgroups and Containers 123

13. BENCHEXEC: A Framework for Reliable Benchmarking 131

14. Related Work . 143

vii

Contents

III. Experimental Evaluation 149

15. Experiment Setup . 153

16. Comparison of SMT Solvers and Theories 159

17. Comparison with State of the Art . 175

18. Summary and Future Work . 181

Bibliography . 185

Appendix 205

A. Machine Architectures with Hyperthreading and Nonuniform Memory Ac-

cess . 207

B. Listings . 211

viii

List of Figures

1.1. Contributions of this thesis . 3

4.1. Components of the Predicate CPA 32
4.2. Refinement steps . 37
4.3. Valid combinations of abstract facts and refinement strategies . . . 43
4.4. Statement *p = *p + *q encoded in SMTLIB with a byte-wise

memory array . 54

5.1. Classification of verification approaches 66
5.2. Sequential combination of algorithms as used in SV-COMP’15

submission . 72

6.1. Architecture of CPAchecker with components for predicate analysis 74

9.1. Requirements for reliable benchmarking 100

11.1. Scatter plot showing the influence of hyperthreading 114
11.2. Plot showing the influence of Turbo Boost, shared Level 3 cache,

and shared memory bandwidth . 116
11.3. Plot showing the influence of using multiple CPUs 117
11.4. Scatter plot showing the influence of multiple CPUs 118

13.1. Resource control and process isolation by runexec 133
13.2. Benchmarking with benchexec . 135

16.1. Quantile plots for CPU time of bitprecise SMT theories across all
available SMT solvers and algorithms 161

16.2. Quantile plots for CPU time of SMT theories with linear arithmetic
across all available SMT solvers and algorithms 166

16.3. Quantile plots for CPU time of SMT theories with linear arithmetic
using unsound overflows across all available SMT solvers and
algorithms . 170

ix

List of Figures

16.4. Quantile plots for CPU time of SMT theory combinations
QF_UFBVFP and QF_UFLIRA . 173

17.1. Quantile plots for CPU time of verifiers from SV-COMP’17 and
configurations of our framework for predicate-based software veri-
fication . 177

A.1. Example for a machine with a NUMA architecture: 2 AMD
Opteron 6380 CPUs, each with two groups of four modules of
two cores and 69 GB (64 GiB) of RAM 208

A.2. Example for a machine with a NUMA architecture: 2 Intel Xeon E5-
2650 v2 CPUs, each with eight physical cores with hyperthreading
and 68 GB (63 GiB) of RAM . 209

x

List of Tables

4.1. Classification of abstract facts according to fulfilled properties . . . 40
4.2. Possible combinations of SMT theories for encoding program se-

mantics . 51

5.1. Configurations of Predicate CPA for common SMT-based approaches 60

6.1. Interpolating SMT solvers . 76

16.1. Results for bitprecise SMT theories across all available SMT solvers
and algorithms . 160

16.2. Results for SMT theories with linear arithmetic across all available
SMT solvers and algorithms . 164

16.3. Results for SMT theories with linear arithmetic (encoding with
unsound overflows) across all available SMT solvers and algorithms 168

16.4. Comparison of SMT theory combinations QF_UFBVFP and
QF_UFLIRA . 172

17.1. Results for verifiers from SV-COMP’17 and configurations of our
framework for predicate-based software verification 176

xi

List of Algorithms

3.1. CPA+(D, eINIT, πINIT) . 22

5.1. CPA++(D, reached, waitlist, abort) . 58
5.2. Iterative-Deepening k-Induction with Invariants 62
5.3. CEGAR(D, eINIT, πINIT) for CPAs . 64

List of Listings

B.1. Example for using module runexec from a Python program . . . 211
B.2. Example for an XML file as input for program benchexec 212

xii

1. Introduction

Software has become an extremely important part of our lives, controlling many
safety-critical systems, such as power plants, planes, trains, and cars. In these
applications it is paramount to avoid bugs, but also in less critical systems such
as the software running on our personal machines or on servers, bugs can have
severe consequences. Testing [197] is a widely used approach for detecting bugs,
but is not able to find all bugs or prove absence of bugs. Manual [117, 141] or
semiautomatic [181, 201] verification is sometimes used in the development of
safety-critical systems, but is expensive because of the high effort and the need for
specialized experts, making it unsuitable for many software projects. Automatic
software verification is an attempt to fill the gap and provide higher confidence
than testing with less effort than manual verification: Given an input program
and a specification, a verification tool should determine automatically whether
the specification holds for the program, or whether there exists a counterexample.
Of course, because of the undecidability of the problem in general, the result
may also be inconclusive, for example because the verification tool gives up or
exceeds the available time and memory resources. Nevertheless, approaches such
as software model checking [83, 85, 204] have proven useful for example in the
verification of kernel drivers [11, 13, 50, 166] or other safety-critical software [56],
however, they are not yet used widely by software developers. Our goal is to
develop approaches and tools for automatic software verification in order to
bring it further towards a practically useful technique that allows developers
to build better software.

Progress in the field of automatic software verification depends among oth-
ers on a good theoretical understanding of approaches and the possibility to
effectively evaluate them in practice, i.e., by performing sound experiments with
regard to their effectivity and performance. We have identified three kinds of
problems in that regard.

1

First, we note that the presentation of verification approaches often differs
substantially, even if the approaches are related. This is not a problem per se, but
such superficial differences can obscure the actual conceptual differences, and
make it hard to understand what the core ideas of a given approach are and to
learn from the differences and relations of approaches.

Second, practical experimentation for evaluating approaches is often difficult.
Some approaches are implemented only in tools that are not freely available or in
academic research prototypes, which may, for example, support only a subset
of the input language and are not applicable to commonly used benchmark sets.
Such tools might also miss technical optimizations, and this can lead to flawed
experiments and wrong scientific conclusions that cannot be confirmed when a
better implementation is used [206]. Furthermore, one often needs to compare
several approaches against each other, but this can be problematic even if a tool
with a mature implementation exists for each of them. Different tools typically
differ in a lot of factors that can influence the performance heavily but are not
relevant to a comparison of their core approaches, for example in their runtime
environments, which libraries they use (e.g., as solver), and which optimizations
they have implemented. Thus, a comparison of different approaches implemented
in different tools may also lead to wrong conclusions.

Third, for valid performance experiments that allow us to draw meaningful
conclusions we also need to ensure that the benchmarking is reliable and its
results are precise and accurate. We have identified several problems in the tools
and techniques used for benchmarking in our field that can lead to unnoticed
measurement errors of arbitrary size. One instance of such a problem almost
invalidated the results of the 2nd International Competition on Software Verifi-
cation (SV-COMP’13), highlighting that the validity of results depends as much
on the benchmarked tool as well as on the benchmarking tool, but the latter is
often given too little attention. Furthermore, the complex hardware character-
istics of today’s machines need to be taken into account when benchmarking
to ensure replicable results. Because the evaluation of new contributions in the
field of automatic software verification is to a large degree based on performance
experiments, threats to the validity of these experiments must be taken seriously.

2

1. Introduction

A Flexible Domain Based on Predicates
(Part I)

• Definition of flexible framework
for predicate-based analyses

• Used to express common
verification approaches:

– Bounded model checking

– k-Induction

– Impact

– Predicate abstraction

• Implementation within
CPAchecker

Reliable Benchmarking
(Part II)

• Checklist with requirements for
benchmarking

• Study of influence of hardware
characteristics

• Technical solution for
benchmarking on Linux

• Benchmarking framework
BenchExec

Evaluation
(Part III)

• Study of influence of SMT solvers
and theories on four verification
approaches

• Comparison with state of the art
from SV-COMP’17

Figure 1.1.: Contributions of this thesis

1.1. Contributions

The goal of this thesis is to provide a solution to the aforementioned prob-
lems. We focus on software model checking based on predicates over pro-
gram variables, which is an important class of approaches for software verifica-
tion. This allows us to leverage the power of modern solvers for satisfiability
modulo theory (SMT) to build highly efficient and powerful analyses. Well-
known examples for predicate-based analyses are predicate abstraction [125] and
bounded model checking (BMC) [54], which are implemented in many successful
tools [13, 35, 41, 86, 87, 96, 116].

3

The main contribution of this thesis is the definition of a flexible and unifying
framework for approaches for automatic software verification that are based on
predicates. In addition to that, we also provide an explanation how to express four
common verification approaches using our framework, a mature implementation
of this framework as a highly configurable predicate analysis inside the tool
CPAchecker 1, a technical solution for reliable performance benchmarking with
our benchmarking framework BenchExec 2, and an experimental study using
our flexible framework that provides new insights. Figure 1.1 also lists these
contributions and their structure in this thesis.

Together, these contributions make it easy to design, implement, experiment
with, and use predicate-based analyses for software verification, hopefully allow-
ing this field to thrive even more in the future and to pave the way to making
software verification a part of every developer’s toolbox.

In particular, a unifying theoretical framework for analyses often helps to gain
new insights when approaches are expressed within the framework, and thus their
key differences with respect to other existing approaches are highlighted. This
might allow for example understanding why some approach performs better than
another, and might ease the design of and experiments with new combinations of
approaches. Using an existing well-known framework might also make it easier
to express some new approach and to read and understand it. We define such a
framework for predicate-based analyses based on our previous work of a domain
for predicate abstraction adjustable-block encoding [42], and we use it to express
four of the most common approaches for software verification in it: BMC 3 [54],
k-induction 4 [217], predicate abstraction 5 [125] with lazy abstraction [140], and
Impact-style lazy abstraction with interpolations 6 [190]. Our paper describing
an earlier version of this framework was published at FMCAD’12 [52] and an
updated version is to appear in the Springer journal JAR [33].

A mature implementation of an approach is not only useful when attempting
to apply the approach in practice, but also for researchers [6] because it is a
valuable base for experimental evaluation of further ideas and methods that

1 https://cpachecker.sosy-lab.org
2 https://github.com/sosy-lab/benchexec
3 Implemented for example in Cbmc [86], Esbmc [96], and Llbmc [116].
4 Implemented for example in 2ls [64], DepthK [207], Esbmc [195], and PKind [159].
5 Implemented for example in Blast [35], F-Soft [148], Satabs [87], and Slam [13].
6 Implemented for example in Ufo [4] and Wolverine [175].

4

https://cpachecker.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://cpachecker.sosy-lab.org
https://github.com/sosy-lab/benchexec

1. Introduction

build on this approach. A configurable and flexible framework also allows im-
plementing new approaches on top of it more easily. We have implemented our
approach in the software verification framework CPAchecker [41], which allows
verification of sequential C programs. This implementation was submitted to
the 1st International Competition on Software Verification (SV-COMP’12) and
won a silver medal in the category Overall as well as a gold medal in the cate-
gory ControlFlowInteger. Our paper describing the competition contribution was
published at TACAS’12 [187].

For being able to properly evaluate our framework for software verification,
we need to reliably measure performance in a replicable way. We begin with
defining a checklist of requirements for reliable benchmarking and studying
the potential influences of hardware characteristics. This allows researchers to
properly setup benchmarking experiments and reviewers to assess the quality
of benchmarking results. Then we explain a solution for reliable benchmarking
on Linux systems, which uses benchmarking containers based on cgroups and
namespaces. Furthermore, we have implemented an open-source benchmarking
framework BenchExec, which, in contrast to other benchmarking tools, imple-
ments this solution and fulfills all our requirements for reliable benchmarking.
BenchExec is not only suited for the evaluation performed for this work, but
was already adopted by several research groups and the International Compe-
tition on Software Verification (SV-COMP). A description of our benchmarking
requirements and BenchExec was published in the proceedings of the conference
SPIN’15 [46] and an extended version was accepted with minor revisions for
publication in the Springer journal STTT [49].

Using BenchExec as benchmarking framework we experimentally evaluate
our framework for software verification. We show its usefulness for performing
meaningful experiments by conducting a comprehensive study about the influ-
ence of SMT solvers and theories on experimental results for various verification
approaches. The flexibility of our framework allows us to compare 120 different
configurations, which took 3 620 days of CPU time across 671 280 verification
runs. This study shows that the choice of the SMT solver can have a significant
influence and create a bias against specific verification approaches. This is a valu-
able insight that means that such technical choices need to be carefully considered
by researchers when performing experiments with predicate-based verification
approaches. Furthermore, we demonstrate the effectivity and efficiency of the im-

5

plementation of our framework for software verification by comparing it against
top-ranking software verifiers from the 6th International Competition on Software
Verification (SV-COMP’17), showing that it is competitive with the state of the
art in software verification.

1.1.1. Availability of Data and Tools

All code that belongs to this thesis is freely available in the open-source tools
CPAchecker and BenchExec, which are both licensed under the permissive
Apache 2.0 license. The raw data for all experimental results as well as everything
that is necessary to repeat the experiments is also available online. 7

1.1.2. Achievements

The contributions of this thesis have already shown their value in a number of
successful research projects besides what is described in this work. The predi-
cate domain and its implementation were used in projects on conditional model
checking [36], witness validation [29, 30], block-abstraction memoization [233],
combining k-induction with auxiliary invariants to make it usable for software
verification [31], symbolic execution with CEGAR [43], verification of recursive
programs [75], regression verification [45], refinement selection [47], local pol-
icy iteration [164], and a study of algorithms for software model checking [28].
Its implementation has proven its effectiveness and efficiency in six years of
participation in SV-COMP, where it has (alone or in combination with other
analyses) helped to win 12 gold medals, 16 silver medals, and 16 bronze medals.8

These achievements of CPAchecker in SV-COMP have also been awarded by the
Kurt Gödel Society with a Gödel medal at the Vienna Summer of Logic 2014.9

Furthermore, CPAchecker with its predicate analysis is routinely used in the

7 https://www.sosy-lab.org/research/phd/wendler
8 Counting the following submissions, all of which make use of (parts of) the work presented

here:
CPAchecker-ABE [187] and CPAchecker-Memo [232] for SV-COMP’12 [19],
CPAchecker-Explicit [184] and CPAchecker-SeqCom [231] for SV-COMP’13 [20],
CPAchecker [186] for SV-COMP’14 [21],
CPAchecker [100], CPArec [76], and Unbounded Lazy-CSeq [199] for SV-COMP’15 [22], CPA-
BAM [119], CPA-kInd, CPA-RefSel [185], CPA-Seq, LPI [162], and UL-CSeq for SV-COMP’16 [23],
and CPA-BAM-BnB [7], CPA-kInd and CPA-Seq for SV-COMP’17 [24].

9 https://cpachecker.sosy-lab.org/achieve.php#awards

6

https://www.sosy-lab.org/research/phd/wendler
https://cpachecker.sosy-lab.org/achieve.php#awards

1. Introduction

Linux Driver Verification project 10 [166] to analyze device drivers of the Linux
kernel [165], and has helped to identify and fix a range of bugs in the Linux
kernel 11. Predicate-based analyses building on the concepts and the implemen-
tation described here are part of the default configuration of CPAchecker for
validating witnesses [29, 30], and are used as one of two witness validators to
validate results in SV-COMP [23, 24].

The benchmarking framework BenchExec is the technical foundation of SV-
COMP [23], one of the largest competitions in the field of computer-aided verifi-
cation with 32 participants and more than 400 000 benchmark runs in its latest
instance [24].

1.2. Structure

This thesis is structured as follows. In Part I we present a flexible domain for
software verification that is based on predicates. We provide a formal definition
of the framework in Chapter 4 and explain how to express various algorithms
for software model checking within it in Chapter 5. Chapter 6 describes our
implementation in the open-source software-verification framework CPAchecker.

Part II describes how to perform reliable benchmarks for experimental evalu-
ations. We present six important requirements for benchmarking in Chapter 9,
and in Chapters 10 and 11 we motivate these requirements by showing what
kinds of measurement errors can occur otherwise. Chapter 12 provides a solution
for how to implement a reliable benchmarking tool on Linux, and in Chapter 13
we present our open-source tool BenchExec, which implements this solution
and fulfills all the stated requirements.

Part III builds upon Part I and Part II by using our benchmarking solution to
perform an experimental study of our unifying framework for predicate analysis.
In Chapter 16 we study the effect of varying the SMT solver and the SMT theories
that are used for encoding program semantics across the verification approaches
that we have expressed in our unifying framework. Chapter 17 provides a
comparison of our implementation with top-ranking software verifiers from
SV-COMP’17.

10 http://linuxtesting.org/ldv
11 https://cpachecker.sosy-lab.org/achieve.php#bugsfound

7

http://linuxtesting.org/ldv
https://cpachecker.sosy-lab.org/achieve.php#bugsfound

Part I.

A Flexible Domain Based on

Predicates

Contents

2. Motivation 13

2.1. Overview . 16
2.2. Restrictions . 16

3. Background 19

3.1. Program Representation . 19
3.2. Configurable Program Analysis . 20

3.2.1. CPA Algorithm . 21
3.2.2. Composite CPA . 22
3.2.3. Basic CPAs . 23

3.3. Predicate Abstraction . 23
3.3.1. Counterexample-Guided Abstraction Refinement 24
3.3.2. Lazy Abstraction . 24
3.3.3. Adjustable-Block Encoding 25

3.4. Impact (Lazy Abstraction with Interpolants) 26
3.4.1. Impact with Forced Covering 27

3.5. Bounded Model Checking and k-Induction 28
3.6. CPAchecker . 29

4. Predicate CPA 31

4.1. Abstract Domain, Precisions, and CPA Operators 31
4.1.1. Abstract States . 31
4.1.2. Precisions . 33
4.1.3. Transfer Relation . 33
4.1.4. Merge Operator . 34
4.1.5. Stop Operator . 34
4.1.6. Precision-Adjustment Operator 35

11

4.2. Refinement . 37
4.2.1. Abstract-Counterexample Construction 37
4.2.2. Feasibility Check . 38
4.2.3. Abstract Facts and Discovery Strategies 38
4.2.4. Refinement Strategies . 43

4.3. Forced Covering . 47
4.4. Encoding C Semantics . 48

4.4.1. Nonlinear Arithmetic . 51
4.4.2. Pointer Accesses . 53
4.4.3. Heap Memory . 54

5. Applications 57

5.1. An Extended CPA Algorithm . 57
5.2. Unifying SMT-Based Approaches for Software Verification 59

5.2.1. Bounded Model Checking . 59
5.2.2. k-Induction . 61
5.2.3. Lazy Predicate Abstraction 64
5.2.4. Lazy Abstraction with Interpolants (Impact) 65

5.3. Comparison of SMT-based Approaches for Software Verification . 66
5.4. Configurability and Extensions . 68

5.4.1. Adjustable-Block Encoding for Impact 69
5.4.2. Flexible Bounded Analyses and Counterexample Checks . 69
5.4.3. Further Configuration Options 70
5.4.4. Sequential Combinations of Configurations 70

6. Implementation in CPACHECKER 73

6.1. Discovery Strategies for Abstract Facts 73
6.2. Strongest-Postcondition Operator . 75
6.3. SMT Solvers . 75

6.3.1. Comparison . 77
6.3.2. Integration in CPAchecker 78

7. Related Work 81

7.1. SMT-Based Algorithms for Software Model Checking 81
7.2. Extensions of the Studied Approaches 84
7.3. Software Verifiers . 86

12

2. Motivation

Many approaches for software model checking based on predicates and SMT
solving have been developed and studied in the last 20 years, for example
predicate abstraction [125, 140], bounded model checking [54] with and with-
out k-induction [217], lazy abstraction with interpolants [190], slicing abstrac-
tions [68, 114], and property-directed reachability [55, 62, 78]. Most of these
approaches have been implemented in software-verification tools 1, and some of
them are also used in practice for verifying software, e.g., for verification of ker-
nel drivers [11, 166]. However, the current state can be described as fragmented:
multiple approaches and tools coexist without much connection. A unifying
framework for all kinds of predicate-based analyses, which is highly configurable
and flexible, and for which a mature implementation exists, could be an important
step for further research in this area by bringing the following advantages.

A unifying theoretical framework for analyses often helps to gain new insights
when approaches are expressed within the framework, and thus their key differ-
ences with respect to other existing approaches are highlighted. This might allow
for example understanding why some approach performs better than another
one, and designing and experimenting with new combinations of approaches.
Using an existing well-known framework might also make it easier to express
and implement some new approach, and to read and understand it.

An example where a theoretical framework for software verification has proven
useful for research is configurable program analysis (CPA) [39]. This framework
has unified software model checking and (lattice-based) program analysis, and
different abstract domains have been expressed within it, including domains
for predicate abstraction [42], explicit-value analysis [44], BDDs [51], and inter-
vals [32]. The CPA concept has facilitated research with regard to the combination

1 e.g., Blast [35], Cbmc [86], CPAchecker [41], Esbmc [96], Kratos [79], Llbmc [116], Satabs [87],
Slam [13], Ufo [4], Ultimate Kojak [115], and Wolverine [175]

13

Part I. A Flexible Domain Based on Predicates

of abstract domains [8, 31, 44, 47] and the development of new verification ap-
proaches, e.g., local policy iteration [164].

A common framework also increases the validity of experimental evaluations
that compare the approaches that are expressed within it, because it minimizes all
other factors that can influence the experimental results. Such factors include not
only purely technical implementation differences, such as their runtime environ-
ment or the libraries they use, e.g., as solvers, but also conceptual improvements,
for example whether techniques such as the encoding of blocks of several pro-
gram operations at once [10, 27, 42] or loop acceleration [14, 57, 61, 151, 173] are
integrated.

Furthermore, being able to easily switch between and combine several verifica-
tion approaches can be important in practice. Even the best existing verification
approaches vary in their effectiveness if applied to verification tasks with different
characteristics [28], such as which kind of property is to be verified, whether the
analyzed program is more control-flow oriented or data heavy, whether precise
overflow semantics, recursion, concurrency, or unbounded heap structures need
to be supported, etc. This is shown for example by the results of SV-COMP’16 [23]:
Out of the 8 regular (non-meta) categories, 7 were won by different participants,
and the only submission that won 2 categories (CPA-Seq) is actually a configura-
tion that combines 8 individual approaches. This means that users of verifiers
might want to experiment with different approaches in order to find an approach
(or even a combination of approaches) that is well-suited for their uses cases,
something that is made more difficult or even impractical if every approach is
implemented in a different tool.

Of course, a mature and efficient implementation of an approach is important
for users that want to apply this approach in practice. However, the same is
true also for researchers that want to study a given approach using performance
benchmarking [6], a common method for evaluation in the field of software
verification. Such experimental evaluations may be based on complex source
code from real-world software, which a purely prototypical academic verifier
might not be able to parse.2 The quality of an implementation with regard
to efficiency is also relevant for a valid experimental evaluation. Experience
shows that missing optimizations can influence performance results in a way

2 For example, the Linux kernel, which is often used as case study and source of verification
tasks [19, 121, 165, 166, 196], uses many GCC-specific language extensions.

14

2. Motivation

that researchers draw conclusions that can no longer be upheld once these
purely technical optimizations get implemented [206]. And last but not least,
the challenges that occur while developing mature tools and applying them in
practice can lead to new insights that foster further scientific progress [10, 234].

A high flexibility and configurability of an approach is valuable because it
makes research on new variants easier. For example, in a framework that unifies
several approaches and is also highly configurable, one can experiment with
hybrid approaches that combine key elements from multiple of the existing
approaches.

Furthermore, a theoretically well-suited configuration could be unusable in
practice. For example, it could happen that in some situations the selection
of possible SMT solvers is restricted, maybe because of license or platform
incompatibilities, and the available SMT solvers do not support all necessary
features. Trade-offs between performance and correctness also may need to be
made. For example, handling overflows and bit-manipulation operators needs
support for the theory of bitvectors in the SMT solver, and this theory and
especially interpolation for it are not as widely available and stable as the theories
of linear arithmetic over integers and reals. In some cases, e.g., if the property to
check is conformance to a specific function-calling protocol, a user might consider
the risk of overflow-related specification violations low enough to use a faster but
unsound approximation with linear arithmetic instead of a bitprecise verification.
Thus, an analysis that aims to be useful for a broad spectrum of users should
be flexible enough to support such variants.

Our goal is to define a configurable and flexible framework for predicate-based
approaches that is helpful both in theory (by unifying approaches and thus simpli-
fying their development and study) as well as in practice (by being customizable
for different use cases). In addition, a mature and efficient implementation of
this framework should allow reliable scientific experiments and application in
practice of the approaches that are integrated now and in the future.

15

Part I. A Flexible Domain Based on Predicates

2.1. Overview

In the remainder of this part, we present the following contributions:

• We formally define the core of our framework, a flexible abstract do-
main based on predicates expressed as a configurable program analy-
sis [39] (Chapter 4). This CPA makes use of SMT solving and interpo-
lation [97], has support for lazy abstraction [140] and adjustable-block en-
coding (ABE) [42], and can be used for counterexample-guided abstraction
refinement (CEGAR) [84].

• We show how to express four common approaches for software model
checking using our abstract domain: predicate abstraction [125], lazy ab-
straction with interpolants (Impact) [190], bounded model checking [54],
and k-induction [217] (Chapter 5). This allows us to define new variants
and combination of these approaches.

• We describe our implementation of this framework for predicate-based
analyses in the open-source software verification framework CPAchecker [41],
which supports the verification of C programs (Chapter 6).

Later on, in Part III, we will provide an experimental evaluation of this frame-
work using the benchmarking techniques from Part II.

Our abstract domain is based on an existing CPA for predicate abstraction with
ABE [42]. A preliminary version of the Predicate CPA and the comparison of
predicate abstraction with Impact have been published previously [52], and a
publication that contains most of this part of this thesis is to appear soon [33].
Our implementation is also explained in the description of our first competition
contribution to SV-COMP [187].

2.2. Restrictions

Our goal is only the verification of safety properties [176] of sequential programs.
However, there exist techniques that may allow to adapt our approach to the
verification of liveness properties [215].

In this thesis, we discuss only the verification of nonrecursive C programs.
Verification of recursive programs can be reduced to an iterative verification of a

16

2. Motivation

series of nonrecursive programs [75]. Furthermore, specifically for CPA-based
analyses there exist the possibility to use block-abstraction memoization [233]
to add support for recursion [118]. The core of our framework including all
algorithms is not specific to C, and can be extended to other imperative and
related programming languages by replacing only the operator that is responsible
for encoding the semantics of program operations into formulas. The same holds
true for our implementation, if a parser frontend for the respective language
is added to CPAchecker.

17

3. Background

Before we define our framework, we provide basic definitions from the litera-
ture [35] and describe the existing approaches for predicate-based software model
checking that we will unify later (descriptions taken from [52]).

3.1. Program Representation

For simplicity, we initially restrict our presentation to programs in a simple im-
perative programming language without functions, in which all basic operations
are assume operations or assignments, and all variables are integers.1 Such a pro-
gram can be represented using a control-flow automaton (CFA), which is a directed
graph with program operations attached to its edges. A CFA A = (L, lINIT, G)

consists of a set L of program locations, an initial location lINIT ∈ L that represents
the program entry point, and a set G ⊆ (L×Ops× L) of edges between program
locations, each labeled with an operation that is executed when the control flows
along the edge. The set of all program variables that occur in the operations of a
CFA is denoted by X. A concrete data state c : X → Z is a mapping from program
variables to integers. A set of concrete data states is called region. We represent
regions using first-order formulas ψ over variables from X such that the set [[ψ]]
of concrete data states that is represented by ψ is defined as {c | c |= ψ}. A
concrete state (c, l) : (X → Z)× L is a pair of a concrete data state and a location.

An operation op ∈ Ops can either be an assignment of the form x := e with a
variable x ∈ X and an arithmetic expression e over variables from X, or an assume
operation [p] with a predicate p over variables from X. The semantics of an oper-
ation op is defined by the strongest-postcondition operator SPop(·). For a formula ψ

and an assignment x := e, it is defined as SPx:=e(ψ) = ∃x̂ : ψ[x→x̂] ∧ (x = e), and
for an assume operation [p] as SP[p](ψ) = ψ ∧ p.

1 Later on in Sect. 4.4 we will discuss how to extend this to the C programming language.

19

Part I. A Flexible Domain Based on Predicates

Note that in the implementation we can avoid the existential quantifier in the
strongest-postcondition operator for assignments by skolemization: Similarly to
a static single-assignment (SSA) form [99] like it is used by compilers, for each
program variable an SSA index counter is added that is incremented on every
assignment to the variable, and all variable accesses use the variable qualified with
the current index value. If this encoding is used, program variables in formulas
returned by SP(·) are always qualified by their SSA index, whereas program
variables in formulas representing regions are still used in the unqualified variant.
Thus, an appropriate renaming (adding or removing SSA indices) needs to be
done whenever these kinds of formulas are combined, e.g., in a conjunction.

A path σ = 〈(li, opi, lj), (lj, opj, lk), . . . , (lm, opm, ln)〉 is a sequence of consecutive
edges from G. A path is called program path if it starts in the initial location lINIT.
The semantics of a path is defined by the iterative application of SPop(·) for each
operation of the path: SPσ(ψ) = SPopm

(. . . (SPopi
(ψ)) . . .). A path σ is called

feasible if SPσ(true) is satisfiable, and infeasible otherwise. A location l is called
reachable if there exists a feasible path from lINIT to l.

A verification task (for safety verification) consists of a CFA A = (L, lINIT, G) and
an error location lERR ∈ L 2, with the goal to show that lERR is unreachable in A,
or to find a feasible error path (i.e., a feasible program path to lERR) otherwise.

3.2. Configurable Program Analysis

A configurable program analysis (CPA) [39] specifies the abstract domain that
is used for a program analysis. By using the concept of CPAs we can define the
abstract domain independently from the analysis algorithm: the CPA algorithm
is an algorithm for reachability analysis that can be used with any CPA. Further-
more, CPAs can be combined to compositions of CPAs. The CPAs defined in this
work make use of the extension CPA+ (dynamic precision adjustment) [40], but
for simplicity we continue to name them CPAs.

A CPA D = (D, Π, , merge, stop, prec) consists of an abstract domain D, a
set Π of precisions, a transfer relation , and the operators merge, stop, and
prec. The abstract domain D = (C, E , [[·]]) consists of a set C of concrete states,

2 We use a single error location for ease of presentation, our implementation allows more complex
specifications using monitor automata [26].

20

3. Background

a semilattice E = (E,v) over a set E of abstract-domain elements (i.e., ab-
stract states) and a partial order v (the join t of two elements and the join >
of all elements are unique), and a concretization function [[·]] that maps each
abstract-domain element to the represented set of concrete states. We call an
abstract state e ∈ E an abstract error state if it represents a concrete state at the
error location lERR, i.e., if ∃c ∈ (X → Z) : (c, lERR) ∈ [[e]]. The transfer re-
lation ⊆ E × E × Π computes abstract successor states under a precision.
The merge operator merge : E × E × Π → E specifies if and how to merge
two abstract states when control flow meets under a given precision. The
stop operator stop : E × 2E × Π → B determines whether an abstract state
is covered by a given set of abstract states. The precision-adjustment operator
prec : E×Π× 2E×Π → E×Π allows adjusting the analysis precision dynamically
depending on the current set of reachable abstract states. The operators merge,
stop, and prec can be chosen appropriately to influence the abstraction level of the
analysis. Common choices include mergesep(e, e′, π) = e′ (which does not merge
abstract states), stopsep(e, R, π) = (∃e′ ∈ R : e v e′) (which determines coverage
by checking whether the given abstract state is less than or equal to any other
reachable abstract state according to the semilattice), and precid(e, π, R) = (e, π)

(which keeps abstract state and precision unchanged).

3.2.1. CPA Algorithm

CPAs can be used by the CPA algorithm for reachability analysis (cf. Algo-
rithm 3.1), which gets as input a CPA and an initial abstract state with precision.
The algorithm does a classic fixed-point iteration by looping until the set waitlist is
empty (all abstract states have been completely processed) and returns the set of
reachable abstract states. In each iteration, the algorithm takes one abstract state e
with precision π from the waitlist, passes them to the precision-adjustment oper-
ator prec, computes all abstract successors, and processes each of the successors.
The algorithm checks if there is an existing abstract state with precision in the set
of reached states with which the successor abstract state is to be merged (e.g., at
join points where control flow meets after completed branching). If this is the
case, then the new, merged abstract state with precision substitutes the existing
abstract state with precision in both sets reached and waitlist. The stop operator en-

21

Part I. A Flexible Domain Based on Predicates

Algorithm 3.1 CPA+(D, eINIT, πINIT), taken from [40]

Input: a CPA D = (D, Π, , merge, stop, prec),
where E denotes the set of elements of the semilattice of D,
and an initial abstract state eINIT ∈ E with precision πINIT ∈ Π,

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of elements of E×Π

1: reached := {(eINIT, πINIT)}
2: waitlist := {(eINIT, πINIT)}
3: while waitlist 6= ∅ do
4: pop (e, π) from waitlist
5: (ê, π̂) := prec(e, π, reached) // Adjust the precision.
6: for all e′ with ê (e′, π̂) do
7: for all (e′′, π′′) ∈ reached do
8: enew := merge(e′, e′′, π̂) // Combine with existing abstract state.
9: if enew 6= e′′ then

10: waitlist :=
(

waitlist∪ {(enew, π̂)}
)
\ {(e′′, π′′)};

11: reached :=
(

reached∪ {(enew, π̂)}
)
\ {(e′′, π′′)};

12: if not stop(e′, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state?
13: waitlist := waitlist∪ {(e′, π̂)}
14: reached := reached∪ {(e′, π̂)}
15: return {e | (e, ·) ∈ reached}

sures that a new abstract state is inserted into the work sets only if this is needed,
i.e., the abstract state is not already covered by an abstract state in the set reached.

3.2.2. Composite CPA

Several CPAs can be combined (Composite pattern) using a Composite CPA [39].
The abstract states of the Composite CPA are tuples of one abstract state from
each component CPA, the precisions of the Composite CPA are tuples of one
precision from each component CPA, and the operators of the Composite CPA
delegate to the component CPAs’ operators accordingly.

The effect of such a combination of CPAs is that all used CPAs work together
in eliminating infeasible paths during the program analysis: one CPA might be
able to prove some specific paths infeasible, whereas other CPAs might rule out
other infeasible paths. The analysis will only find paths which all used CPAs
agree to be feasible. Note that this effect already occurs without any form of
communication or information exchange between the component CPAs, and

22

3. Background

neither does any of the component CPAs need to know anything about the others.
However, for an even higher precision, information exchange is possible if desired
using the strengthen operator ↓ [39] and precision-adjustment operator prec [40]
of the Composite CPA.

3.2.3. Basic CPAs

The possibility to combine CPAs by using a Composite CPA allows us to separate
different concerns: we extract certain common analysis components into separate
CPAs and reuse them in flexible combinations with other CPAs, instead of having
to redefine them for every analysis from scratch.

For example, for most kinds of program analyses it is necessary to track the
program counter, and it is often efficient to track the program counter explicitly
rather than symbolically. Thus, we use the Location CPA L [40], which tracks
exactly the program counter (with a flat lattice over all program locations, a
constant precision, and the operators mergesep, stopsep, and precid), and we use this
CPA in addition to other CPAs whenever explicit tracking of the program counter
is necessary. The same can be done for other reusable analysis components, such
as callstack tracking for an interprocedural analysis.

Furthermore, in order to track the abstract reachability graph (ARG) over
the abstract states in the (flat) set reached, we define an additional ARG CPA A,
which stores the predecessor-successor relationship between abstract states. The
ARG CPA allows us to reconstruct abstract paths in the ARG: An abstract path
is a sequence 〈e0, . . . , en〉 of abstract states such that for any pair (ei, ei+1) with
i ∈ {0, . . . , n− 1} either ei+1 is an abstract successor of ei, or ei+1 is the result of
merging an abstract successor of ei with some other abstract state(s). If both the
Location CPA and the ARG CPA are used, we can reconstruct from an abstract
path the path that it represents in the CFA.

3.3. Predicate Abstraction

Predicate abstraction [125] is a forward reachability analysis that unrolls the
CFA into an ARG until a fixed point is reached. Abstract states are represented
using predicates over program variables from a given set π (the precision). Given
an abstract state e and a CFA edge with an operation op, we create a successor

23

Part I. A Flexible Domain Based on Predicates

abstract state by computing a boolean combination of predicates from π that
is an overapproximation of SPop(e) (i.e., the concrete states reachable from e
via op). This overapproximation is computed using either cartesian or boolean
abstraction [12]. In order to speed up the coverage checks between abstract states
(which are necessary for determining whether the fixed point was reached), binary
decision diagrams (BDDs) [180] are used for representing the abstract states.

3.3.1. Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) [84] is an approach
for iteratively finding an analysis precision that is strong enough to prove the
program safe and coarse enough to allow for an efficient analysis. Starting with
a coarse initial precision (typically an empty set of facts, e.g., predicates), an
abstract model that is an overapproximation of the program is created by the
underlying reachability analysis. If an abstract state that belongs to the error
location is found in the abstract model, the concrete program path that leads to
this state is reconstructed from the ARG and checked for feasibility. If the error
path is feasible, the program is unsafe and the analysis terminates. Otherwise, the
error path is infeasible, and we refine the precision of the analysis to be precise
enough to eliminate this infeasible error path from the ARG. This is done by
computing a Craig interpolant [139] for each location on the path and adding
the predicates that are contained in these interpolants to the precision. Then the
analysis is restarted. Due to the properties of interpolants, the precision of the
reachability analysis will now be strong enough to allow ruling out the previously
found infeasible error path. These steps are repeated until either a concrete error
path is found, or the abstract model (and thus the program) is proven safe.

3.3.2. Lazy Abstraction

For improved performance, lazy abstraction [140] does not completely delete the
previously computed ARG after the refinement step of the CEGAR algorithm, but
recomputes only those parts of the ARG where the new predicates are necessary.
Furthermore, the new predicates will not be used globally for all abstraction
computations, but only in the part of the ARG and only at those locations of
the CFA, for which they are relevant. The analysis terminates if either a feasible

24

3. Background

error path is found, or a fixed point is reached during unrolling the ARG (in
which case the program is proven safe).

Predicate abstraction with CEGAR and lazy abstraction is for example imple-
mented in the software model checker Blast [35].

3.3.3. Adjustable-Block Encoding

Adjustable-block encoding (ABE) [42] aims at improving the performance of
predicate abstraction by reducing the number of abstraction computations and
refinements. It does not compute an abstraction for each new abstract state, but
instead it groups abstract states into blocks and computes abstractions only once
per block (at the end). With ABE, abstract states are now tuples of an abstraction
formula and a concrete path formula. The path formula of any abstract state always
represents a set of concrete paths from the block entry to the location of this
abstract state. When a new abstract state is created, the strongest postcondition
of the previous path formula and the current edge is created and used as the
path formula of the new abstract state. The abstraction formula is copied from
the previous abstract state. If there already exists an abstract state with the
same location inside the same block, both states are merged into one abstract
state by taking the disjunction of their path formulas. Only at the block end, an
abstraction of the conjunction of the abstraction formula and the path formula of
the current abstract state is computed and used as the new abstraction formula.
The path formula is reset to true at the block end.

ABE does not only reduce the number of abstraction computations, but also
the number of coverage checks (which are only done at block ends), and the size
of the ARG (due to merging of abstract states). The latter is the reason for a vastly
reduced number of refinements. During refinement, interpolants are computed
only for abstract states at the block ends, because only for those abstract states
predicates are needed for computing abstractions.

The block size for ABE can be freely chosen. If the block size is restricted to
one single CFA edge (we name this single-block encoding, or SBE), an abstraction
is computed for every new abstract state, corresponding to what is implemented
for example in Blast. Experiments have shown that for good performance,
the program structure should be taken into account when defining the block
encodings. A good configuration is for example to define block ends at loop-head

25

Part I. A Flexible Domain Based on Predicates

locations of the program (ABE-Loops), such that the blocks will be the largest
loop-free subgraphs of the CFA. Another suitable configuration with somewhat
smaller blocks is to define block ends not only at loop heads but also at function
entry and exit points (ABE-LF). This configuration of ABE has the same effect as
using large-block encoding (LBE) [27], an alternative approach that also groups
abstract states into blocks, but creates blocks of a fixed size during a preprocessing
of the CFA instead of dynamically during the analysis like ABE.

Predicate abstraction with ABE is implemented, for example, in CPAchecker.

3.4. IMPACT (Lazy Abstraction with Interpolants)

The Impact algorithm [190] is another CEGAR-based approach that creates an
unwinding of the CFA with abstract states that are labeled with a formula over
the program variables. However, it never performs abstraction computations,
and instead initializes all new abstract states to true. This is similar to how
predicate-abstraction algorithms work while the precision is still empty.

The algorithm consists of three basic steps, which are applied until no further
change can be made. In theory, the steps can be executed in any order, but the
right strategy is crucial for good performance. The steps are:

Expand(e) If the abstract state e has no successors (i.e., it is a sink in the ARG)
and is not covered, create the successor abstract states using true as their initial
formula, and add them to the ARG.

Refine(e) If e is an abstract state at the error location with a formula different
from false, compute inductive interpolants for the path from the ARG root to
this abstract state. For each abstract state along this path, the corresponding
interpolant is conjoined to the formula of the abstract state, and the abstract
state is marked as not covered. If the path to the error location is infeasible, the
formula of the abstract state at the error location is guaranteed to be false (which
marks unreachable abstract states) after this step.

Cover(e1, e2) In this step, an abstract state e1 is marked as covered by another
abstract state e2 if the following properties hold:

26

3. Background

• e2 is (and all of its ancestors are) not covered,

• both abstract states belong to the same program location,

• the formula of e1 implies the one of e2, and

• e1 is not an ancestor of e2.

If e1 gets marked as covered, then (1) all abstract states that are covered by e1 or
e1’s children are uncovered, and (2) all children of e1 are implicitly considered as
covered. Note that covered abstract states never cover any other abstract states
themselves, i.e., no chains of coverage exist. In order to prevent an infinite loop
of coverings and uncoverings, the step Cover may be applied only to pairs (e1, e2)

where e1 was created after e2 (only older abstract states can cover newer abstract
states, not vice versa).

The application order of the steps as proposed by McMillan is to expand
abstract states in a depth-first search. During the search, he keeps the invariant
that the abstract state that is currently being expanded, and all its ancestors, are
not coverable by any other abstract state (otherwise the current abstract state
would not need to be expanded). As soon as an abstract state is found that belongs
to the error location, the refinement procedure is run for this abstract state. After
a successful refinement, the invariant that no abstract state on the path from the
ARG root to the current abstract state is coverable is re-established by trying
to cover all these abstract states. This can be optimized by checking only those
abstract states that have been strengthened during refinement. This algorithm
corresponds to the core algorithm of Impact, as presented by McMillan [190]. It
is not available in Impact without the following optimization.

3.4.1. IMPACT with Forced Covering

When a new abstract state is created in the Impact algorithm, its formula is always
true and thus it can only be covered by another abstract state at the same location
that also has the formula true. However, after some refinements, most abstract
states are expected to have stronger formulas, and thus coverage is unlikely,
causing a large number of expansions and abstract states. As an optimization,
one can try to immediately strengthen the formula of a new abstract state such
that this abstract state can be covered by an existing abstract state at the same

27

Part I. A Flexible Domain Based on Predicates

location. This is called forced covering. In order to forcefully cover an abstract
state e1 by another abstract state e2, the path from the nearest common ancestor
of both abstract states to e1 is considered. If it can be proven that the formula
of e2 holds at the location of e1 after following this path from the nearest common
ancestor, the formula of e2 can be set as the formula of e1. Thus, e1 is immediately
covered by e2. Additionally, the abstract states along the path from the nearest
common ancestor to e1 are strengthened by computing Craig interpolants for this
path. This corresponds to the algorithm used for the benchmarks in the Impact
article and to the tool implementation [190].

3.5. Bounded Model Checking and k -Induction

Bounded model checking (BMC) [54] is an approach that is aimed at finding
bugs instead of proving safety. It unrolls all loops in the program up to a
given loop bound k and encodes the resulting program in a single SAT or SMT
formula, which is checked for satisfiability. The formula is constructed such that
its satisfiability corresponds to whether a specification violation exists within
the first k loop iterations of the programs. To check if we have already verified
the full state space of the program or whether there are reachable states in the
k + 1st loop iteration we can use a similar satisfiability check of the forward
condition [120]. In the latter case we can retry the bounded model check with
a higher value of k. However, iterating this process may not terminate if the
program has unbounded loops.

In order to verify programs with unbounded loops, we can use an approach
based on k-induction [111, 217]. Like a standard induction proof, a k-induction
proof consists of two steps [229]: In the base case, we check that no specification
violation exists within the first k loop iterations (this is the same as doing BMC
with loop bound k). In the step case, we assume that no specification violation
exists in any k consecutive loop iterations and check whether this implies that no
specification violation exists in the k + 1st loop iteration. If both steps succeed,
the program is safe. Otherwise we can iteratively try again using higher values
of k (k-induction gets more powerful with increasing k [229]). Note that for
software verification, it is usually necessary to use auxiliary invariants in addition
to k-induction because k-induction alone is not strong enough to verify typical

28

3. Background

programs [110]. Besides using manually annotated invariants [111], auxiliary
invariants for k-induction can be generated automatically using abstract interpre-
tation [109, 207], or by deriving candidate invariants from templates and checking
their validity using k-induction [64, 158]. It is beneficial to combine both kinds
of invariant-generation techniques and to let the invariant generator(s) produce
incrementally stronger invariants while running in parallel to the k-induction
procedure [31].

A well-known bounded model checker is Cbmc, and bounded model checking
with k-induction is for example implemented in Esbmc.

3.6. CPAchecker

CPAchecker 3 [41] is an open-source framework for software verification under
the Apache 2.0 license based on the CPA concept. CPAchecker supports verifica-
tion of C programs (GNU C and C 11 [147]) using the parser of the Eclipse CDT
project. Because it is written in Java it runs on all major platforms. CPAchecker
can also be used as a cloud service [34].

The first step of an analysis with CPAchecker is the creation of a CFA for the
given program. The core of CPAchecker is the CPA algorithm (cf. Algorithm 3.1).
This algorithm uses a CPA to analyze the given program. A typical configuration
consists of some basic CPAs, e.g., the Location CPA for program-counter tracking
(cf. Sect. 3.2.3), and one or more CPAs implementing the main abstract domain of
the analysis, such as the Predicate CPA that we define in Chapter 4, all wrapped in
a Composite CPA. Furthermore, the CPA algorithm can be wrapped inside further
algorithms that implement approaches such as CEGAR (cf. Sect. 3.3.1), sequential
combinations of analyses [100, 186, 231], or conditional model checking [36]. The
verification result typically consists of the set of all reachable abstract states as
determined by the CPA algorithm.

3 https://cpachecker.sosy-lab.org

29

https://cpachecker.sosy-lab.org

4. Predicate CPA

We define the core of our framework for predicate-based analyses as a CPA (with
some extensions), which we name the Predicate CPA P. It is an extension of an
existing CPA for predicate abstraction with adjustable-block encoding (ABE) [42],
and a preliminary version was already published [52].

The Predicate CPA P = (DP, ΠP, P, mergeP, stopP, precP) consists of the ab-
stract domain DP, the set ΠP of precisions, the transfer relation P, the merge
operator mergeP, the stop operator stopP, and the operator precP for dynamic
precision adjustment. Additionally, we will define an operator fcoverP for Impact-
style forced covering and an operator refineP for refinements. In the following,
we will define and describe these parts in more details. An overview over the
architecture of the Predicate CPA can be seen in Fig. 4.1. In this UML-style
diagram, dashed italic boxes represent components that have several possible
implementations (shown below the dashed box) and can be configured as desired.
In Chapter 5 we will then discuss how to use this CPA in various approaches for
software model checking by choosing appropriate configurations.

4.1. Abstract Domain, Precisions, and CPA Operators

The abstract domain DP = (C, EP, [[·]]P) consists of the set C of concrete states,
the semilattice EP over abstract states, and the concretization function [[·]]P. The
semilattice EP = (EP,vP) consists of the set EP of abstract states and the partial
order vP.

4.1.1. Abstract States

Because of the use of ABE, an abstract state e ∈ EP of the Predicate CPA is
a triple (ψ, lψ , ϕ) of an abstraction formula ψ, the abstraction location lψ (the
program location where ψ was computed), and a path formula ϕ. Both formulas

31

Part I. A Flexible Domain Based on Predicates

CPA

Predicate CPA P

DP =
(C, EP, [[·]]P)

ΠP
 P mergeP stopP precP

Strongest
Postcondition

SMT Theory

ABVFP

. . .

QF_UFLIRA

Region
Representation

BDD

SMT-based

Predicate
Abstraction

Cartesian

Boolean

blk

blkSBE

blkl

blklf

blknever

fcoverP

fcoverid

fcoverImpact

refineP

Abstract
Facts

Interpolants

Path
Invariants

Unsat Cores

Weakest
Preconditions

Heuristic
Predicates

Refinement
Strategy

Predicate

Impact

Figure 4.1.: Components of the Predicate CPA

are first-order formulas over predicates over the program variables from the set X,
and an abstract state represents all concrete states that satisfy their conjunction:
[[(ψ, lψ , ϕ)]]P = {c ∈ C | c |= (ψ ∧ ϕ)}. The partial order vP is defined as
(ψ1, lψ

1, ϕ1) vP (ψ2, lψ
2, ϕ2) = ((ψ1 ∧ ϕ1)⇒ (ψ2 ∧ ϕ2)), i.e., an abstract state is

less than or equal to another state if it implies the other state. Abstract states
where the path formula ϕ is true are called abstraction states, other abstract states
are intermediate states. The transfer relation produces only intermediate states,
and at the end of a block of program operations the operator prec computes
an abstraction state from an intermediate state. The initial abstract state is the
abstraction state (true, lINIT, true).

The path formula of an abstract state is always represented syntactically as an
SMT formula. The representation of the abstraction formula, however, can be
configured. We can either use a binary-decision diagram (BDD) [70], as in classic

32

4. Predicate CPA

predicate abstraction [35, 125], or an SMT formula similar to the path formula.
Using BDDs allows performing cheap entailment checks between abstraction
states at the cost of an increased effort for constructing the BDDs.

4.1.2. Precisions

A precision π ∈ ΠP of the Predicate CPA is a mapping from program locations
to sets of predicates over the program variables. This allows using a different
abstraction level at each location in the program (lazy abstraction). The initial
precision is typically the mapping π(l) = ∅, for all l ∈ L. However, one can also
seed the analysis by supplying an initial precision that already contains some
predicates, for example by using a heuristic that creates promising predicates
from assume edges of the CFA, or by precision reuse [45] of the precision of
a previous analysis of the same or a similar program. This can speed up the
analysis substantially by reducing the amount of necessary refinements.

The standard Predicate CPA does not use dynamic precision adjustment [40]
during an execution of the CPA algorithm: instead the precision is adjusted
only during a refinement step, if the predicate refinement strategy is used. The
only operation that changes its behavior based on the precision is the predicate
abstraction that may be computed at block ends by the operator precP.

4.1.3. Transfer Relation

The transfer relation (ψ, lψ , ϕ) ((ψ, lψ , ϕ′), π) for a CFA edge (li, opi, lj) pro-
duces a successor state (ψ, lψ , ϕ′) such that the abstraction formula and lo-
cation stay unchanged and the path formula ϕ′ is created by applying the
strongest-postcondition operator for the current CFA edge to the previous path
formula: ϕ′ = SPopi

(ϕ). Note that this is an inexpensive, purely syntactical opera-
tion that does not involve any actual solving, and that it is a precise operation,
i.e., it does not perform any form of abstraction. The details of how the semantics
of program operations are encoded in the path formula are described in Sect. 4.4.

33

Part I. A Flexible Domain Based on Predicates

4.1.4. Merge Operator

The merge operator mergeP combines intermediate states that belong to the same
block (their abstraction formula and location is the same), and keeps any other
abstract states separate:

mergeP((ψ1, lψ
1, ϕ1), (ψ2, lψ

2, ϕ2), π) =(ψ2, lψ
2, ϕ1 ∨ ϕ2) if (ψ1 = ψ2) ∧ (lψ

1 = lψ
2)

(ψ2, lψ
2, ϕ2) otherwise

This definition is common for analyses based on ABE. By merging abstract states
inside each block, the number of abstract states in the ARG is kept small, and no
precision is lost due to merging, because the path formula of an abstract state
exactly represents the path(s) from the block start without abstraction. At the
same time the loss of information that would lead to a path-insensitive analysis
if states would be merged across blocks is avoided. The result is that the ARG,
if projected to contain only abstraction states, forms an abstract reachability
tree (ART) like in a path-sensitive analysis without ABE. This is necessary for
being able to reconstruct abstract paths, for example during refinement and for
reporting concrete error paths.

4.1.5. Stop Operator

The stop operator stopP checks coverage only for abstraction states, and always
returns false for intermediate states:

stopP((ψ, lψ , ϕ), R, π) =∃(ψ′, lψ ′, ϕ′) ∈ R : ϕ′ = true∧ (ψ, lψ , ϕ) vP (ψ′, lψ ′, ϕ′) if ϕ = true

false otherwise

Because the path formula of an abstraction state is always true, the first case
is equivalent to checking if there exists an abstraction state (ψ′, ·, true) in the
set R whose abstraction formula ψ′ is implied by the abstraction formula ψ of
the current abstraction state (ψ, lψ , ϕ). If abstraction formulas are represented
by BDDs, this is an efficient operation, otherwise a potentially costly SMT query

34

4. Predicate CPA

is required. The coverage check for intermediate states is omitted for efficiency,
because it would always need to involve (potentially many) SMT queries. Note
that this implies that infinitely long sequences of intermediate states must be
avoided, otherwise the analysis would not terminate.

4.1.6. Precision-Adjustment Operator

The precision-adjustment operator precP either returns the input abstract state and
precision, or converts an intermediate state into an abstraction state performing
predicate abstraction. The decision is made by the block-adjustment opera-
tor blk [42], which returns true or false depending on whether the current block
ends at the current abstract state and thus an abstraction should be computed.
The decision can be based on the current abstract state as well as on information
about the current program location. We define the following common choices
for blk: blkSBE always returns true, leading to single-block encoding (SBE). blklf

returns true at loop-heads, function calls/returns, and at the error location lERR,
leading to a behavior similar to large-block encoding (LBE) [27]. blkl returns true
only at loop-heads and at the error location lERR. The abstraction at the error
location is needed for detecting the reachability of abstract error states due to
the satisfiability check that is implicitly done by the abstraction computation
if the precision is not empty. blknever always returns false. This will prevent all
abstractions and (due to how stopP is defined) also prevents coverage between
abstract states. This means that an analysis with blknever will unroll the CFA
endlessly until other reasons prevent this. We will show a meaningful application
of blknever in Sect. 5.2.1 (BMC).

A predicate abstraction (ϕ)ρ of a formula ϕ for a set ρ of predicates is a boolean
combination of predicates from ρ that is at least as abstract as ϕ, i.e., ϕ⇒ (ϕ)ρ

for all sets ρ of predicates. To create an abstraction state from an intermediate
state (ψ, lψ , ϕ) at program location l (which is tracked by another CPA running
in parallel and can be retrieved from there), we compute a predicate abstraction
(ψ ∧ ϕ)π(l) for the formula ψ∧ ϕ and the set π(l) of predicates from the precision,
after adjusting the variable names of ψ to match those of ϕ (because the variables

35

Part I. A Flexible Domain Based on Predicates

from ψ need to match the ’oldest’ variables in ϕ). Thus, we can define the
precision-adjustment operator as

precP((ψ, lψ , ϕ), π, R) =

(((ψ ∧ ϕ)π(l), l, true), π) if blk((ψ, lψ , ϕ), l)

((ψ, lψ , ϕ), π) otherwise

Note that, if an abstraction is going to be computed, the current path formula ϕ

precisely represents all the paths within this block (i.e., from the last abstraction
state to the current abstract state). Thus, we name this path formula the block
formula for the block ending in the current abstract state.

There exist two possible choices for computing the predicate abstraction: carte-
sian abstraction and boolean abstraction [12]. The cartesian predicate abstrac-
tion (ϕ)

ρ
C

of a formula ϕ for a set ρ of predicates is the strongest conjunction of
predicates. It can be computed by creating the conjunction of all predicates pi ∈ ρ

which are implied by ϕ, i.e., (ϕ)
ρ
C
=
∧

p∈{p′∈ρ|ϕ⇒p′} p. The boolean predicate ab-
straction (ϕ)

ρ
B of a formula ϕ for a set ρ of predicates is the strongest boolean

combination of predicates. It can be computed using an SMT solver by solv-
ing ϕ ∧∧pi∈ρ(vpi ⇔ pi) and enumerating all its models with respect to the fresh
boolean variables vp1 , . . . , vp|ρ| (this is called AllSMT). For each model we create
a conjunction over the predicates from ρ, with each predicate pi being negated
if the model maps the corresponding variable vpi to false. The result of (ϕ)

ρ
B is

the disjunction of all these conjunctions [177].

It has been shown that in practice boolean abstraction is too expensive for
single-block encoding, whereas cartesian abstraction is too imprecise for larger
blocks [27, 42], because with larger blocks disjunctions may appear in the path for-
mula, and cartesian abstraction often overapproximates disjunctive facts too much.
Note that if disjunctions appear for other reasons in the path formula, cartesian
abstraction may be too imprecise even for single-block encoding. Optimizations
are also possible, such as filtering out all predicates that are trivially irrelevant
because their set of free variables does not intersect with the free variables of the
input formula, or by computing the cartesian abstraction first and computing the
boolean abstraction only over those predicates whose truth value could not be
determined by the cartesian abstraction. If the precision is empty for the current
program location, the outcome of the abstraction computation will always simply
be true and no SMT queries are necessary. If the precision for the current program

36

4. Predicate CPA

Abstract-
Counterexample

Construction

Feasibility
Check Feasible?

Abstract-Fact
Discovery

Abstract-Model
Refinement

Return unchanged
reached and waitlist

(analysis will terminate and
report error path)

Return updated
reached and waitlist

(analysis will continue)

No

Yes

Figure 4.2.: Refinement steps

location is {false}, the abstraction computation will be equivalent to a simple
satisfiability check, and the outcome will always be either true or false.

4.2. Refinement

The refinement operator refineP takes as input two sets reached ⊆ E × Π of
reached abstract states and waitlist ⊆ E×Π of frontier abstract states, and expects
reached to contain an abstract error state at error location lERR that represents a
specification violation. refine either returns the sets unchanged (if the abstract
error state is reachable, i.e., there is a feasible error path), or modified such that
the sets can be used for continuing the state-space exploration with an increased
precision (if the error path is infeasible). The operator works in four steps, which
are shown in Fig. 4.2.

4.2.1. Abstract-Counterexample Construction

The first step is to construct the set of abstract paths between the initial abstract
state and the abstract error state. Traditionally, in an abstract reachability tree,
there would exist exactly one such abstract path. Because we use ABE, however,
intermediate states can be merged, and thus the abstract states form an abstract
reachability graph, where several paths can exist from the initial abstract state to
the abstract error state. All these abstract paths to the abstract error state contain
the same sequence of abstraction states with varying sequences of intermediate
states in between. This is due to the fact that abstraction states are never merged,
and intermediate states are merged only locally within a block. Thus, the ARG,
if projected to the abstraction states, still forms a tree. The initial abstract

37

Part I. A Flexible Domain Based on Predicates

state is always an abstraction state by definition, and our choices of the block-
adjustment operator blk ensure that all abstract error states are also abstraction
states. Thus, we define as abstract counterexample the sequence 〈e0, . . . , en〉 that
begins with the initial abstract state (e0 = eINIT), ends with the abstract error
state en, and contains all abstraction states e1, . . . , en−1 on paths between these two
abstract states. This sequence can be reconstructed from the ARG by following a
single arbitrary abstract path backwards from the abstract error state (using the
information tracked by the ARG CPA), without needing to explicitly enumerate
all (potentially exponentially many) abstract paths between the initial abstract
state and the abstract error state.

4.2.2. Feasibility Check

From an abstract counterexample 〈e0, . . . , en〉we can create a sequence 〈ϕ1, . . . , ϕn〉
of block formulas where each ϕi represents all paths between ei−1 and ei. Note
that each ϕi is also exactly the same formula as the path formula that was used as
input when computing the abstraction for state ei. Then we check whether there
exists a feasible concrete path that is represented by one of the abstract paths
of the abstract counterexample by checking the counterexample formula

∧n
i=1 ϕi

for satisfiability in a single SMT query. If satisfiable, the analysis has found a
violation of the specification and terminates. A concrete program path that is a
witness for the specification violation [25, 30] can be reconstructed from a satisfy-
ing assignment for the counterexample formula. Otherwise, i.e., if all abstract
paths to the abstract error state are infeasible under the concrete program seman-
tics, we say that the abstract counterexample is spurious, and a refinement of the
abstract model is necessary to eliminate this infeasible error path from the ARG.

4.2.3. Abstract Facts and Discovery Strategies

Afterwards, refineP discovers some abstract facts, which are later used for re-
fining the abstract model. For an abstract counterexample 〈e0, . . . , en〉, a se-
quence 〈τ0, . . . , τn〉 of abstract facts can often be computed from the proof of
unsatisfiability of the corresponding counterexample formula. Typical abstract
facts about the analyzed program are interpolants or invariants, but other choices

38

4. Predicate CPA

are also possible. We are interested in studying categories of abstract facts, and
thus classify them according to the following properties:

(1) whether each fact in a sequence of abstract facts is guaranteed to hold at its
respective location in the abstract counterexample, and whether the whole
sequence is inductive (τ0 = true∧ ∀i ∈ [1, n] : (τi−1 ∧ ϕi ⇒ τi));

(2) whether they guarantee progress by always ruling out the currently ana-
lyzed spurious abstract counterexample (τn = false);

(3) whether they never contain irrelevant symbols;

(4) whether there exists an algorithm that is guaranteed to find such abstract
facts; and

(5) whether they are always inductive invariants.

Note that no kind of abstract fact can fulfill all these properties, because finding
inductive invariants that are strong enough to rule out a given infeasible path
is in general undecidable.

Even abstract facts that are not guaranteed to hold or which do not guarantee
progress may still be useful, for example when boolean combinations of these facts
might fulfill these properties. Using abstract facts that do not fulfill property (3)
can be inefficient, either because of the unnecessarily large formulas or because
such abstract facts can reduce coverage between abstract states (if an abstract state
is more precise than necessary). Inductive invariants are expected to be especially
beneficial for the progress of the analysis, because these will not cause unrolling
of loops, which can happen with noninductive abstract facts. Thus, it is expected
that with inductive invariants the analysis may be able to converge faster.

Table 4.1 categorizes four kinds of abstract facts that are used by existing tools
and approaches according to which of the presented properties hold for them.
In the following, we describe them in more detail. Of course, it would also be
possible to use a combination of various kinds of abstract facts, for example,
falling back to something else if the primary choice fails or would use too many
resources.

39

Part I. A Flexible Domain Based on Predicates

Table 4.1.: Classification of abstract facts according to fulfilled properties

Property

(1) (2) (3) (4) (5)

Interpolants [139] 3 3 3 3 7

Path Invariants [38, 174] 3 3 7 7 3

Weakest Preconditions [140, 178, 183] 7 3 7 3 7

Heuristic Predicates [104] 7 7 7 3 7

Interpolants

The most commonly used kind of abstract facts are (inductive) Craig inter-
polants [97]. Given a sequence ϕ̂ = 〈ϕ1, . . . , ϕn〉 of formulas whose conjunction
is unsatisfiable, a sequence 〈τ0, . . . , τn〉 is an inductive sequence of interpolants
for ϕ̂ if

1. τ0 = true and τn = false,

2. ∀i ∈ {1, . . . , n} : τi−1 ∧ ϕi ⇒ τi, and

3. for all i ∈ {1, . . . , n− 1}, τi references only variables that occur in
∧i

j=1 ϕi

as well as in
∧n

j=i+1 ϕi.

By definition, interpolants fulfill the properties (1), (2), and (3) of our catego-
rization of abstract facts. For many common SMT theories, interpolants are
guaranteed to exist and can be computed using off-the-shelf SMT solvers from a
proof of unsatisfiability for

∧n
i=1 ϕi, thus property (4) is typically fulfilled as well.

Note that in general there exist many possible sequences of interpolants for a
single infeasible error path. Which interpolants are used can have a large effect
on the performance of the whole analysis and even make the difference between
finding a safety proof and not terminating at all [48], for example if the used
interpolants lead to iterative unrolling of a long loop of the program. No known
strategy exists to compute the best interpolant sequence for an abstract coun-
terexample although several approaches for improving the quality of interpolants
have been proposed (cf. Sect. 7.2).

40

4. Predicate CPA

Path Invariants

Another approach is to reconstruct a path program from the abstract counterexam-
ple and generate invariants for this path program [38]. A path program is created
from the abstract counterexample by constructing a slice of the original program
that consists of exactly the program locations and CFA edges that occur at least
once in a path of the abstract counterexample. Intuitively, this means that any
unwound loops in the abstract counterexample are replaced by the original loop.
Thus, the path program represents not only all program paths that are present in
the abstract counterexample, but also all other programs paths that traverse the
same CFA edges with a different number of loop iterations. If there is an unbound
loop in the program, a path program can represent infinitely many paths.

There exist several possibilities for computing invariants for a path program.
One is to give the path program to an invariant generator [38] in the hope of
retrieving invariants that are strong enough to prove infeasibility of the error
location in the path program. Any kind of standard technique for invariant
generation can be used for this, for example a constraint-based generator [38], or
an abstract interpreter [127]. If the invariant generator succeeds, the produced
path invariants can be used as abstract facts that fulfill the properties (1), (2),
and (5). The advantage of this technique is that path invariants rule out not only
the current spurious abstract counterexample, but also other (up to infinitely
many) potential error paths, and prevent loop unrolling. The disadvantage is that
the invariant generator is not guaranteed to succeed (property (4) does not hold),
because path programs are full-fledged programs and can be as complex as the
original program. However, the assumption is that path programs are typically
only a small fragment of the original program, and the invariant generator is
more likely to succeed on these smaller programs than on the original program.

Another possibility is to attempt to compute closed forms of the loops in the
path program, and use these as invariants [174]. Computing closed forms of loops
is called loop acceleration, and various techniques exist that are applicable to
certain kinds of loops [14, 57, 61, 151, 173]. Loop acceleration will not always find
a precise closed form for a given loop. In this case, it is also possible to combine
loop acceleration with interpolation [72, 145], and compute interpolants for under-
or overapproximations of the loop. Such interpolants can still be more general
than interpolants that would be computed for the abstract counterexample itself.

41

Part I. A Flexible Domain Based on Predicates

Weakest Preconditions

The use of weakest preconditions [106] for abstraction refinement is an alternative
to using interpolation, e.g., when suitable interpolating SMT solvers are not
available for the required SMT theories. A weakest precondition can be seen
as the inverse of the strongest postcondition that the operator SP(·) computes:
given a formula ψ that represents a region and a program operation op, the
weakest precondition wpop(ψ) represents the largest region such that applying op
to each of its concrete states yields only concrete states represented by ψ. When
we apply the weakest-precondition operator repeatedly for the operations along
the spurious abstract counterexample, starting with the region true at the error
location, we get an unsatisfiable formula (otherwise the abstract counterexample
would be not be spurious). Thus, we can use the predicates that appear in the
proof of unsatisfiability as abstract facts for refining the abstract model [140, 178].
This guarantees progress (property (2)) [140] and such predicates can always
be computed if the underlying SMT theory is decidable (property (4)), however,
contrary to interpolants, the predicates that are extracted from the proof of
unsatisfiability are not guaranteed to hold at any location along the paths of the
abstract counterexample, and they might contain irrelevant symbols. Of course,
they are also not guaranteed to be invariants. This approach can be optimized
by using unsat cores [82] in order to compute a subset of the clauses of the
weakest preconditions that is sufficient for proving unsatisfiability [183]. This
approach yields fewer irrelevant predicates, but still does not guarantee that
only necessary symbols occur.

Heuristic Predicates

Instead of computing abstract facts that guarantee progress by ruling out the
current spurious abstract counterexample, we can also apply some heuristics
that generate predicates syntactically. While it might seem counterintuitive
to use heuristics while other approaches that guarantee usable results exist,
heuristics also have advantages. They are often cheap to compute, especially
when compared to path invariants, and it may be possible to define heuristics that
prefer abstract facts that are well-suited for the analysis (e.g., do not cause loop
unrolling), whereas for example with interpolation it is more difficult to guide
the computation towards “good” interpolants. In order to avoid running into a

42

4. Predicate CPA

Interpolants

Path Invariants

Weakest Preconditions

Heuristic Predicates

Impact Refinement

Predicate Refinement

Figure 4.3.: Valid combinations of abstract facts and refinement strategies

loop that detects and refines the same abstract counterexample endlessly, we can
use heuristics for predicate generation in a first attempt, and fall back to another
approach when we encounter a previously seen abstract counterexample again.

Possible heuristics for generating predicates can for example include taking
some of the conditions encountered along the error path. Specifically the con-
ditions close to the error location can be relevant, because in cases like the
verification of assertions that are included in the source code, these conditions
encode the specification. It is also possible to look at the roles of variables [105]
in the program and generate specific predicates depending on how each variable
is used [104].

4.2.4. Refinement Strategies

Lastly, refineP needs to refine the precision of the analysis such that afterwards the
analysis (hopefully) does not encounter the same error path again. A refinement
strategy uses the current spurious abstract counterexample 〈e0, . . . , en〉 and the
corresponding sequence 〈τ0, . . . , τn〉 of abstract facts to modify the sets reached

and waitlist. For this step, two common approaches exist. Afterwards, the
refinement is finished, the modified sets reached and waitlist are returned to the
analysis, and the analysis continues with building the abstract model (which
will now be more precise). Figure 4.3 shows which refinement strategies can
use which kinds of abstract facts.

43

Part I. A Flexible Domain Based on Predicates

IMPACT Refinement

One refinement strategy is to perform a refinement similar to the function Refine
of the Impact algorithm [190]. This strategy needs abstract facts that fulfill at least
the properties (1) and (2), and is typically used with interpolants. The Impact
refinement strategy takes each abstraction state ei of the abstract counterexample,
and conjoins to its abstraction formula the corresponding abstract fact τi (this
would be unsound if property (1) does not hold). If an abstract state is actually
strengthened by this (i.e., the previous abstraction formula did not already imply
the abstract fact), we also need to recheck all coverage relations of this abstract
state: If an abstract state e′i previously covered by another abstract state ei is now
no longer covered, because the abstraction formula of ei was strengthened by the
refinement, we uncover and re-add all leaf abstract states in the subgraph of the
ARG that starts with the uncovered abstract state e′i to the set waitlist. We also
check for each of the strengthened abstract states whether it is now covered by
any other abstract state at the same program location. If this is successful, i.e., if
a strengthened abstract state ej is now covered by another abstract state e′j, we
mark the subgraph that starts with that strengthened abstract state ej as covered
and remove all leafs therein from waitlist (we do not need to expand covered
abstract states). The only change to the set reached is the removal of all abstract
states whose abstraction formula is now equivalent to false and their successors.
Because the abstract facts fulfill property (2), this is guaranteed to be the case
for at least the abstract error state.

Predicate Refinement

Another refinement strategy is used for traditional lazy predicate abstraction.
It extracts predicates from the abstract facts, creates a new precision π with
these predicates, and restarts (a part of) the analysis with a new precision that is
extended by π. For each of these steps again some choices exist. This strategy can
work with any kind of abstract fact, even those generated heuristically. Of course,
progress is guaranteed only if the abstract facts fulfill the relevant properties.

For creating a set of predicates from an abstract fact τ, we can either take
the singleton set {τ} or extract all basic atoms (i.e., the non-boolean parts of an
SMT formula) that appear syntactically in τ. In the latter case, we can further
try to filter out irrelevant predicates, for example those that are equivalent

44

4. Predicate CPA

to another predicate. On the other hand, it can be worthwhile to derive and
add additional predicates, for example adding the predicate x ≤ i for every
predicate x = i with a program variable x and an integer i. This may help in
avoiding loop unrollings if the SMT solver produces interpolants with (overly
specific) equalities where inequalities would be strong enough and the latter
would be more general and useful to rule out other error paths than those of
the current abstract counterexample as well.

Because a precision π is a mapping from program locations to sets of pred-
icates, we can choose for which program location(s) new predicates should
be added when creating the new precision. Assuming that, starting from an
abstract counterexample 〈e0, . . . , en〉 with abstraction states at program loca-
tions 〈l0, . . . , ln〉 we obtained a sequence 〈τ0, . . . , τn〉 of abstract facts and extracted
a sequence 〈ρ0, . . . , ρn〉 of sets of predicates. Then we can add each predicate
to the precision for the program location that corresponds to the point in the
abstract counterexample where the predicate appears in the interpolant, i.e.,
π(l) =

⋃n
i=0(ρi if l = li else ∅), or we can add all predicates globally (i.e., at all

program locations) by using the precision π(l) =
⋃n

i=0 ρi. Furthermore, we can
also use other heuristics such as adding a predicate for all program locations
that are in the same function as the program location for which the predicate has
been found [35]. In any case, we take the precision π with the new predicates
and the existing precision πn that is associated in the set reached with the abstract
error state en, and join them element-wise to create the new precision π′ with
∀l ∈ L : π′(l) = πn(l) ∪ π(l) that will be used in the subsequent analysis.

Finally, the sets reached and waitlist are prepared for continuing with the analy-
sis. One possibility is to set both of them to {(e0, π′)}, i.e., remove all abstract
states and restart the analysis at the initial state with the new precision. Lazy
abstraction [140] is a more efficient alternative, where only those parts of the
ARG are removed for which the new predicates are necessary. For this, we
determine the first abstract state of the abstract counterexample for which the
new precision π′ would lead to more predicates being used in the abstraction
computation than the originally used predicates, and call this the pivot abstract
state. Then we remove the subgraph of the ARG that starts with the pivot abstract
state from the sets reached and waitlist, as well as all abstract states that were
covered by one of the removed abstract states. To ensure that the removed parts
of the ARG get re-explored, we take all remaining parents of removed abstract

45

Part I. A Flexible Domain Based on Predicates

states, replace the precision with which they are associated in reached with the
new precision π′, and add them to the set waitlist. This has not only the effect
of avoiding the re-exploration of unchanged parts of the ARG, but also leads to
the new predicates being used only in the relevant part of the ARG, with other
parts of the program state space being explored with different (possibly more
abstract and thus more efficient) precisions.

In general, the effect of the presented heuristics can be described as follows.
Using exactly the discovered abstract facts (e.g., the interpolants) as predicates,
for exactly their specific locations and only in the part of the ARG that needs to be
rediscovered, is an approach that attempts to keep the precision of the analysis as
abstract as possible and the abstract model of the program as coarse as possible.
This minimizes the work for the abstraction computations during the analysis.
However, this may lead to overly specific refinements that each rule out only
a few infeasible error paths. Generalizing during refinement, e.g., by splitting
abstract facts into atomic predicates, deriving additional predicates, or using the
predicates at more program locations or in more parts of the state space, may
help to rule out many more infeasible error paths with a single refinement, and
thus might lead to faster convergence of the analysis.

Discussion

In comparison with the predicate-based refinement strategy, the Impact-style
refinement strategy avoids the need for recomputing (parts of) the ARG. It also
leads to a minimal increase in the precision of the analysis: the interpolants are
used to strengthen abstract states only where absolutely necessary to rule out
the current spurious abstract counterexample. There is no generalizing of the
interpolants and no application of predicates to other parts of the program loca-
tions or state space. While both refinement strategies use lazy abstraction, using
predicate refinement is typically more eager than Impact refinement: abstraction
computations using the discovered predicates can generalize and derive more
facts than what were present in the interpolants for the abstract counterexample,
whereas with Impact refinement the abstract model will contain only exactly
those facts that were discovered for some spurious abstract counterexample.

A further possibility is to combine both refinement strategies as it is done
by the Ufo algorithm [2]: Primarily, the Impact refinement strategy is used.

46

4. Predicate CPA

Additionally, however, predicates derived from the interpolants can be added
to the precision of abstract states like in the predicate refinement strategy, and
these predicates will get used for abstraction computations when the ARG is
further unrolled. This avoids the need for re-exploring existing parts of the ARG,
which the predicate refinement strategy would cause, while making it possible
to benefit from some of the generalization capabilities and the eagerness that
the predicate refinement strategy provides.

4.3. Forced Covering

Forced coverings were introduced for lazy abstraction with interpolants [190]
(Impact) for a faster convergence of the analysis. Typically, when the CPA
algorithm creates a new successor abstract state for an Impact analysis, this new
abstract state is too abstract to be covered by existing abstract states, since the
Impact refinement strategy is used, which leads to all new abstraction states
being equivalent to true. If an abstract state cannot be covered, the analysis needs
to further create successors of it, leading to more abstract states and possibly
more refinements. The idea of forced covering is to strengthen new abstract states
such that they are covered by existing abstract states immediately if possible.

We define an operator fcoverP : 2E×Π × E×Π→ 2E×Π that takes as input the
set reached of reachable abstract states and an abstract state e with precision π,
and returns an updated set reached′ of reachable abstract states. The operator
may replace e and other abstract states in reached with strengthened versions, if it
can guarantee that this is sound and if afterwards the strengthened version of e
is covered by another abstract state in reached′. A trivial implementation of this
operator is fcoverid(reached, e, π) = reached, which does not strengthen abstract
states and returns the set reached unchanged.

An alternative implementation is fcoverImpact, which adopts the strategy for
forced coverings presented for lazy abstraction with interpolants [190]. We
extend this approach here to support adjustable-block encoding. Because the
Predicate CPA does not attempt to cover intermediate states (only abstraction
states), we also only attempt forced coverings for abstraction states. Given an
abstraction state e that should be covered if possible, the candidate abstract
states for covering are those abstraction states at the same location. For each

47

Part I. A Flexible Domain Based on Predicates

candidate e′, we first determine the nearest common ancestor abstraction state ê
of e and e′ (using the information tracked by the ARG CPA). Now let us denote
the abstraction formulas of e′ and ê with ψ′ and ψ̂, respectively, and let ϕ be the
path formula that represents the paths from ê to e. We then determine whether
ψ′ also holds for e by checking if ψ̂ ∧ ϕ⇒ ψ′ holds, i.e., whether it is impossible
to reach a concrete state that is not represented by ψ′ when starting at ê and
following the paths to e. If this holds, we can strengthen the abstraction formula
of e with ψ′ (which immediately lets us cover e by e′). Furthermore, if there
are abstraction states along the paths from ê to e, we need to strengthen these
states, too, in order to keep the ARG well-formed. We can do so by computing
interpolants at the appropriate locations along the paths for the query that we
have just solved, and strengthen the abstract states with the interpolants. If
the query does not hold, we switch to the next candidate abstract state and
try again. Finally, fcoverImpact returns an updated set reached with strengthened
abstract states, or the original set reached if forced covering was unsuccessful
for each of the candidates. Note that this forced-covering strategy is similar to
interpolation-based refinement with the Impact refinement strategy, just that we
attempt to prove that ψ′ instead of false holds at the end of the path, and that the
refined path does not start at the initial abstract state but at ê.

4.4. Encoding C Semantics

So far we have assumed that verification tasks are given in a simple iterative
programming language with only integer variables and no heap memory. In
this section we will now discuss how to model the semantics of the real-world
programming language C. Most of the Predicate CPA is independent from the
semantics of the analyzed programming language. We only need to replace the
strongest-postcondition operator SP(·) that is used by the transfer relation P.
Support for further procedural or object-oriented programming languages can
be added in a similar way.

There exist already approaches of varying complexity and precision for en-
coding C semantics in first-order logic formulas for the purpose of automatic
software verification, implemented in a number of tools. In the following, we
summarize existing SMT-based approaches and discuss the variants that the Pred-

48

4. Predicate CPA

icate CPA provides. We base our definitions on those from Sect. 3.1 and extend
the possible variable types and operations. We keep the following restrictions:

1. The program must consist of correct C code (e.g., no type errors) and
no behavior that is undefined according to the C standard may occur.
Undefined behavior can lead to any consequence, thus, the verification of
a program with undefined behavior would always have to report that the
program is unsafe.

2. The program does not contain recursive function calls.

3. The program is not multithreaded.

4. The program must not use the C feature of nonlocal jumps, i.e., the macros
setjmp and longjmp.

Furthermore, we assume that the program has been simplified syntactically as a
preprocessing according to the following rules: All functions that are not defined
by the C standard are inlined. Note that function calls through function pointers
can still be supported by priorly replacing them with regular function calls to all
possible candidate functions, each with a guard that compares the value of the
function pointer with the address of the respective candidate function. Variables
are renamed such that their names are globally unique. All declarations of
variables and types are omitted, and variable initializers are kept as assignments.
Expressions are free of side effects (possible by introducing auxiliary program
variables and operations) and use only a minimal set of necessary operators [88].

Then we can represent C programs as CFAs where the operations attached to
the edges can have exactly one of the following forms:

• an assumption [p],

• a simple assignment x := e,

• a function call f unc(e∗), and

• a function-call assignment x := f unc(e∗).

Here, e is an expression, p is a predicate, x ∈ X is a program variable, and
f unc(e∗) is a call to a function from the C standard library with an arbitrary

49

Part I. A Flexible Domain Based on Predicates

amount of parameter expressions. Program variables in X can have any of the
types defined by the C programming language. Expressions and predicates refer
only to program variables from X, and contain only the following operators:

• the arithmetic operators +, −, ∗, /, %,

• the bitwise operators�,�, &, |, ,̂

• casts,

• the address-of and indirection operators & and ∗, and

• the field-access operator . f for structs and unions.

In theory, the strongest-postcondition operator SPop(·) needs to precisely en-
code the semantics of op as a formula. However, there are two features in C that
may create problems in practice when being modeled precisely: nonlinear arith-
metic (including bitwise operators, overflows, and all floating-point arithmetic)
and unbounded heap usage. However, not in all use cases these features are
important. For example, for control-flow heavy programs like those encoding a
finite automaton using some integer state variables, there often exist interesting
properties to be verified that do not depend on nonlinear arithmetic and heap
usage. Thus, some users might be willing to sacrifice precision or even soundness
for C programs that rely on these two features in order to gain a more effective
and efficient verification procedure, and this is implemented in several commonly
used tools [13, 35]. In our Predicate CPA this can be achieved by using a strongest-
postcondition operator that only approximates the semantics of the program.
Note that this approximation is different from the abstraction done by the opera-
tor precP and independent from the precisions in ΠP. A precision π ∈ ΠP can
never make the analysis more precise than the approximation used by SPop(·).

In order to create a flexible verification framework that suits a wide range of use
cases we provide several different variants of SPop(·), which differ in precision
and soundness and are characterized by the SMT theories they require. In total,
there are eight different combinations of SMT theories for encoding (approximate)
C semantics. Table 4.2 shows all these combinations and indicates the most
important restrictions relevant for each. Note that none of these combinations is
free from restrictions. In the following, we discuss the possible choices to be made
for selecting an appropriate strongest-postcondition operator in more detail.

50

4. Predicate CPA

Table 4.2.: Possible combinations of SMT theories for encoding program semantics
(with names according to the naming scheme for SMT-LIB logics [17])

Quantifier Quantifier-free

Array UF Array UF

Bitprecise ABVFP a UFBVFP a QF_ABVFP b QF_UFBVP c

Linear AUFLIRA ad UFLIRA ad QF_AUFLIRAbd QF_UFLIRA cd

a undecidable
b incomplete interpolation (interpolants may contain quantifiers)
c bounded heap
d imprecise or unsound nonlinear arithmetic

4.4.1. Nonlinear Arithmetic

First, we need to choose the SMT theories for encoding arithmetic expressions,
i.e., which row we use in Table 4.2. Using the theory of fixed-width bitvec-
tors (BV) [18, 98] for integer types and the floating-point theory (FP) [66, 134, 212]
for floating types will allow a precise encoding of most arithmetic C expres-
sions [9, 96]. Both theories allow to encode program variables with their actual
size in bits and model overflows and casts appropriately. The arithmetic and
bitwise operators of C can be encoded using the respective operators of the two
theories. The theory of bitvectors is for example used by tools like Esbmc [96]
and Llbmc [116]. Other tools achieve a similar precision by encoding program
semantics in propositional logic and using a SAT solver [86, 87, 94, 148].

However, formulas over the bitvector and floating-point theories can be expen-
sive to solve, and not all SMT solvers support them (cf. Sect. 6.3). Interpolation
over bitvectors exists [128], but in practice support for it is still sometimes prob-
lematic as we will see in our evaluation in Sect. 16.1. Thus, it can be necessary
to make a trade-off and use the theory of linear arithmetic over integers or reals
in combination with the theory of uninterpreted functions for approximating
nonlinear program behavior (the second row in Table 4.2).

The approximation of bitvectors with linear arithmetic over integers and un-
interpreted functions can be sound (but still imprecise), if we ensure that every
satisfying assignment of a formula that encodes a program statement with bitvec-
tors is also a valid satisfying assignment for the formula that approximates the

51

Part I. A Flexible Domain Based on Predicates

same program statement with integers. For this we have to specifically handle all
operators that have nonlinear semantics and ensure that, whenever the operation
is nonlinear, the result of the operation in the formula is a nondeterministic value.
For example, when two program variables are multiplied, we can approximate
this by encoding the multiplication as an uninterpreted function. Using an un-
interpreted function instead of setting the result to a fresh variable is stronger
because it allows the solver to deduct that the result of two multiplications with
equal inputs will be the same, even though it cannot infer the concrete value.
Nonlinear behavior of bitvector operations also occurs for example when a result
overflows. In the following example, we denote bitvector variables and oper-
ations with an index that specifies their bit-width. Variables and operations
without index are of type integer. The unsigned bitvector addition xw +w yw

of two bitvectors xw and yw with equal width w can be approximated with
ite(x + y < 2w, x + y, castw(x + y)), where ite is the ternary operator, and castw

is an uninterpreted function that we use for overflowing results of width w. Note
that the value of w is known during the creation of the formula and thus the
value of 2w can be calculated directly, no nonlinear operation is necessary in the
formula. Because we assume that no undefined behavior occurs in the program,
we do not need to handle signed overflows, which are undefined behavior. How-
ever, for verifying real-world software it might be more practical to approximate
signed overflows as if two’s complement is used 1, which can be done similarly
to unsigned overflows. All other bitvector operators can be handled in the same
way. Some tools even use an encoding for integer variables that approximates
bitvector operators directly with their linear equivalent (omitting the disjunction),
and are thus unsound in presence of overflows, e.g., Blast [35].

For the approximation of floating-point arithmetic, some tools use linear arith-
metic over reals [15, 96, 194], or implement fixed-point arithmetic using bitvec-
tors [95]. Both approximations are of course imprecise and unsound [124], but can
be a pragmatic way for handling programs in which floating-point variables may
appear from time to time, but are not crucial for the safety of the program. This
can for example be the case in control-flow heavy programs that implement finite
automata or low-level systems programs, both of which are a common use case
for software verification. There also exist possibilities for sound approximation

1 The C standard does not require a specific encoding of signed integers, but most hardware
architectures use two’s complement, and some programmers rely on this.

52

4. Predicate CPA

of floating-point arithmetic, e.g., using projection functions over floating-point
intervals [60], expression canonization [92], or abstraction [66]. However, in
cases where the semantics of floating-point arithmetic are not important for
the verification, we might as well choose a simpler and faster approximation,
and in cases where a higher precision is important, we expect that in practice
any approximation might not be enough and a fully precise encoding needs to
be adopted anyway. Thus, we decide to model floating-point arithmetic either
precisely or by a coarse approximation using linear arithmetic over reals and
uninterpreted functions. Furthermore, this allows us to use off-the-shelf SMT
solvers without much additional implementation effort.

4.4.2. Pointer Accesses

Second, we need to decide whether to use a decidable encoding for pointer
accesses that is only able to handle bounded sizes of memory regions, or an
undecidable encoding that allows unbounded memory regions. The bounded
encoding can be done using the theory of uninterpreted functions: a unary func-
tion symbol (e.g., m) is used to represent program memory, and a read through a
pointer is encoded by applying the function to the address stored in the pointer. A
write through a pointer is encoded by creating a fresh function symbol m′ (assum-
ing we use the skolemized encoding from Sect. 3.1) and adding constraints that
m′ applied to the address stored in the pointer is equal to the value that is written
there, and for all other addresses the result of m′ is equal to the result of m. Thus,
the operation *p = e; is encoded by m′(p) = e∧∀i ∈ M : i 6= p⇒ m′(i) = m(i).
Here, the range M represents the finite bounds of memory regions, and thus the
universal quantifier can be unrolled, resulting in a decidable (though potentially
large) formula.

An unbounded encoding of pointers can be achieved with the theory of un-
interpreted functions plus quantifiers by simply removing the bound M from
the encoding of write operations. However, the combination of uninterpreted
functions and quantifiers is undecidable [58]. Instead of quantifiers we could use
the SMT theory of arrays [189], where a read through a pointer can be encoded by
the theory operation select, and a write can be encoded by the theory operation
store [139]. This theory is decidable [221], however, quantifiers may still be
necessary even with the theory of arrays because interpolation for arrays is not

53

Part I. A Flexible Domain Based on Predicates

1 (declare-fun m1 () (Array (_ BitVec 32) (_ BitVec 8)))
2 (declare-fun m2 () (Array (_ BitVec 32) (_ BitVec 8)))
3 (declare-fun p () (_ BitVec 32))
4 (declare-fun q () (_ BitVec 32))
5 (assert
6 (let ((v1 (concat (select m1 (bvadd p #x00000003))
7 (select m1 (bvadd p #x00000002))
8 (select m1 (bvadd p #x00000001))
9 (select m1 p)))

10 (v2 (concat (select m1 (bvadd q #x00000003))
11 (select m1 (bvadd q #x00000002))
12 (select m1 (bvadd q #x00000001))
13 (select m1 q))))
14 (let ((v3 (bvadd v1 v2)))
15 (= m2
16 (store
17 (store
18 (store
19 (store m1 (bvadd p #x00000003) ((_ extract 31 24) v3))
20 (bvadd p #x00000002) ((_ extract 23 16) v3))
21 (bvadd p #x00000001) ((_ extract 15 8) v3))
22 p ((_ extract 7 0) v3))))))

Figure 4.4.: Statement *p = *p + *q encoded in SMTLIB with a byte-wise mem-
ory array; input and output array are named m1 and m2, respectively.

guaranteed to produce quantifier-free interpolants [161]. Interpolating solvers
with support for quantifiers and arrays exist [191], but the combination of arrays
and quantifiers is again undecidable in general [63, 221]. Note that variants of the
array theory may guarantee quantifier-free interpolants [69, 154, 155].

4.4.3. Heap Memory

Third, we need to decide how to model the program’s heap. This does not change
which SMT theories are used, but only how accesses to heap memory are encoded.
One possibility is to model the whole program heap as one large contiguous array
of bytes [219]. This encoding resembles closely how today’s machines organize
the memory and allows handling out-of-bounds pointer accesses that overflow
into adjacent memory regions, casts between different pointer types (e.g., from
pointer-to-int to pointer-to-float), and misaligned pointer accesses (e.g., a read of
a value from address n + 2 after a four-byte value has been written to address n).
However, most of these operations are undefined according to the C standard,
and this encoding produces complex formulas that may be expensive to solve, for

54

4. Predicate CPA

example because of the repeated splitting and reassembling of values into bytes.
Consider as an example the formula from Fig. 4.4, which encodes the statement

*p = *p + *q by reading the eight bytes for *p and *q individually from the
memory (storing them in the variables v1 and v2), adding these values (storing
the result in the variable v3), and finally storing the four bytes individually in
the array that is used for representing heap memory. Furthermore, this byte-
wise encoding is not appropriate if we use theories with linear arithmetic for
approximating arithmetic operations.

In order to avoid this, we can assume independent heaps for each variable
type, and use a separate array for each such type. This is known as the Burstall-
Bornat model [59, 71] or as typed memory [89], and implemented for example
in Blast [35]. With this memory model, we would use one array for 32-bit ints,
one for 64-bit ints, one for floats etc., and each of these arrays has the element
type that we also use for arithmetic operations on these variable types. Which
array is used for a pointer access is defined by the type of the pointer that is
being accessed. The encoding is now easier and more efficient for the solver,
but pointer casts and misaligned accesses will now no longer resemble a real
machine, but produce nondeterministic values. Even finer-grained partitionings
of the heap are possible, for example by using a separate array for each field of
each struct type [59, 228]. However, this fails for example if pointer arithmetic
is used to access fields.

In any case of these cases, it is necessary to add constraints whenever memory
is allocated with malloc that ensure that the newly allocated memory does not
overlap with any previously allocated memory [219].

These memory encodings are possible regardless of whether we use the theory
of arrays or uninterpreted functions for pointer accesses. Possibly aliased vari-
ables on the program stack need to be encoded in the same way as memory on
the heap, but variables that are guaranteed to have no aliases can be encoded
directly (i.e., without indirection) as an optimization.

An alternative to encoding program memory as one or more arrays is to
represent it as a set of “objects”, which each object being one (dynamically
allocated) memory region [96]. In this case, pointers consist of a pair of an
identifier for the target object and the offset within this object. This encoding
is for example used by Cbmc and Esbmc.

55

Part I. A Flexible Domain Based on Predicates

Note that because we have assumed that no undefined behavior occurs, we did
not discuss adding checks for conditions such as that all memory accesses occur
within the correct bounds and that memory is never freed twice. If desired, such
checks can be implemented for any of the presented heap encodings [96, 219].

56

5. Applications

In this chapter, we will present and discuss several applications of our framework
for predicate-based software verification. We will use the Predicate CPA to
unify four well-known verification approaches in a common presentation that
highlights their main differences. This enables us to study the differences of these
approaches and understand their core concepts. Furthermore, we will present
extensions and new variants of the existing approaches that are made possible by
having expressed the approaches in our unifying framework. The applications of
this chapter show the advantage of having a flexible and configurable framework
for unifying approaches for predicate-based software verification.

5.1. An Extended CPA Algorithm

In order to be able to use all the features of the Predicate CPA and support
approaches such as lazy abstraction, we first need to slightly extend the CPA
algorithm. The extended version, which we call the CPA++ algorithm, is shown
as Algorithm 5.1. Compared to the original version (Algorithm 3.1), it has the
following differences:

1. CPA++ gets reached and waitlist as input and returns updated versions of
both of them, instead of getting an initial abstract state and returning a set
of reachable abstract states.

2. CPA++ calls a function abort to determine whether it should abort early for
each found abstract state (lines 16 to 17).

3. CPA++ calls the precision-adjustment operator immediately for each new
abstract state (line 7) instead of only before expanding an abstract state.

4. CPA++ attempts a forced covering by calling fcover before expanding an
abstract state (lines 3 to 5).

57

Part I. A Flexible Domain Based on Predicates

Algorithm 5.1 CPA++(D, reached, waitlist, abort), extension of Algorithm 3.1

Input: a CPA D = (D, Π, , merge, stop, prec) with additional operator fcover,
where E denotes the set of elements of the semilattice of D,
a set reached ∈ E×Π of reachable abstract states
a set waitlist ∈ E×Π of frontier abstract states, and
a function abort : E→ B that determines if the algorithm should abort

Output: the updated sets reached and waitlist
1: while waitlist 6= ∅ do
2: pop (e, π) from waitlist
3: reached := fcover(reached, e, π)
4: if (e, π) 6∈ reached then
5: continue // Forced covering was successful.
6: for all e′ with e (e′, π) do
7: (ê, π̂) := prec(e′, π, reached) // Adjust the precision.
8: for all (e′′, π′′) ∈ reached do
9: enew := merge(ê, e′′, π̂) // Combine with existing abstract state.

10: if enew 6= e′′ then
11: waitlist :=

(
waitlist∪ {(enew, π̂)}

)
\ {(e′′, π′′)};

12: reached :=
(

reached∪ {(enew, π̂)}
)
\ {(e′′, π′′)};

13: if not stop(ê, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state?
14: waitlist := waitlist∪ {(ê, π̂)}
15: reached := reached∪ {(ê, π̂)}
16: if abort(ê) then
17: return (reached, waitlist)
18: return (reached, waitlist)

The first two changes allow calling CPA++ iteratively and keep expanding the
same set of abstract states, which is necessary for CEGAR with lazy abstraction
(where we want to abort as soon as we find an abstract error state, and continue
after refinement without restarting from scratch; abort is then implemented to
return true for abstract error states). The new position of the call to the precision-
adjustment operator is necessary because previously the resulting abstract states
(ê in Algorithm 3.1) were never put into reached. However, we need the abstract
states resulting from prec to be in reached, because among them are the abstraction
states of the Predicate CPA, which are necessary for refinement (cf. Sect. 4.2.1).

Similar changes to the CPA algorithm have been used previously [44, 52];
we now combine them in order to provide an all-encompassing algorithm for
reachability that we can use as building block for our unifying framework for
predicate-based software verification.

58

5. Applications

5.2. Unifying SMT-Based Approaches for Software

Verification

The presented Predicate CPA is the base of a unifying framework for predicate-
based software verification, and it is possible to express several existing ap-
proaches within this framework. Four such well-known approaches are bounded
model checking (BMC), k-induction, predicate abstraction, and the Impact al-
gorithm.

We can express these four approaches by taking an appropriately configured
instance of the Predicate CPA P from Chapter 4, combine it with the typical
basic CPAs such as the Location CPA L and ARG CPA A from Sect. 3.2.3 in
a Composite CPA (cf. Sect. 3.2.2), and create a reachability analysis using the
CPA++ algorithm with this combination of CPAs. Additionally, we may wrap the
CPA++ algorithm inside another algorithm that implements further approaches
upon the basic reachability analysis. Table 5.1 summarizes which components (as
shown in Fig. 4.1) of our Predicate CPA need to be chosen for each of the four
mentioned approaches, and in the following, we discuss each configuration. Note
that the choice of the strongest-postcondition operator is in principle orthogonal
to the choice of the approach we want to express, and thus, we can combine each
approach with all the differently powerful encodings of the program semantics.
However, if using interpolation for refinement the restrictions about incomplete
interpolation for quantifier-free SMT theories with arrays apply.

5.2.1. Bounded Model Checking

For bounded model checking [54], we set the ABE block size to infinite (we call
this whole-program encoding) by using the block operator blknever, and we use
fcoverid (i.e., no forced coverings). Additionally, we combine the Predicate CPA
with a CPA for bounding the state space besides the typical basic CPAs.

The Loop-Bound CPA LB tracks in its abstract states for every loop of the
program how often the loop body was traversed on the current program path.
It associates each loop-head location with a counter that starts with −1 and is
incremented by the transfer relation whenever the respective location is reached.
The precision is the loop bound k: π = k, with k > 0. The transfer relation of
the Loop-Bound CPA is unsound by purpose: it does not produce any successor

59

Part I. A Flexible Domain Based on Predicates

Table 5.1.: Configurations of Predicate CPA for common SMT-based approaches
(cf. Fig. 4.1 for components; — represents unused components)

BMC &
k-Induction

Predicate Abstraction Impact

Region Representation — BDD SMT-based

Strongest Postcondition any any any

blk blknever e.g.: blklf , blkl blkSBE

Predicate Abstraction — any —

fcover fcoverid fcoverid any

Refinement:

– Abstract Facts — any Interpolants

– Refinement Strategy — Predicate Impact

abstract states for abstract states in which one of the counters for the loop-head
locations is equal to the loop bound k in the precision, and thus prevents the
analysis from exploring any paths for more than k loop iterations. Apart from
that, the Loop-Bound CPA uses the standard operators mergesep, stopsep, and precid.

This configuration leads to an analysis without abstraction computations,
expensive coverage checks, and refinements. Instead, the CPA++ algorithm simply
unrolls the CFA (within the loop bound), and each abstract state contains a path
formula that exactly represents the paths from the initial location to this abstract
state. We wrap the CPA++ algorithm in another algorithm that checks satisfiability
of the path formula of each abstract error state after the CPA++ algorithm has
finished (we can use Algorithm 5.2, which is discussed in Sect. 5.2.2, for this by
omitting lines 15 to 23). If at least one path formula is satisfiable (for efficiency, we
check the disjunction of all path formulas at once in line 10 of Algorithm 5.2), then
there exists a feasible path to the error location, i.e., the specification is violated.

We can also implement a forward-condition check [120] by making an addi-
tional SMT query for the satisfiability of the path formulas of all those abstract
states for which the Loop-Bound CPA has unsoundly restricted the successor
abstract states. If none of these path formulas is satisfiable, the specification is

60

5. Applications

proven to hold for the program. If for a given loop bound k the result was incon-
clusive (i.e., no specification violation found but the forward-condition check was
unsuccessful, too), we can repeat the bounded model check with a higher k.

5.2.2. k -Induction

For a k-induction-based verification approach [111, 217] we can use the same
configuration of the Predicate CPA with blknever as for bounded model checking.
For ease of presentation, we assume here that the loop head is not reachable from
the error location lERR and that the analyzed program has exactly one loop whose
loop-head location is lLH. In practice, k-induction can be applied to programs
with many loops [31].

We present an algorithm for k-induction-based verification based on the Pred-
icate CPA as Algorithm 5.2. This algorithm supports iterative deepening and
injection of continuously refined invariants. We can use this algorithm in combi-
nation with (external) standard invariant-generation techniques, such as data-flow
analysis [167, 200] and template-based approaches [37, 93]. This is necessary, be-
cause often the safety property of a verification task is not directly k-inductive for
any k, but only relative to some auxiliary invariant, so that plain k-induction can-
not succeed in proving safety. Strengthening the hypothesis of the inductive-step
case with auxiliary invariants may allow the algorithm to prove such properties
as well.

Algorithm 5.2 gets as input initial and maximal values for the loop bound and
a function that computes the next loop bound after each iteration (this function
can for example increase the value by one, or double it). Additionally we give
the algorithm a combination of CPAs (as a composite CPA) that includes the
Location CPA L (cf. Sect. 3.2.3), our Predicate CPA P in the configuration for
bounded model checking, and the Loop-Bound CPA LB (cf. Sect. 5.2.1). Thus,
each abstract state is a tuple of the current program counter l (this is an abstract
state of L), a predicate abstract state (which is itself a tuple of an abstraction
formula, an abstraction location, and a path formula), and a mapping of loop
heads to loop counters (this is an abstract state of LB).

61

Part I. A Flexible Domain Based on Predicates

Algorithm 5.2 Iterative-Deepening k-Induction with Invariants (adapted from
[31])
Input:

the initial value kinit ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N→N with ∀n ∈N : inc(n) > n for increasing the bound k,
a composite CPA D with the Location CPA L, the Predicate CPA P, and the
Loop-Bound CPA LB as components,
for which E denotes the set of composite abstract states and Π the set of
precisions

Output: false if lERR is reachable, true otherwise
Variables: the current loop bound k ∈N,

two abstract states eINIT ∈ E and eLH ∈ E and a precision πINIT ∈ Π,
two sets reached and waitlist of elements of E×Π, and
a function abortnever : E→ B

1: k := kinit
2: eINIT := (lINIT, (true, lINIT, true), {lLH 7→ −1}) // Create initial abstract state.
3: eLH := (lLH, (true, lLH, true), {lLH 7→ 0}) // Create abstract state at lLH.
4: abortnever := {· 7→ false} // abortnever always returns false.
5: while k ≤ kmax do
6: πINIT := {(∅, {· 7→ ∅}, k)} // Create initial precision.
7: reached := waitlist := {(eINIT, πINIT)}
8: (reached, waitlist) := CPA++(D, reached, waitlist, abortnever)
9: base_case :=

∨ {
ϕ |
(
(lERR, (·, ·, ϕ), ·), ·

)
∈ reached

}
10: if sat(base_case) then
11: return false
12: forward_condition :=

∨ {
ϕ |
(
(lLH, (·, ·, ϕ), i), ·

)
∈ reached∧ i(lLH) = k

}
13: if ¬ sat(forward_condition) then
14: return true
15: πINIT := {(∅, {· 7→ ∅}, k + 1)} // Precision with loop bound k + 1.
16: reached := waitlist := {(eLH, πINIT)}
17: reached := CPA++(D, reached, waitlist, abortnever)
18: step_case :=

∨ {
ϕ |
(
(lERR, (·, ·, ϕ), i), ·

)
∈ reached∧ i(lLH) = k

}
19: repeat
20: Inv := get_currently_known_invariant()
21: if ¬ sat(Inv∧ step_case) then
22: return true
23: until Inv = get_currently_known_invariant()

24: k := inc(k)
25: return unknown

62

5. Applications

For each value of the loop bound k as determined by the initial and maximal
values and the increment function, the algorithm performs the checks for base
case, forward condition, and step case. For the base case (lines 6 to 11), which is
identical to bounded model checking, we set the bound of the Loop-Bound CPA
to k and use the CPA++ algorithm (Algorithm 5.1) to unroll the program with
an abstract state eINIT at the initial program location as initial abstract state and
the precision πINIT as initial precision (the Location CPA has an empty precision,
the Predicate CPA has a precision that maps all program locations to an empty
set of predicates, and the Loop-Bound CPA has a precision that consists of the
single constant value k). Then we create a disjunction of the path formulas of
all resulting abstract states at the error location. Because of the configuration of
the Predicate CPA and the Loop-Bound CPA, this formula represents all paths
from lINIT to lERR that visit the loop body at most k times. If this formula is
feasible, lERR is reachable and the algorithm terminates.

For the forward condition (lines 12 to 14), we check in a similar manner whether
the loop-head location lLH is reachable at the start of the k + 1st loop iteration.
If this is not the case, this implies that the error location is also not reachable
in the k + 1st loop iteration (or later on), and thus the program is safe and the
algorithm terminates.

For the inductive-step case (lines 15 to 23), we again use the CPA++ algorithm to
unroll the program, though this time with a loop bound of k + 1 and an abstract
state at the loop head as initial abstract state. For the following satisfiability
check, we use the disjunction of the path formulas of all abstract states at the
error location and with a loop-counter value of k (i.e., in the k + 1st loop iteration).
Note that because we assume that the loop body cannot be reached from the
error location lERR, this formula represents all paths with k safe loop iterations
and a specification violation in the k + 1st iteration. Additionally, we strengthen
the hypothesis of the inductive-step case with the currently known loop invariant
that is produced by the (external) invariant generator. If the concurrently running
invariant generator produces a stronger loop invariant while the inductive-step
case is running, we immediately try again with the new invariant (this can be
done efficiently using an incremental SMT solver). If the inductive-step case
succeeds, the program is safe and the algorithm terminates. Otherwise, we repeat
with a larger value of k.

63

Part I. A Flexible Domain Based on Predicates

Algorithm 5.3 CEGAR(D, eINIT, πINIT) for CPAs

Input: a composite CPA D that is composed of the Location CPA L, the ARG
CPA A, and possibly other CPAs,
for which E denotes the set of composite abstract states and Π the set of
precisions,
with additional operators fcover and refine,
and an initial abstract state eINIT = (lINIT, · · ·) ∈ E
with initial precision πINIT ∈ Π

Output: false if lERR is reachable, true otherwise
Variables: two sets reached and waitlist of elements of E×Π and

a function abortERR : E→ B

1: reached := {(eINIT, πINIT)}
2: waitlist := {(eINIT, πINIT)}
3: abortERR := {(l, · · ·) 7→ (l = lERR)} // abortERR returns true at lERR.
4: loop
5: (reached, waitlist) := CPA++(D, reached, waitlist, abortERR)
6: if ∃((lERR, · · ·), ·) ∈ reached then
7: (reached, waitlist) := refine(reached, waitlist)
8: if ∃((lERR, · · ·), ·) ∈ reached then
9: return false // refine has detected a feasible error path.

10: else
11: return true

5.2.3. Lazy Predicate Abstraction

We can configure the Predicate CPA for classical predicate abstraction [125] with
lazy abstraction [140] by making the following choices: abstraction formulas are
represented with BDDs, which means that stopP is based on efficient BDD entail-
ment checks; the fcoverP operator does nothing; and refineP uses the predicate
refinement strategy, which adds predicates extracted from the abstract facts to
the precision. We can use any kind of abstract facts for refining the abstract
model, but typically interpolants are used. In order to benefit from ABE we can
use any choice for the block operator blk as long as it prevents infinitely long
paths within single blocks (i.e., blknever must not be used because this would lead
to nontermination of the analysis). Typical choices for blk are blkl and blklf , i.e.,
blocks end at loop-head locations and possibly on function entries and exits.

Furthermore, we wrap our CPA++ algorithm (Algorithm 5.1) inside Algo-
rithm 5.3, which implements CEGAR by alternately calling the CPA++ algorithm
in order to expand the abstract model and a refinement operator in order to

64

5. Applications

refine the precision of the analysis. We give it a composite CPA that consists of
the Location CPA L, the ARG CPA A (necessary for constructing abstract paths
during refinement), and the Predicate CPA P. First, CEGAR uses the CPA++

algorithm in order to create the abstract model of the program. If the analy-
sis encounters an abstract state at error location lERR, we pause the state-space
exploration done by CPA++ algorithm (via the function abortERR) and start the
refinement using refineP. As described in Sect. 4.2, this operator reconstructs the
concrete program path leading to the abstract state at lERR and checks the path for
feasibility using an SMT solver. If the concrete error path is feasible, we terminate
the analysis. Otherwise, the precision is refined and the CPA++ algorithm is
restarted with adjusted sets reached and waitlist. This process is iterated until
either a feasible concrete error path is found, or the CPA++ algorithm terminates
proving the program safe.

This configuration has the effect that during refinements predicates will get
added to the precision, and thus abstraction computations will occur. Both
cartesian abstraction and boolean abstraction are in principle possible, however,
experiments have shown that cartesian abstraction is typically too imprecise with
larger block sizes (e.g., with blkl) [27].

5.2.4. Lazy Abstraction with Interpolants (IMPACT)

We can also configure the Predicate CPA to implement lazy abstraction with
interpolants [190] with the following choices: abstraction formulas are represented
as SMT formulas, which means that stopP may involve SMT queries; we use
interpolation as source of abstract facts during refinement; and refineP uses the
Impact refinement strategy, which strengthens abstract states by conjoining the
abstract facts to their abstraction formulas. To implement a behavior that is similar
to the original Impact algorithm, we use the block operator blkSBE, which always
returns true and thus lets all blocks consist of only a single CFA edge (called
single-block encoding). If desired, we can configure fcoverP to do interpolation-
based forced covering as an optimization. Just like for predicate abstraction we
use Algorithm 5.3 for CEGAR with the Location CPA L, the ARG CPA A, and
the Predicate CPA P as the verification algorithm.

This configuration has the effect that the precision will always stay empty
and thus, the abstraction computation at block ends always trivially returns true.

65

Part I. A Flexible Domain Based on Predicates

SMT-based Software Model Checking

Bounded Model Checking Unbounded Model Checking

No Abstraction

k-Induction

Abstraction

Predicate Abstraction Impact

Figure 5.1.: Classification of verification approaches (taken from [28])

Instead, abstraction formulas of abstraction states will be strengthened during
refinement.

Note that this configuration differs substantially from the original presentation
of the Impact algorithm. To verify that we have indeed captured the essential
characteristics of the approach we have also implemented the original, unchanged,
Impact algorithm in the same tool as our Predicate CPA, using the same run-
time environment, parser frontend, formula encoding, SMT solver, and basic
optimizations like SMT query caches. Then we have compared this reimple-
mentation of the original algorithm against our Impact-style configuration of
the Predicate CPA. This comparison shows that the original Impact algorithm
has similar performance characteristics as our Impact-style configuration of the
Predicate CPA [52]. Thus, we are able to rely on the latter for further studying
of and experimenting with lazy abstraction of interpolants.

5.3. Comparison of SMT-based Approaches for

Software Verification

We are now interested in a theoretical study of the differences and similarities of
the four presented approaches. We will see that having expressed the approaches
in our unifying framework significantly simplifies such a study. In order to
classify the four approaches, we use an existing categorization [28], which can

66

5. Applications

be seen in Fig. 5.1. An experimental comparison of these four approaches also
exists [28], and we will perform a further experimental study with them in Part III.

Bounded model checking is a straightforward approach for falsification, but
its capability of providing safety proofs is limited. It is also the only approach
that relies only on SMT solving. All the presented approaches for unbounded
model checking need some other external component to be useful in practice,
e.g., an invariant generator for auxiliary invariants or an interpolation engine.
k-Induction differs from predicate abstraction and Impact in that it does not
create an abstract model of the program. Because the safety property is often
not k-inductive for the concrete program, suitable invariants need to be supplied
externally for k-induction, but it is sufficient to find a k-inductive invariant, which
is easier than finding a 1-inductive invariant. The CEGAR-based approaches
synthesize a 1-inductive invariant themselves (the final ARG serves as such), but
need to be supplied with appropriate building blocks for the invariants.

In the following, we compare the two approaches that are most similar in our
unification in more detail. Predicate abstraction and the Impact algorithm are two
approaches for unbounded software verification that both make use of CEGAR,
SMT solving, Craig interpolation, and lazy abstraction. However, in their original
presentations [35, 190] these two approaches differ substantially and it is hard to
understand what the key differences and the advantages of the two approaches
are. Expressing both approaches in a common framework has highlighted the
essential differences and allows us to study the conceptual differences without
being distracted by irrelevant differences in their presentations.

One main difference is that lazy predicate abstraction computes costly abstrac-
tions in order to have cheap coverage checks later on. This is an eager technique:
computing effort is spent ahead, not knowing whether this will actually pay
off. For example, along a long path within a single loop we might compute
abstractions for every state, but check coverage only for the states at the loop
head. On the other hand, the Impact algorithm delays all computation effort as
long as possible, which means that whenever some information is needed about
a state, a costly SMT-solver query needs to be made.

A further difference is how the coverage relationship is determined. In order
to find as much coverage situations as possible and guarantee termination, the
Impact algorithm may check coverage for a single node several times, specifically
before it starts expanding nodes in the subgraph below this state after a refine-

67

Part I. A Flexible Domain Based on Predicates

ment. Predicate abstraction checks coverage only once directly after the state
has been created. However, states are deleted during refinement and might get
rediscovered, where they are again checked for coverage.

Due to the use of an SMT solver, the coverage checks done by the Impact
algorithm can be stronger than BDD-based coverage checks. Consider for example
two abstract states with the abstraction formulas x ≥ 0 and x = 1. An SMT
solver can determine that the latter abstract state is covered by the former. If
the abstraction formulas are represented by BDDs, however, each of these two
abstraction formulas would be represented by a BDD that consists of a single
predicate, and the BDD entailment check (which does not know the semantics
of each predicate) would not be able to determine coverage.

For predicate abstraction, two common choices exist for how to compute an
abstraction when creating a state: cartesian abstraction and boolean abstraction.
It was shown that if using single-block encoding, boolean abstraction is too
slow to be useful and only cartesian abstraction is feasible. However, the latter
is imprecise if there are disjunctions in the formulas that represent program
operations, because it can infer truth values only for predicates independently
from each other. Disjunctions occur, e.g., if pointer-alias information is encoded
in the formulas, and thus predicate abstraction with cartesian abstraction may
fail to prove properties that rely on facts about pointers. Boolean abstraction
can handle all boolean combinations of predicates and is thus more precise,
but is only usable with large blocks. The Impact algorithm does not have this
problem: it uses the interpolant directly and never loses precision. The choice of
the abstraction computation of the Predicate CPA is irrelevant for Impact: both
methods always abstract any formula to true if the set of predicates is empty.

5.4. Configurability and Extensions

The flexibility of the Predicate CPA and our unifying framework for predicate-
based analyses allows us to easily create new variants of existing approaches, and
to create hybrid approaches that combine core ideas from several approaches.

Note that the fact that we have expressed the core of our framework for
predicate-based analyses as a CPA is already beneficial because it allows com-
bining predicate-based approaches with other abstract domains easily [44, 47].

68

5. Applications

Such combinations of abstract domains can be more efficient than any of the
abstract domains alone [8, 47]. Another advantage is that it is often possible to
use the Predicate CPA as (part of) a reachability analysis in new projects and
verification approaches without any need for changing the Predicate CPA itself
by simply combining it with further CPAs. This has, for example, been possible
for conditional model checking [36] and witness validation [29, 30].

5.4.1. Adjustable-Block Encoding for IMPACT

One example for a new combination of approaches that is enabled by our unifying
framework is the use of ABE for Impact. By taking the configuration described
in Sect. 5.2.4 for lazy abstraction with interpolants and replacing only the block
operator blkSBE with a different choice such as blkl or blklf , we are now able
(without any further theoretical or implementation effort) to use ABE and leverage
the significant performance gains of it together with the Impact approach for
which ABE was not yet available. Experiments have shown that ABE for Impact
provides a similarly large improvement as ABE for predicate abstraction [52].

5.4.2. Flexible Bounded Analyses and Counterexample Checks

In Sect. 5.2.1 we have described how to use the Predicate CPA for bounded
model checking. While bounded model checking with its loop bound k is
a common instance of a bounded analysis for efficiently finding bugs, other
kinds of bounded analyses may also be interesting. Our Predicate CPA in
the configuration for bounded model checking is usable for any such analysis
without further modification, as long as it is combined with another CPA that
limits the analyzed state space in the desired way instead of the Loop-Bound CPA.
Just like the latter, such state-space-restricting CPAs need to have an unsound
transfer relation that ensures that no infinitely long paths will be unrolled by
the CPA algorithm. Possible choices for bounds beyond loop iterations include
bounds on the length of paths, number of calls to certain functions (useful for
bounded verification of callers of a certain API), etc.

Another scenario where a specific bounded analysis is useful is checking error
paths that were found by other (imprecise) analyses [53]. If it is known that a
found error path might be infeasible and is finite, it is possible to combine the

69

Part I. A Flexible Domain Based on Predicates

Predicate CPA in its configuration for bounded model checking with a CPA that
restricts the analyzed state-space to exactly the potential error path. This is used,
for example, in the tool CPAchecker as a so-called counterexample check to
increase the precision of certain otherwise imprecise configurations, such as those
based on tracking explicit values of variables (which cannot efficiently track facts
about nondeterministic variables and large heap structures) [100, 186, 231]. This is
similar to the validation of violation witnesses [30], but for witnesses we cannot
assume that the analyzed state space is finite and thus we need to resort to a
configuration for unbounded model checking.

5.4.3. Further Configuration Options

Note that most of the configuration options of the Predicate CPA are orthogonal
to the choices made for implementing one of these two approaches. In particular,
this is true for the more low-level “technical” options like the choices for the
encoding of program semantics discussed in Sect. 4.4 or the used SMT solver,
which do not affect the course of the algorithms. Implementing such options
once immediately makes them usable with any approach expressed within our
unifying framework and thus opens up the possibility for the study of new
combinations. We will use this for our experimental evaluation in Part III.

5.4.4. Sequential Combinations of Configurations

From a theoretical point of view, the Predicate CPA in a configuration for un-
bounded software verification with the most precise encoding of program seman-
tics is more powerful than other configurations such as those for bounded model
checking, or those with an approximation of program semantics. Unfortunately,
however, in practice it is not always possible to use such a configuration with
precise semantics, for two reasons. The first reason is performance: Solving
formulas over bitvectors, floating-point numbers, and arrays may be a more
difficult task for an SMT solver than solving for example a similar formula (of
course with different semantics) that has only linear arithmetic and no arrays.
The increased solving time for more precise formulas might in practice make
it infeasible to verify larger and more complex programs. The second reason
are specific problems with interpolation. For example, the SMT theory of arrays

70

5. Applications

does not guarantee the existence of quantifier-free interpolants [161]. Even if
(quantifier-free) interpolants exist, not all SMT solvers support interpolation for
more complex theories such as the theory of floating-point numbers, or fail for
some queries (cf. Sects. 6.3.1 and 16.1). The choice of which SMT solver is used
may also depend on reasons such as availability on a specific platform, license,
or further supported features, and thus we should not assume to always have
an SMT solver that supports all necessary theories. Of course, k-induction does
not suffer from problems with interpolation, but k-induction-based approaches
need an additional invariant generator [31], which might also fail to provide the
necessary invariants. However, note that in the configuration of the Predicate CPA
for counterexample checks, without abstraction computations, refinements, and
interpolation, such that the SMT solver has to solve only a single query about
the feasibility of a finite set of program paths, these issues may not apply at all
or their performance cost may be acceptable.

Thus, in practice a combination of configurations can be beneficial and easily
implemented on top of our unifying framework. We can run an imprecise
configuration such as one based on linear arithmetic first, verify its result using a
precise bounded configuration, and if the result was wrong, start a full analysis
with the precise configuration. Depending on the performance difference between
the configurations and the cost of verifying the first result, this can pay off.
Furthermore, this will allow us to avoid potential problems with interpolation
in the precise configuration as far as possible, because for verifying whether an
existing result is valid it is not needed.

Such a sequential combination of predicate-based configurations (with coun-
terexample checks as described in Sect. 5.4.2 but no checks of safety proofs, and
in combination with other non-predicate-based configurations as well) was for
example successful in several years of the International Competition on Software
Verification [100, 186, 231], showing that this strategy can indeed be beneficial
in practice. Figure 5.2 illustrates the sequential combination of five verification
approaches that was used in SV-COMP’15 [100]: besides two configurations of
an explicit-value analysis [44], our predicate analysis was used in its configura-
tions for k-induction and predicate abstraction, both with an approximation of
program semantics using only linear arithmetic. The last configuration of the
sequential combination was again the configuration for predicate abstraction, but
this time with bitprecise semantics. If any of these analyses found a safety proof

71

Part I. A Flexible Domain Based on Predicates

Figure 5.2.: Sequential combination of algorithms as used in SV-COMP’15 sub-
mission (adapted from [100])

or a specification violation that was confirmed by a counterexample check, the
whole analysis terminated immediately. If, however, an analysis did not find a
result within some time limit, or found a specification violation that could not be
confirmed (e.g., because of the imprecise approximation using linear arithmetic),
the next analysis of the sequence was used.

72

6. Implementation in CPACHECKER

In this chapter, we describe the state of the implementation of our framework.
The complete implementation is part of the software-verification framework
CPAchecker [41] and available in the trunk of its repository 1. CPAchecker is
licensed under the permissive Apache 2.0 license.

We have extended an existing implementation of a CPA for predicate abstrac-
tion with ABE [42, 187] to support all the features and components from Fig. 4.1,
with only a few exceptions that we discuss below. We also provide an implemen-
tation of the CPA++ algorithm (Algorithm 5.1) and of the necessary algorithms for
k-induction (Algorithm 5.2) and CEGAR (Algorithm 5.3), such that all configura-
tions from Chapter 5 are usable. As BDD library we use JavaBDD 2 and for SMT
solving several solvers are available, which we discuss in Sect. 6.3. All choices of
components are configurable via individual options, such that they can be com-
bined flexibly. Fig. 6.1 provides an overview of the architecture of CPAchecker
with these components for predicate analysis (components for other kinds of
analyses are available but not shown). Furthermore, there are algorithms for
counterexample checks (cf. Sect. 5.4.2), and sequential combinations of analyses
(cf. Sect. 5.4.4) available, which can optionally be enabled.

6.1. Discovery Strategies for Abstract Facts

As explained in Sect. 4.2.3, there exist several strategies for the discovery of
abstract facts during refinement. Interpolation, which is the most common
approach, is fully supported in our implementation by delegating to an SMT
solver and is the default strategy. Path invariants have been implemented and
any kind of analysis that is available as a CPA in CPAchecker can be employed

1 https://cpachecker.sosy-lab.org/download.php
2 http://javabdd.sourceforge.net/

73

https://cpachecker.sosy-lab.org/download.php
http://javabdd.sourceforge.net/

Part I. A Flexible Domain Based on Predicates

Parser &
CFA Builder

CPAchecker
Core

CEGAR
Algorithm

k-Induction
Algorithm

CPA++
Algorithm

Composite
CPA

Predicate
CPA

Loop-Bound
CPA

Location
CPA

. . .

SMT-Solving and
Interpolation Interface BDD Interface

MathSAT5 SMTInterpol Princess Z3 JavaBDD

Verification
Result

Source
Code

CPAchecker

Figure 6.1.: Architecture of CPAchecker with components for predicate analysis
(adapted from [41])

as an invariant generator [220]. In case the invariant generator does not succeed
to find invariants that are strong enough to refute the current spurious abstract
counterexample within its resource limit, the abstract-fact discovery falls back to
interpolation. There exists a heuristic for generating predicates statically from the
program, however, it produces only the condition of the last assume statement
on the error path as predicate, and thus is of limited use. This heuristic can
only be used for predicate refinement in combination with interpolation or path
invariants. Predicate-discovery strategies that are based on weakest preconditions
are not implemented.

74

6. Implementation in CPAchecker

6.2. Strongest-Postcondition Operator

As described in Sect. 4.4, various possible choices exist for representing semantics
of C programs in formulas. Our implementation supports all theory combinations
from Table 4.2 on page 51. Thus, we can choose whether we want to support
an unbounded heap and bitprecise semantics of arithmetic operators. This im-
plementation includes contributions from Mikhail Mandrykin (pointer handling
with uninterpreted functions [186]) and from the Bachelor’s theses of Matthias
Dittrich (bitprecise handling of integers [108]) and Stephan Lukasczyk (pointer
handling with arrays or quantifiers [188]). Furthermore, a more fine-grained
memory model based on disjoint regions is also available [7, 228].

For the approximation of integer types with linear arithmetic (cf. Sect. 4.4.1) the
sound encoding with additional disjunctions can be used, or a direct approxima-
tion of bitvector operators with their linear counterparts. The latter is unsound
but produces formulas that are hopefully easier to solve. The approximation of
floats with linear arithmetic is always unsound in our implementation.

The encoding of the heap (cf. Sect. 4.4.3) simulates a separate contiguous
memory region for each different type of the C programming language. Each
cell of such a memory region stores a single value of the respective type, i.e., the
heap is not organized as an array of bytes.

6.3. SMT Solvers

We have integrated a range of SMT solvers. One benefit of being able to choose
between solvers is that different solvers have different performance characteristics,
and thus having several of them available allows finding and choosing an efficient
one, not only based on general performance figures such as provided by the
International Satisfiability Modulo Theories Competition (SMT-COMP) 3 [90],
but specifically for our workload. Furthermore, the supported theories and
features of SMT solvers differ and some SMT solvers work better in practice for
certain operations than others (for example, with fewer failures), so it can be
necessary to choose a certain SMT solver depending on the analysis configuration.
Unfortunately, there is no “one-size-fits-all” solution.

3 http://www.smtcomp.org

75

http://www.smtcomp.org

Part I. A Flexible Domain Based on Predicates

Table 6.1.: Interpolating SMT solvers

MathSAT5 a

[81]
Princess b

[211]
SMTInterpol c

[77]
Z3 d

[101]

License proprietary e LGPL v3 LGPL v3 MIT

Institution Fondazione
Bruno Kessler,
University of

Trento

Uppsala
University

University of
Freiburg

Microsoft
Research

Language C++ Scala Java C++

Quantifier-free
theories
supported f

A, BV, FP,
LIA, LRA,

UF

A,
LIA,
UF

A,
LIA, LRA,

UF

A, BV, FP,
LIA, LRA,
UF, others

Quantifier
support

7 3 7 3

a http://mathsat.fbk.eu
b http://www.philipp.ruemmer.org/princess.shtml
c https://ultimate.informatik.uni-freiburg.de/smtinterpol
d https://github.com/Z3Prover/z3
e research and evaluation purposes only, exceptions on request
f A: Arrays; BV: Bitvectors; FP: Floating-Point; LIA: Linear integer arithmetic; LRA: Linear real

arithmetic; UF: Equality over uninterpreted functions

Additionally, for interpolation queries the SMT solvers do not differ only in
performance and feature support, but also in their answers, because for a given
query in general an infinite amount of possible interpolants exist. Thus, we are
interested in studying interpolants from different solvers and learning which
kind of interpolants may be well-suited for verification.

We are interested in SMT solvers that support interpolation and are available
as a library (i.e., are not coupled to a specific verification framework). The license
should allow at least academic experimentation with the solver. There are a few
solvers that satisfy these criteria, however, not all of them are actually usable in
our use case. The solver OpenSMT2 [146] supports the theories of uninterpreted
functions and linear real arithmetic, but only individually and not in combination,
and thus would not be able to solve queries about arithmetic with heap values.
The theorem prover Vampire [171] also supports some features of an SMT solver

76

http://mathsat.fbk.eu
http://www.philipp.ruemmer.org/princess.shtml
https://ultimate.informatik.uni-freiburg.de/smtinterpol
https://github.com/Z3Prover/z3

6. Implementation in CPAchecker

including interpolation [144] and even participates in SMT-COMP. However, its
support for interpolation over theories is limited and it cannot generate models
for theories like integers, which means we would not be able to report a concrete
error path if a specification violation is found. The solver OptiMathSAT [216] is
an extension of MathSAT5 for optimization modulo theories, but does not differ
from MathSAT5 in the features we are interested in, so we use only MathSAT5
itself. There are four remaining solvers, which we list in Table 6.1. All these
solvers support the SMT-LIB standard [16] and are integrated in CPAchecker
such that they are usable with the Predicate CPA.

6.3.1. Comparison

The solvers from Table 6.1 differ in several ways that can influence the choice
between them. For MathSAT5, a specific license needs to be requested for all
purposes except research and evaluations, whereas all other solvers are available
under a permissive license and can be used in all circumstances.

The fact that MathSAT5 and Z3 run as native code outside the control of the
JVM complicates the configuration of memory limits. For optimal performance
of tools running on the Java virtual machine (JVM), users need to specify the
maximum size of the JVM heap. Typically we would set the maximum heap size
to a value just below the amount of available memory. However, because of the
greedy JVM memory allocation strategies, this would lead to total memory usage
beyond what is available (and thus a crash), if a native library with significant
memory consumption is used. Therefore, users need to estimate the amount of
memory the solver will need and prevent the JVM from using too much memory
by setting a smaller heap size upfront (the maximum heap size cannot be changed
dynamically). An inappropriate partitioning of the memory between solver and
JVM can lead to crashes or decreased performance due to unnecessary GC work.

MathSAT5 and Z3 support (among others) the theories of bitvectors and floats,
whereas Princess and SMTInterpol only support linear arithmetic. Coinciden-
tally, this means that currently it is necessary to use a native solver for bitprecise
verification. Princess and Z3 support quantifiers. In MathSAT5, support for
interpolation over the theory of floats is missing, and support for interpolation
over a combination of bitvectors and uninterpreted functions is limited. 4 In Z3,

4 Source: communication with Alberto Griggio, cf. also our evaluation in Sect. 16.1.

77

Part I. A Flexible Domain Based on Predicates

a number of bugs in the interpolation engine exist that can lead for example
to crashes. We have reported these bugs in July 2016, but until June 2017 they
have not been fixed.5 In general, it seems that interpolation support for Z3 is
currently not maintained. 6 Apart from the mentioned problems, all four solvers
are under active development and the issues we reported typically got fixed
in a timely manner.

6.3.2. Integration in CPACHECKER

The integration of all four SMT solvers in CPAchecker was designed to be as
efficient as possible, in order to exploit the full potential of each SMT solver.
Thus, we integrated them as libraries instead of starting the solver’s binary as a
separate process, with which communication would be based on strings and be
more costly. For the solvers written in non-JVM-based languages (MathSAT5,
Z3), we use Java bindings based on the Java Native Interface (JNI), which is
the fastest way to call native code from Java code (all other methods use JNI
under the hood because this is the only way that is directly supported by the
JVM, so they cannot be faster).

For all integrated solvers, there is only a small wrapper layer that implements
a common interface and forwards all method calls directly to the solver via its
API, in order to not unfairly discriminate against some solvers. This means for
example that we never construct and store formula ASTs in CPAchecker itself.
Instead we use methods offered by the solver to construct formulas inside the
solver’s memory, and we store only references to the solver’s internal formulas.
This avoids needing to copy formulas (repeatedly) between CPAchecker and
the solver via creating and parsing strings. Instead, formulas are created only
once, which for example allows the solver to keep internal state related to the
formulas if they are reused in consecutive queries. Whenever a necessary feature
is supported directly by an SMT solver, we made sure to use the solver’s internal
implementation, otherwise we reimplement it on top of the solver’s API. This
is done for example for AllSMT [177] (getting all satisfying assignments of an

5 list on https://github.com/Z3Prover/z3/issues?q=interpolation%20created:2016-06..2016-07
6 No relevant commits have been made to the directory src/interp of the Z3 repository since

2015.

78

https://github.com/Z3Prover/z3/issues?q=interpolation%20created:2016-06..2016-07

6. Implementation in CPAchecker

SMT formula with respect to a set of predicates), which is necessary for boolean
predicate abstraction.

Recently, this common interface and wrapper layer for SMT solvers was ex-
tracted from CPAchecker into a separate project called JavaSMT 7 [163] and can
now be used in other tools as well. During this process, the solver integration
was improved by the maintainer of JavaSMT, George Karpenkov, especially with
regards to the integration of Z3.

7 https://github.com/sosy-lab/java-smt

79

https://github.com/sosy-lab/java-smt

7. Related Work

Unfortunately, while general overviews over approaches for model checking ex-
ist [153], there exists little work on unification of such approaches on a theoretical
level. The CPA concept [39], on which our framework for predicate analysis is
based, is one such unification of algorithms for model checking and for data-flow
analysis. For hardware model checking, several variants and extensions of the
IC3 algorithm were unified in a common framework and studied [129]. In the
following we focus on individual approaches for software model checking that
are related to the approaches that we have expressed in our unifying framework
and their extensions, and on verification tools that combine several algorithms
on the implementation level.

7.1. SMT-Based Algorithms for Software Model

Checking

There are other approaches for software verification besides the four that we
unify in this work. In the following, we briefly discuss the most important
SMT-based approaches, ordered roughly accordingly to how similar they are to
the approaches that we have discussed so far.

The Ufo algorithm [2] combines the Impact algorithm with predicate abstrac-
tion. Ufo is similar to Impact, but implements a choice between performing
predicate-abstraction computation when creating fresh abstract states, and initial-
izing them with true as Impact does. Refinement is done using interpolation, and
the interpolants can be used to either strengthen the abstract states (pure Impact
behavior), or to update the set of predicates (pure predicate-abstraction behavior),
or do both. This approach can be seen as an instantiation of our verification
framework with a refinement operator that uses interpolants as abstract facts and
both the Impact- and the predicate-refinement strategies (cf. Sect. 4.2.4).

81

Part I. A Flexible Domain Based on Predicates

Symbolic execution [168] follows each path in the program separately and
interprets its operations; the abstract states track explicit and symbolic values of
program variables in a symbolic store as well as constraints over the symbolic
values. If a variable is assigned a nondeterministic value, a fresh symbolic value
is stored; if an explicit value can be determined by the analysis, then the explicit
value is stored. Constraints that are encountered along a path are tracked and
checked for satisfiability, using the symbolic store as interpretation, whenever
the feasibility of the path needs to be determined (e.g., if an error location
is reached). The framework presented in this work can be configured as an
analysis that behaves similarly to symbolic execution (just without symbolic store)
by using the CPA algorithm with the Predicate CPA configured to use blknever

and mergesep instead of mergeP. The operator blknever has the effect of disabling
abstraction computations and thus accumulating the semantics of all program
operations of a path in the path formula of abstract states during traversal (as
for BMC). The operator mergesep has the effect of preventing all merges between
abstract states and thus keeping all paths separate, forming a reachability tree.
Note that differently from symbolic execution this configuration tracks all values
syntactically.

Slicing abstractions [68, 114] (a.k.a. “state splitting”) starts with an abstract
reachability graph (ARG) in which all abstract states are labeled with true. The
algorithm iteratively searches for an infeasible error path in this graph and
computes interpolants for the respective path. The strategy for refining the
abstract model consists of duplicating each abstract state for which an interpolant
was found (including its edges), and conjoining the interpolant to one of the
resulting abstract states and the negated interpolant to the other one (“state
splitting”). Then all edges of both resulting states are checked for feasibility. This
always results in enough edges being removed such that the current infeasible
error path no longer exists in the ARG. This is repeated (CEGAR) until either
no infeasible error path exists anymore, or a feasible error path is found. The
approach of splitting abstract states has also been extended to a combination of
predicate abstraction and explicit-value analysis [133], similar to the combination
of lazy predicate abstraction and explicit-value analysis [44].

Trace abstraction [137] is a CEGAR-based approach in which the iteratively
refined abstract model of the program is not a set of abstract states, but instead
an automaton that represents an overapproximation of the feasible paths of the

82

7. Related Work

program. Every time a spurious counterexample is detected, a trace automaton
that represents a set of infeasible paths including the current counterexample
is created using interpolation, and this trace automaton is subtracted from the
current abstract model.

Software proof-based abstraction with counterexample-based refinement
(SPACER) [169] is an approach that combines CEGAR with its dual, proof-
based abstraction (PBA) [192]. While CEGAR maintains an overapproximation
of the program and refines it using infeasible error paths, PBA maintains an
underapproximation and refines it if it finds a safety proof that holds only for the
underapproximation but not for the original system. SPACER follows the PBA
approach but uses an abstraction of the underapproximation to allow handling
infinite-state systems, and refines this abstraction using CEGAR.

Model checking modulo theories (MCMT) [122, 123] is an approach that focuses
on verifying infinite-state systems that use arrays. It is based on a backwards-
reachability analysis and SMT solving for theories that fulfill certain conditions.
MCMT has been combined with CEGAR and interpolation to define an analysis
that can be described as a backwards variant of Impact, and applied to software
model checking [5]. This approach uses interpolation to compute quantifier-
free interpolants for a restricted class of formulas with arrays, and can prove
universally quantified properties over arrays automatically.

IC3 1 [62], which is also known as property-directed reachability (PDR) [113],
is an algorithm for model checking finite-state systems. It aims at producing
an inductive invariant that is strong enough to prove safety by incrementally
learning clauses that are inductive with regard to the previously learned clauses.
Such clauses are derived by generalizing from counterexamples to induction
proofs. PDR was originally designed for boolean transition systems and based
on SAT solving. It has been generalized from boolean systems to SMT [143],
and applied to software in various ways [55, 78, 80, 156], which we discuss in the
following. If PDR is combined with an explicit (instead of symbolic) tracking
of the program counter, this lets the algorithm produce an abstract reachability
tree [78]. In fact, because the sets of clauses that PDR learns fulfill the properties
of interpolants, this tree-based PDR can even be seen as a version of Impact, just
with a different way of producing interpolants. A hybrid approach that uses both

1 Short for “Incremental Construction of Inductive Clauses for Indubitable Correctness”

83

Part I. A Flexible Domain Based on Predicates

a regular interpolation engine as well as PDR for producing interpolants is also
possible [78]. It would be an interesting extension of our Predicate CPA to adopt
the clause-learning strategy of PDR as a discovery strategy for abstract facts dur-
ing refinement (cf. Sect. 4.2.3). Another approach for software verification using
PDR is to define a boolean abstract model of the program using predicate ab-
straction, and use an almost unchanged PDR algorithm for verifying the abstract
model [80]. The abstraction is refined using typical predicate-discovery strategies
(e.g., interpolation) whenever an infeasible error path is found. CTIGAR [55] is
an approach for applying PDR to software that does not rely on CEGAR (i.e.,
using error paths for refinement), but uses counterexamples to induction (CTI)
for abstraction refinement. CTIGAR computes abstract CTIs from the concrete
CTIs of PDR by using predicate abstraction, and refines the abstraction using
interpolation if it finds a clause that is inductive with regard to the previously
learned clauses, but its abstract version is not. PDR can also be extended from
standard induction to property-directed k-induction [156]. This allows it to more
easily verify programs for which useful 1-inductive invariants are cumbersome
and difficult to find, while more concise k-inductive invariants exist.

Loop invariants that are strong enough to verify program safety can also
be computed via abduction [107]. Similar to the PDR-based approaches, a
candidate invariant is strengthened until it becomes inductive. However, while
PDR starts from facts that are known to hold, the abductive approach starts
from the conjecture it wants to prove and asks an abduction engine to generate
candidate strengthenings that would allow the conjecture to hold. Then it needs
to check whether one of the candidates holds, which may need further recursive
strengthenings with backtracking. As abduction engine, it is possible to use for
example quantifier elimination in Presburger arithmetic.

7.2. Extensions of the Studied Approaches

In addition to the verification algorithms of the previous section, there exists also
a number of techniques that extend or improve some part of an existing algorithm
without proposing a completely new verification approach. Often such extensions
can actually be applied more generally than for the algorithm they have been
originally presented for. One of the advantages of a flexible framework such as

84

7. Related Work

the Predicate CPA is indeed that orthogonal extensions need to be implemented
only once and can immediately be applied and studied with a wide range of
approaches. In the following, we discuss a few of the most important extensions
that are or could be integrated in our framework.

Large-block encoding [27] groups loop-free blocks of program operations
together in order to reduce the number of solver queries and refinements. Our
Predicate CPA supports its generalization adjustable-block encoding [42] and
relies on it for encoding a bounded unrolling of the whole program in a single
block for bounded model checking.

In the framework presented here, we use invariants computed by an abstract
interpreter for strengthening k-induction-based proofs (cf. Sect. 5.2.2). It is
also possible to use invariants for strengthening the transition relation of other
approaches, e.g., for predicate abstraction [149]. The difference is that, in the
former case, the invariants are crucial for the power of the verification approach,
i.e., they allow verification of programs that cannot be verified with k-induction
without invariants [31, 110], whereas in the latter case, the invariants serve only
to increase the efficiency of the approach by reducing the number of necessary
predicates. Such a use of invariants could be combined with the Predicate CPA as
well, and it would be interesting to see how this compares to using an invariant
generator as source of abstract facts during refinement (cf. Sect. 4.2.3).

Several proposals have been made to extend the approach of lazy abstraction
with interpolants to recursive programs, including nested interpolants [138] and
the two similar algorithms Whale [3] and Duality [193]. While we do not
address the verification of recursive programs in this work, it is possible to use
block-abstraction memoization [233] to extend any CPA-based analysis to support
recursion [118], and use nested interpolants for extending the refinement operator
of the Predicate CPA [100]. Verification of recursive programs can also be reduced
to iterative verification of a series of nonrecursive programs, and this has been
successfully used together with the Predicate CPA in its configuration of lazy
predicate abstraction [75, 76].

Besides the verification of recursive programs, many approaches have been
proposed in the last years for improving the effectiveness and efficiency of
counterexample-based refinement and interpolation strategies. Such techniques
are often orthogonal to the actual verification algorithm as long as it is based on
CEGAR, and could be combined with or implemented in our Predicate CPA.

85

Part I. A Flexible Domain Based on Predicates

Path slicing [152] attempts to simplify interpolation queries by omitting irrel-
evant facts of the infeasible error path.

Which interpolants are used for refining the abstract model during the analy-
sis can be crucial, and it can be beneficial to generate several interpolants for
a given error path and choose an appropriate one. This can be done inside
the interpolation engine by combining proof transformations and labeling func-
tions [112], on top of the interpolation engine by exploring a lattice of abstracted
interpolants [182], or as an extension of the refinement operator with refinement
selection [47]. For the latter case, we extract multiple infeasible paths from the
error path (e.g., using sliced-path prefixes [48]), refine each of them in the regular
way, and then select an appropriate refinement using some heuristic. Refinement
selection works independently of how possible refinements are found, i.e., it also
works with refinements that are not based on interpolation and across different
abstract domains.

Other techniques that attempt to improve the usefulness of interpolants for the
purpose of verification are for example counterexample minimization [5] and the
computation of “simple” interpolants [214]. However, in general, it is not known
how to compute the best or at least good interpolants for a given error path, and
the existing techniques are heuristics that may not always provide an optimal
solution. Our presented framework for software verification provides a platform
for research in this direction by allowing to easily add new such approaches and
study their behavior together with several different verification algorithms.

7.3. Software Verifiers

The number of tools for automatic software verification might be even larger than
the number of verification algorithms. A good overview of tools for verification of
C programs is given by the International Competition on Software Verification [24].
However, software verifiers that are suited only for specific use cases, focus
on some particular verification approach, or are prototypical implementations,
are not suited for our goal of studying and comparing algorithms. Thus, we
discuss here only the more mature verification frameworks that implement several
verification approaches (in alphabetic order).

86

7. Related Work

The CProver framework 2 is the base of a number of bitprecise verification
tools, for example 2ls 3 [64], which implements BMC and k-induction, as well
as abstract interpretation with several abstract domains, Cbmc 4 [86], which
implements BMC, Satabs 5 [87], which implements predicate abstraction, and
Wolverine 6 [175], which implements the Impact algorithm. However, even
while there is an underlying common framework, each approach is implemented
in a different tool and without unification of approaches. In contrast, our unifying
framework and the implementation in a single tool allow to combine and mix
different approaches more flexibly.

Another tool that is based on the CProver framework is Esbmc 7 [96], which
implements BMC and k-induction [195]. In contrast to the aforementioned
CProver-based tools, Esbmc is backed by an SMT solver and can use Boolector,
CVC4, MathSAT5, Yices, and Z3. Esbmc supports bitprecise verification as well
as approximation with linear arithmetic using the SMT theories QF_AUFBV and
QF_AUFLIRA. The extension DepthK 8 [208] of Esbmc strengthens its k-induction
procedure with invariants generated upfront by static analysers [207].

F-Soft [148] is a proprietary model checker that implements SAT-based
bounded model checking as well as predicate abstraction with refinement via
weakest preconditions. It also generates invariants using abstract interpretation
with domains such as intervals or octagons for strengthening the analysis [149].

SeaHorn 9 [132] is a verification framework that transforms the program
that should be verified into a set of Horn clauses. These Horn clauses are
then verified by a backend, for which multiple choices exist, including the PDR
implementation in Z3 [143] and an implementation of the SPACER algorithm [169].
SeaHorn can also use the abstract-interpretation framework IKOS [65], either
as verification backend or for computing invariants that are supplied to any of
the other backends.

2 http://www.cprover.org
3 http://www.cprover.org/2LS
4 http://www.cprover.org/cbmc
5 http://www.cprover.org/satabs
6 http://www.cprover.org/wolverine
7 http://www.esbmc.org
8 https://github.com/hbgit/depthk
9 https://seahorn.github.io

87

http://www.cprover.org
http://www.cprover.org/2LS
http://www.cprover.org/cbmc
http://www.cprover.org/satabs
http://www.cprover.org/wolverine
http://www.esbmc.org
https://github.com/hbgit/depthk
https://seahorn.github.io

Part I. A Flexible Domain Based on Predicates

The Smack 10 [73, 205] toolchain combines a frontend that translates C pro-
grams into the Boogie intermediate verification language [103] with existing
verifiers for Boogie. Such possible backends for Smack include Corral [179],
which implements a variant of BMC, and Duality [193], which implements an
interprocedural extension of Impact.

The software-verification framework Ufo 11 [4] implements the Ufo algorithm
described in Sect. 7.1, which combines Impact and predicate abstraction, and
supports recursive programs using the Whale algorithm [3]. Additionally, it
provides abstract interpretation using the domains of intervals and intervals with
disjunctions (boxes) as an alternative to predicate abstraction [131], and uses
interpolation to refine these domains [1].

The program-analysis framework Ultimate 12 consists of a number of plugins
that can be combined into full toolchains for tasks like software verification.
Specific configurations of Ultimate include Ultimate Automizer [136], which
implements trace abstraction [137], Ultimate Kojak [202], which is based on
an algorithm called Impulse that is similar to splitting abstract states [114], and
Ultimate Taipan [126], which combines trace abstraction and abstract interpreta-
tion. All these approaches make use of CEGAR and nested interpolation [138],
which extends interpolation to trees of formulas to allow verification of recursive
programs.

10 https://github.com/smackers/smack
11 https://bitbucket.org/arieg/ufo
12 https://ultimate.informatik.uni-freiburg.de

88

https://github.com/smackers/smack
https://bitbucket.org/arieg/ufo
https://ultimate.informatik.uni-freiburg.de

Part II.

Reliable Benchmarking

Contents

8. Motivation 93

8.1. Overview . 95
8.2. Restrictions . 96

9. Requirements for Reliable Benchmarking 99

9.1. Measure and Limit Resources Accurately 100
9.1.1. Measuring CPU Time and Wall Time 100
9.1.2. Measuring Peak Memory Consumption 100

9.2. Terminate Processes Reliably . 101
9.3. Assign Cores Deliberately . 101
9.4. Respect Nonuniform Memory Access 103
9.5. Avoid Swapping . 103
9.6. Isolate Individual Runs . 104

10.Limitations of Existing Methods 105

10.1. Measuring Resources May Fail . 105
10.1.1. Measuring CPU Time and Wall Time 105
10.1.2. Measuring Peak Memory Consumption 106

10.2. Enforcing Limits May Fail . 106
10.3. Termination of Processes May Fail 107
10.4. Hardware Allocation May be Ineffective 108
10.5. Isolation of Runs may be Incomplete 109

11. Impact of Hardware Characteristics on Parallel Tool Executions 111

11.1. Overview of Hardware Characteristics 111
11.2. Experiment Setup . 112
11.3. Impact of Hyperthreading . 113
11.4. Impact of Shared Memory Bandwidth and Caches 114

91

11.5. Impact of Turbo Boost . 115
11.6. Impact of NUMA . 116
11.7. Impact of Multiple CPUs . 117
11.8. Investigation of Impact of Multiple CPUs 119

12.State-of-the-Art Benchmarking with Cgroups and Containers 123

12.1. Introducing Cgroups for Benchmarking 123
12.2. Benchmarking Containers Based on Namespaces 126

13.BENCHEXEC: A Framework for Reliable Benchmarking 131

13.1. System Requirements . 131
13.2. Benchmarking a Single Run . 132
13.3. Benchmarking a Set of Runs . 134
13.4. Comparison with Requirements for Reliable Benchmarking 137
13.5. Discussion . 139
13.6. Encouraging Replicable Experiments 141

14.Related Work 143

14.1. Benchmarking Strategies . 143
14.2. Benchmarking Tools . 144

92

8. Motivation

Performance evaluation is an effective and inexpensive method for assessing
research results [224], and in some communities, like high-performance com-
puting 1, transactional processing in databases 2, natural-language requirements
processing 3, and others, performance benchmarking is standardized. Perfor-
mance benchmarking, i.e., measuring execution time, memory consumption, and
other performance characteristics of the tool for a large set of input files is also a
standard practice for the evaluation of tools and approaches for automatic soft-
ware verification. Benchmarking is used by researchers for comparing different
tools, evaluating and comparing different features or configurations of the same
tool, or for finding out how a single tool performs on different inputs. Also verifi-
cation competitions, like the International Competition on Software Verification
(SV-COMP) [24], require exact measuring of resource consumption for hundreds
or thousands of runs for each participating tool. For this thesis, we want to use
benchmarking to evaluate our unifying framework for predicate-based software
verification from Part I and compare our implementation against other tools.

To recover from its replication crisis [91, 172, 206], experimental computer
science needs a stronger focus on replicability [67, 157, 227]. While replicability
requires several properties to be satisfied (e.g., documentation of experimental
setup, availability of data, repeatability of experiments), in this part we focus on
the technical aspects of benchmarking that can render the results invalid. To be
able to perform replicable performance experiments, we need a benchmarking
infrastructure that guarantees that the results are obtained by reliable and valid
measurements.

An experiment is replicable if it is guaranteed that a different research team
is able to obtain the same results later again by rerunning the benchmarks on

1 https://www.spec.org
2 http://www.tpc.org
3 http://nlrp.ipd.kit.edu

93

https://www.spec.org
http://www.tpc.org
http://nlrp.ipd.kit.edu

Part II. Reliable Benchmarking

a machine with the same hardware and the same software versions (cf. ACM’s
guideline 4). Replication of experimental results requires reliable measurement. We
call a measurement reliable, if the measurement method ensures accuracy (small
systematic and random measurement error, i.e., no bias or “volatile” effects,
resp.) and sufficient precision [150] (cf. also ISO 3534-2:2006). While measuring
execution time may appear trivial, a closer look reveals that quite the contrary is
the case. In many circumstances, measuring the wall time, i.e., the elapsed time
between start and end of a tool execution, is insufficient because this does not
allow a meaningful comparison of the resource usage of multithreaded tools, and
may be inadvertently influenced by input/output operations (I/O). Measuring
the CPU time is more meaningful but also more difficult, especially if child
processes are involved. Furthermore, characteristics of the machine architecture
such as hyperthreading or nonuniform memory access can nondeterministically
affect results and need to be considered carefully in order to obtain accurate
results. Obtaining reliable measurement values on memory consumption is even
harder, because the memory that is used by a process may increase or decrease
at any point in time.

Besides measuring, also the ability to limit resource usage (e.g., memory con-
sumption) of a tool during benchmarking is a requirement for replicable ex-
periments. Here it is necessary to ensure for example that limits on memory
consumption are not exceeded at any point in time during the execution of the
tool. Child processes again add further complications.

For replicable experiments it is also important that the tool executions are
properly isolated. Executing the benchmarked tool should leave the system in an
unchanged state, and parallel tool executions must not affect each other due to,
for example, mutual interference of processes from different tool executions or
contention with regard to shared hardware resources. Another important aspect
is the potentially huge heterogeneity between different tools in a comparison:
tools are written in different programming languages, require different libraries,
may spawn child processes, write to storage media, or perform other I/O. All of
this has to be considered in the design of a benchmarking environment, ideally
in a way that does not exclude any relevant tool from being benchmarked.

4 https://www.acm.org/publications/policies/artifact-review-badging

94

https://www.acm.org/publications/policies/artifact-review-badging

8. Motivation

Unfortunately, existing benchmarking tools do not always ensure that these
issues are handled and that the results are reliable. Thus, we have found that in
order to being able to properly perform our planned experimental evaluation,
with our own tool as well as other tools, a benchmarking infrastructure is neces-
sary that allows us to reliably measure and limit resources and makes it as easy
as possible to obtain and present scientifically valid experimental data.

8.1. Overview

We present the following solutions and insights towards reliable benchmarking
for all scenarios that are described above:

• We define a set of necessary requirements that need to be fulfilled for
reliable benchmarking (Chapter 9).

• We show that some existing methods for resource measurements and limi-
tations do not fulfill these requirements and lead to invalid experimental
results in practice (Chapter 10).

• We investigate the impact of benchmarking multiple tool executions in
parallel and report experimental results on measurement errors, depending
on certain hardware characteristics (Chapter 11).

• We describe how to implement a benchmarking environment on a Linux
system which fulfills all mentioned requirements (Chapter 12).

• We introduce the open-source implementation BenchExec, a set of ready-
to-use tools that fulfill the requirements for reliable benchmarking. These
tools are also used successfully in practice by other research groups and
competitions [23] (Chapter 13).

A publication that contains this part of this thesis was accepted with minor
revisions for publication [49]. A preliminary version (without the isolation of runs
described in Sect. 12.2, and the discussion of hardware influences in Chapter 11)
was already published before [46].

95

https://github.com/sosy-lab/benchexec

Part II. Reliable Benchmarking

8.2. Restrictions

In order to guarantee reliable benchmarking, we need to introduce a few restric-
tions. We only consider the benchmarking of tools that adhere to the following
restrictions: the tool (1) is CPU-bound, i.e., if compared to CPU usage, input and
output operations from and to storage media are negligible, and input and output
bandwidth does not need to be limited nor measured (this assumes the tool does
not make heavy use of temporary files); (2) executes computations only on the
CPU, i.e., does not make use of separate coprocessors such as GPUs, (3) does
not require external network communication during the execution; (4) does
not spread across several machines during execution, but is limited to a single
machine; and (5) does not require user interaction.

These restrictions are well-justified and acceptable for our use case of bench-
marking tools for automatic software verification. Reading from storage media (1),
apart from the input file, is not expected for verification tools. In case a tool
produces much output (e.g., by creating large log files), this would primarily
have a negative impact on the performance of the tool itself, and thus does
not need to be restricted by the benchmarking environment. Sometimes, I/O
cannot be avoided for communicating between several processes, however, for
performance this should be done without any actual storage I/O anyway (e.g.,
using pipes). Note that RAM disks should not be used as temporary storage
on benchmarking systems, because their usage would neither be counted in
memory measurements nor be restricted by the memory limit. If a tool executes
computations on coprocessors like GPUs (2), this kind of resource consumption
would also need to be measured in order to get meaningful results. This is out of
our scope, and also more complex than measurements on CPUs, because GPUs
and similar coprocessors are architecturally much more diverse then CPUs and
no common hardware-independent interface exists for them. Not supporting
external network communication (3) is necessary, because it is possible for a tool
to offload work to remote servers [34, 226], and this would mean to exclude the
offloaded work from benchmarking. Benchmarking a distributed tool (4) is much
more complex and out of scope. However, techniques and ideas from this work
as well as our benchmarking framework can be used on each individual host as
part of a distributed benchmarking environment. User interaction (5) is generally
not supported for benchmarking.

96

8. Motivation

While we consider a proper isolation of the executed tool in order to prevent
accidental sabotage of the measurements or other running processes, we do not
focus on security concerns, i.e., we assume the executed tool does not maliciously
try to interfere with the benchmarking. We also do not consider the task of
providing the necessary execution environment, i.e., the user has to ensure that
the tool itself and all necessary packages and libraries that are required to execute
the tool are available in the correct versions. Furthermore, we assume that
enough memory is installed for the operating system (OS), the benchmarking
environment, and the benchmarked process(es) without swapping, and that
no CPU-intensive tasks are running outside the control of the benchmarking
environment. All I/O is assumed to be local, because network shares can have
unpredictable performance.

97

9. Requirements for

Reliable Benchmarking

There exist three major difficulties that we need to consider for benchmarking.
The first problem is that a tool may arbitrarily spawn child processes, and
a benchmarking framework needs to control this. Using child processes is
common practice. For example, verifiers might start preprocessors, such as cpp,
or solvers, like an SMT-backend, as child processes. Some tools start several child
processes, each with a different analysis or strategy, running in parallel, while
some verifiers spawn a separate child process to analyze counterexamples. In
general, a significant amount of the resource usage can happen in one or many
child processes that run sequentially or in parallel. Even if we know that our own
tool does not start child processes, for comparing with other tools we still need
to use a generic benchmarking framework that handles child processes correctly.

The second problem occurs if the benchmarking framework assigns specific
hardware resources to tool runs, especially if such runs are executed in parallel
and the resources need to be divided between them. Machine architectures can
be complex and a suboptimal resource allocation can negatively affect the perfor-
mance and lead to nondeterministic and thus nonreplicable results. Examples for
differing machine architectures can be seen in Appendix A and online 1.

The third problem arises with ensuring the independence of different tool
executions. In most cases, benchmarks consist of a large number of tool exe-
cutions, each of which is considered to be independent from the others. For
accurate results, each tool execution should be performed in isolation, as on
a dedicated machine without other tool executions, neither in parallel nor in
sequential combination, for example to avoid letting the order of tool executions
influence the results.

1 https://www.sosy-lab.org/research/benchmarking

99

https://www.sosy-lab.org/research/benchmarking

Part II. Reliable Benchmarking

1. Measure and Limit Resources Accurately

2. Terminate Processes Reliably

3. Assign Cores Deliberately

4. Respect Nonuniform Memory Access

5. Avoid Swapping

6. Isolate Individual Runs

Figure 9.1.: Requirements for reliable benchmarking

We have identified six requirements (shown in Fig. 9.1) that address these
problems and need to be followed for reliable benchmarking. This list can also
serve as a checklist not only for researchers who use benchmarking, but also for
assessing the quality of experimental results in research reports. In the following,
we explain each requirement in more detail.

9.1. Measure and Limit Resources Accurately

9.1.1. Measuring CPU Time and Wall Time

The CPU time of a tool must be measured and limited accurately, including
the CPU time of all (transitive) child processes that the tool started. The wall
time (i.e., the elapsed time between start and end of the tool execution) must
be measured without being affected by changes to the system clock, e.g., due
to daylight-savings time or due to time adjustments in the background that are
for example caused by NTP services.

9.1.2. Measuring Peak Memory Consumption

For benchmarking, we are interested in the peak resource consumption of a pro-
cess, i.e., the smallest amount of resources with which the tool could successfully
be executed with the same result. Thus, the memory usage of a process is defined
as the peak size of all memory pages that occupy some system resources. This
means, for example, that we should not measure and limit the size of the address

100

9. Requirements for Reliable Benchmarking

space of a process, because it may be much larger than the actual memory usage.
This might happen due to memory-mapped files or due to allocated but unused
memory pages (which do not actually take up resources, because the Linux kernel
lazily allocates physical memory for a process only when a virtual memory page
is first written to, not when it is allocated). The size of the heap can also not be
used as memory measure because it does not include the stack, and the so-called
resident set of a process (the memory that is currently kept in RAM) cannot be
used because it does not include pages that are in use but have been swapped out.

If a tool spawns several processes, these can use shared memory, such that
the total memory usage of a group of processes is less than the sum of their
individual memory usages. Shared memory occupies system resources only once
and thus needs to be counted only once by the benchmarking framework.

Explicitly setting a limit for memory usage is important and should always
be done, because otherwise the amount of memory available to the tool is the
amount of free memory in the system, which varies over time and depends on
lots of external factors, preventing repeatable results.

9.2. Terminate Processes Reliably

If a resource limit is violated, it is necessary to reliably terminate the tool includ-
ing all of its child processes. Even if the tool terminates itself, the benchmarking
environment needs to ensure that all child processes are also terminated. Other-
wise a child process could keep running and occupy CPU and memory resources,
which might influence later benchmarks on the same machine.

9.3. Assign Cores Deliberately

Special care is necessary for the selection of CPU cores that are assigned to one
tool execution. For the scheduler of the OS, a core is a processing unit that
allows execution of one thread independently of what happens on a different
core. However, on the hardware level cores are usually not fully independent
because of shared hardware resources. In this case, the performance of a core and
thus the CPU-time and wall-time measurements of a tool execution are influenced
by the actions of threads running on other cores, and the performance impact

101

Part II. Reliable Benchmarking

depends not only on the characteristics of the machine’s hardware, but also on
the type of operations performed by all these threads, and on the timing of their
operations relative to each other. For example, if all threads are heavily accessing
the memory at the same time, a larger influence is to be expected than if the
threads happen to access the memory at different times. Because we cannot
guarantee an upper bound on the size of the performance influence and because
it happens nondeterministically, we need to avoid such performance influences
as far as possible in order to achieve accurate measurements.

If the benchmarked tool is concurrent and should be executed using several
cores, avoiding performance influences between the tool’s own threads and
processes is specific to the tool and thus the responsibility of the tool itself. For
performance influences on the tool from other processes, the most reliable way
to avoid them would be to execute only one instance of the benchmarked tool
at the same time, and ensure that no other processes outside the control of
the benchmarking environment are active. However, this might not always be
possible, for example due to machines being shared with other users, or due to
the amount of benchmarking work being so large that parallel executions are
required. In such cases, the benchmarking environment should assign a fixed
set of CPU cores to each (parallel) tool execution and not let the scheduler of
the OS assign cores dynamically, in order to prevent additional performance
influences from processes being moved around. The benchmarking environment
needs to compute the mapping of CPU cores per run such that the CPU cores
for one run are as close as possible and the sets of cores for separate runs are
as independent as possible on the hardware level 2, and thus the performance
impact is minimized. Users need to know about the characteristics of their
benchmarking machine and what kind of performance influences they need to
expect, in order to properly decide how many parallel executions are acceptable
for a given benchmark.

For example, we would usually consider it acceptable to have parallel tool
executions on different CPUs that each have their own local memory, whereas it
would usually considered to be not acceptable to have parallel tool executions on
different virtual cores of the same physical core (just like there should never be
two simultaneous tool executions sharing one virtual core). More information on

2 I.e., with high cohesion and loose coupling.

102

9. Requirements for Reliable Benchmarking

how hardware characteristics can affect performance is given in Chapter 11. In
any case, the used resource allocation should be documented and made available
together with the benchmark results.

9.4. Respect Nonuniform Memory Access

Systems with several CPUs often have an architecture with nonuniform memory
access (NUMA), which also needs to be considered by a benchmarking environ-
ment. In a NUMA architecture, a single CPU or a group of CPUs can access
parts of the system memory locally, i.e., directly, while other parts of the system
memory are remote, i.e., they can only be accessed indirectly via another CPU,
which is slower. The effect is that once a process has to access remote memory,
this leads to a performance degradation depending on the load of the inter-CPU
connection and the other CPU. Hence, a single tool execution should be bound to
memory that is local to its assigned CPU cores, in order to avoid nondeterministic
delays due to remote memory access.

9.5. Avoid Swapping

Swapping out memory must be avoided during benchmarking, because it may
degrade performance in a nondeterministic way. This is especially true for the
benchmarked process(es), but even swapping of an unrelated process can nega-
tively affect the benchmarking, if the benchmarked process has to wait for more
free memory to become available. Absolutely preventing swapping can typically
only be done by the system administrator by turning off all available swap space.
In theory, it is not even enough to ensure that the OS, the benchmarking environ-
ment, and the benchmarked processes all fit into the available memory, because
the OS can decide to start swapping even if there is still memory available, for
example, if it decides to use some memory as cache for physical disks. However,
for benchmarking CPU-bound tools, with high CPU and memory usage, and
next to no I/O, this is unlikely to happen with modern OS. Thus, the main duty
of the benchmarking environment is to ensure that there is no overbooking of
memory, and that memory limits are enforced effectively. It is also helpful if

103

Part II. Reliable Benchmarking

the benchmarking environment monitors swap usage during benchmarking and
warns the user of any swapping.

9.6. Isolate Individual Runs

If several tool executions are executed in parallel, and to some extent even if
they are executed sequentially, the different instances of the benchmarked tool(s)
can interfere with each other, which could influence the performance and/or
change the results.

One common reason for mutual interference are write accesses to shared
files in the temp directory and in the home directory. For example, if a tool
uses a temporary file with a fixed name, a cache directory, or configuration
files in the home directory, parallel instances may interfere with each other
nondeterministically. Even if runs are executed strictly sequentially, left-over
files from previous runs could influence later runs if the tool reads these files,
and prevent repeatability of experiments (because results then depend on the
order of executing the runs).

Another reason for mutual interference of parallel runs are signals like
SIGKILL or SIGTERM, if they get sent to processes that belong to a different tool
instance. This may happen inadvertently, for example in a well-meaning cleanup
script that tries to terminate child processes of a tool with the command killall.

The benchmarking environment should isolate the benchmarked processes
to prevent such interference.

104

10. Limitations of Existing Methods

Some of the methods that are available on Linux systems for measuring resource
consumption and for enforcing resource limits of processes have several problems
that make them unsuitable for benchmarking, especially if child processes are
involved. Any benchmarking environment needs to be aware of these limitations
and avoid using naive methods for resource measurements. However, later on in
Sect. 14.2 we will see that indeed a number of existing benchmarking tools use
the methods described in this section and thus do not ensure reliable results.

10.1. Measuring Resources May Fail

10.1.1. Measuring CPU Time and Wall Time

Measuring wall time is sometimes done by reading the system clock at start and
end of a run and calculating the difference. However, because the system clock
can jump due to time adjustments and even change its pace, it is important to
use a time source that is guaranteed to be strictly monotonic and of constant rate.
Many operating systems and programming languages offer such a time source
with high precision specifically for benchmarking.

Measuring CPU time of the main process of a tool, for example using the tool
time or a variant of the system call wait (which returns the CPU time after
the given process terminated), does not reliably include the CPU time of child
processes that were spawned by the main process. The Linux kernel only adds
the CPU time used by child processes to that of the parent process after the child
process has terminated and the parent process waited for the child’s termination
with a variant of the system call wait. If the child process has not yet terminated
or the parent did not explicitly wait for its termination, the CPU time of the child
is lost. This is a typical situation that might happen for example if a verifier starts
an SMT solver as a child process and communicates with the solver via stdin

105

Part II. Reliable Benchmarking

and stdout. When the analysis finishes, the verifier would terminate the solver
process, but usually would not bother to wait for its termination. A tool that
runs different analyses in parallel child processes would also typically terminate
as soon as the first analysis returns a valid result, without waiting for the other
analyses’ termination.1 In these cases, a large share of the total CPU time is spent
by child processes but not included in the measurement.

10.1.2. Measuring Peak Memory Consumption

Some measurement tools only provide a view on the current memory usage
of individual processes, but we need to measure the peak usage of a group of
processes. Calculating the peak usage by periodically sampling the memory
usage and reporting the maximum is inaccurate, because it might miss peaks of
memory usage. If the benchmarked process started child processes, one has to
recursively iterate over all child processes and calculate the total memory usage.
This contains several race conditions that can also lead to invalid measurements,
for example, if a child process terminates before its memory usage could be
read. In situations where several processes share memory pages (e.g., because
each of them loaded the same library, or because they communicate via shared
memory), we cannot simply sum up the memory usage of all processes. Thus,
without keeping track of every memory page of each process, manually filtering
out pages that do not occupy resources because of lazy allocation, and counting
each remaining page exactly once, the calculated value for memory usage is
invalid. If all this is done with a high sampling frequency (to not miss short
peaks of memory usage), we risk that the benchmarked process is being slowed
down by the increased CPU usage.

10.2. Enforcing Limits May Fail

For setting resource limits, some users apply the tool ulimit, which uses the
system call setrlimit. A limit can be specified for CPU time as well as for
memory, and the limited process is forcefully terminated by the kernel if one

1 The organizers of SV-COMP’13 experienced this for a portfolio-based verifier. Initial CPU-time
measurements were significantly too low, which was only discovered by chance. The verifier
had to be patched to wait for its subprocesses and the benchmarks had to be rerun.

106

10. Limitations of Existing Methods

of these limits is violated. However, similar to measuring time with the system
call wait, limits imposed with this method affect only individual processes, i.e.,
a tool that starts n child processes could use n times more memory and CPU
time than allowed. Limiting memory is especially problematic because either
the size of the address space or the size of the data segment (the heap) can be
limited, which do not necessarily correspond to the actual memory usage of the
process, as described in Sect. 9.1.2. Limiting the resident-set size (RSS) is no
longer supported.2 Furthermore, if such a limit is violated, the kernel terminates
only the one violating process, which might not be the main process of the tool.
In this case it depends on the tool itself how such a situation is handled: it might
terminate itself, or crash, or even continuously respawn the terminated child
process and continue. Thus, this method is not reliable.

It is possible to use a self-implemented limit enforcement with a process that
samples CPU time and memory usage of a tool with all its child processes,
terminating all processes if a limit is exceeded, but this is inaccurate and prone
to the same race conditions, as described above for memory measurement.

10.3. Termination of Processes May Fail

In order to terminate a tool and all its child processes, one could try to (transi-
tively) enumerate all its child processes and terminate each of them. However,
finding and terminating all child processes of a process may not work reliably
for two reasons. First, a process might start child processes faster than the
benchmarking environment is able to terminate them. While this is known as a
malicious technique (“fork bomb”), it may also happen accidentally, for exam-
ple due to a flawed logic for restarting crashed child processes of a tool. The
benchmarking environment should guard against this, otherwise the machine
might become unusable. Second, it is possible to “detach” child processes such
that they are no longer recognizable as child processes of the process that started
them. This is commonly used for starting long-running daemons that should
not retain any connection to the user that started them, but also might happen
incidentally if a parent process is terminated before the child process. In this case,
an incomplete benchmarking framework could miss to terminate child processes.

2 http://man7.org/linux/man-pages/man2/setrlimit.2.html

107

http://man7.org/linux/man-pages/man2/setrlimit.2.html

Part II. Reliable Benchmarking

The process groups of the POSIX standard (established with the system call
setpgid 3) are not reliable for tracking child processes. A process is free to
change its process group, and tools using child processes often use this feature.

10.4. Hardware Allocation May be Ineffective

There are two mistakes that can be made when attempting to assign a specific
set of CPU cores to a benchmark run. First, the set of CPU cores for a pro-
cess can be specified with the tool taskset or alternatively by the system call
sched_setaffinity. However, a process can change this setting freely for
itself, and does not need to follow predefined core restrictions. Thus, this is not a
reliable way to enforce a restriction of the CPU cores of a process.

Second, the numbering system of the Linux kernel for CPU cores is complex
and not consistent across machines of different architectures (not even with the
same kernel version). Any “naive” algorithm for assigning cores to tool executions
(e.g., allocating cores with consecutive ids), will fail to produce a meaningful core
assignment, and give suboptimal performance, on at least some machines.

The Linux kernel assigns numeric ids for CPUs (named physical [package] id),
for physical cores (named core id), and for virtual cores (named processor id or
CPU id). The latter is used for assigning cores to processes. Additionally there
is a numeric id for NUMA memory regions (named node id), which is used for
restricting the allowed memory regions of a process. There is no consistent
scheme how these ids are assigned by the kernel. In particular, we have found
the following intuitive assumptions to be invalid:

• CPUs, virtual cores, and NUMA regions are always numbered consistently
(instead the virtual cores or NUMA regions may be numbered in a different
order than the CPUs).

• The core id is assigned consecutively (instead there may be gaps).

• Virtual cores that belong to the same physical core always have processor
ids that are as far apart as possible.

3 http://man7.org/linux/man-pages/man2/setpgrp.2.html

108

http://man7.org/linux/man-pages/man2/setpgrp.2.html

10. Limitations of Existing Methods

• Virtual cores that belong to the same physical core always have processor
ids that are as close as possible (i.e., consecutive).

• Virtual cores that belong to the same physical core have the same core id.

• Virtual cores that belong to different physical cores have different core ids
(instead, on systems with several NUMA regions per CPU, there are several
physical cores on each CPU with the same core id).

• The tuple (physical [package] id, core id) uniquely identifies physical cores
of the system.

For several of these invalid assumptions, a violation can be seen in Fig. A.1 or
Fig. A.2 in Appendix A.

Therefore we must not rely on any assumption about the numbering system
and only use the explicit CPU topology information given by the kernel. The
authoritative source for this information is the /sys/devices/system/cpu/
directory tree. Note that the file /proc/cpuinfo neither contains the node
id for NUMA regions nor the information which virtual cores share the same
hardware, and thus cannot be used to compute a meaningful core assignment
for benchmarks.

10.5. Isolation of Runs may be Incomplete

Processes can be isolated from external signals by executing each parallel tool
execution under a separate user account. This also helps to avoid influences
from existing files and caches in the user’s home directory, but it does not allow
separating the temporary directory for each run, and thus parallel runs can still
influence each other if they use temporary files with hard-coded names. Many
tools allow using the environment variable TMPDIR for specifying a directory
that is used instead of /tmp, but not all tools support this option. For example,
the Java VM (both Oracle and OpenJDK) ignores this variable.

109

11. Impact of

Hardware Characteristics

on Parallel Tool Executions

Because we often have a large set of independent tool executions to perform (e.g.,
several tool configurations on many input files), we can save a significant amount
of time if we can execute the tool several times in parallel. However, certain
hardware characteristics of today’s machines can influence the performance of
tools that are executed in parallel on one machine. Thus, it is important to under-
stand the sources of undesired performance influences and how to minimize their
impact, in order to decide whether parallel executions are acceptable. In this chap-
ter, we present an overview of important hardware characteristics and highlight
the effects they can have on parallel tool executions based on experimental results.

11.1. Overview of Hardware Characteristics

In today’s machines, CPU cores can typically be roughly organized in a hierarchy
with three layers:1 A machine may have multiple CPUs (also named sockets
or [physical] packages), each CPU may have multiple physical cores, and each
physical core may have multiple virtual cores (also named [hardware] threads or
processors). The virtual cores of one physical core may share some execution
units, level-1, and level-2 caches (e.g., in case of hyperthreading). The physical
cores of one CPU may share a level-3 cache and the connection to the RAM. The
CPUs of one machine may share the connection to the RAM and to I/O. If not all
cores on the system share the same connection to the RAM, the system is said

1 Systems can be even more complex and have more layers, however, the hierarchy presented
here captures the facts that are most important for the performance of software from our target
domain. Thus, we use this abstracted definition and nomenclature.

111

Part II. Reliable Benchmarking

to have a NUMA architecture. Appendix A shows examples of two hardware
architectures.

The “closer” two cores are, i.e., the more hardware they share, the larger can
be the mutual performance influence of two threads running on them in parallel.
The largest influence is to be expected by hyperthreading (several virtual cores
sharing execution units) or the “module” concept of AMD CPUs (several virtual
cores sharing level 1 and 2 caches). Even if we use separate physical cores for each
tool execution, there can be further nondeterministic influences on performance.
Modern CPUs often adjust their frequency by several hundred MHz depending
on how many of their cores are currently used, with the CPU running faster when
less cores are used (this is commonly called “Turbo Boost” or “Turbo Core”).
For memory-intensive programs, the influence by other processes running on
different physical cores that share the same level 3 cache and the connection to
the RAM (and thus compete for memory bandwidth) can also be significant.

On the other hand, the closer two cores are, the faster they can typically
communicate with each other. Thus, we can reduce performance impact from
communication by allocating cores that are close together to each tool execution.

11.2. Experiment Setup

To show that these characteristics of the benchmarking machine can significantly
influence the performance, and thus have a negative influence on benchmarking if
not handled appropriately, we conducted several experiments on a machine with
two Intel Xeon E5-2650 v2 CPUs and 68 GB of RAM per CPU. The CPUs (each
with eight physical cores) support hyperthreading (with two virtual cores per
physical core) and Turbo Boost (base frequency is 2.6 GHz, with up to 3.4 GHz
if only one core is used). The machine has a NUMA architecture. A graphical
overview of this system can be seen in Fig. A.2 of Appendix A.

As an example for a benchmarked tool we took the verifier CPAchecker 2 in
revision 17 829 from the project repository 3 with its configuration for predicate
analysis. The machine was running a 64-bit Ubuntu 14.04 with Linux 3.13 and
OpenJDK 1.7 as Java virtual machine. As benchmark set we used 4 011 C pro-

2 https://cpachecker.sosy-lab.org
3 https://svn.sosy-lab.org/software/cpachecker/trunk

112

https://cpachecker.sosy-lab.org
https://svn.sosy-lab.org/software/cpachecker/trunk

11. Impact of Hardware Characteristics on Parallel Tool Executions

grams from SV-COMP’15 [22] (excluding categories not supported by this con-
figuration of CPAchecker). In order to measure only effects resulting from
concurrency between parallel tool executions and avoid effects from concurrency
inside each tool execution, we restricted each tool execution to one virtual core
of the machine. We also limited each tool execution to 4.0 GB of memory and
900 s of CPU time. Except were noted, Turbo Boost was disabled such that all
cores were running at 2.6 GHz. Apart from our tool executions, the machine was
completely unused. All experiments were conducted with BenchExec 1.2. We
show the accumulated CPU time for a subset of 2 414 programs that could be
solved by CPAchecker within the time and memory limit on the given machine.
(Including timeouts in the accumulated values would skew the results.) Time
results were rounded to two significant digits. Tables with the full results and
the raw data are available online.4

Note that the actual performance impact of certain hardware features will differ
according to the characteristics of the benchmarked tool and the benchmarking
machine. For example, a tool that uses only little memory but fully utilizes its
CPU core(s) will be influenced more by hyperthreading than by nonlocal memory,
whereas it might be the other way around for a tool that relies more on memory
accesses. In particular, the results that are shown here for CPAchecker and
our machine are not generalizable and show only that there is such an impact.
Because the quantitative amount of the impact is not predictable and might be
nondeterministic, it is important to avoid these problems in order to guarantee
reliable benchmarking.

11.3. Impact of Hyperthreading

To show the impact of hyperthreading, which is also named simultaneous multi-
threading, we executed the verifier twice in parallel on one CPU of our machine.
In one part of the experiment, we assigned each of the two parallel tool executions
to one virtual core from separate physical cores of the same CPU. In a second
part of the experiment, we assigned each of the two parallel tool executions to
one virtual core from the same physical core, such that both runs had to share the
hardware resources of one physical core. A scatter plot with the results is shown

4 https://www.sosy-lab.org/research/benchmarking/#benchmarks

113

https://www.sosy-lab.org/research/benchmarking/#benchmarks

Part II. Reliable Benchmarking

1 10 100 1 000
1

10

100

1 000

CPU time with a separate physical core per run (s)

C
PU

ti
m

e
w

it
h

2
ru

ns
pe

r
ph

ys
ic

al
co

re
(s

)

Figure 11.1.: Scatter plot showing the influence of hyperthreading for 2 414 runs
of CPAchecker: the data points above the diagonal show a perfor-
mance decrease due to an inappropriate assignment of CPU cores

in Fig. 11.1. For the 2 414 solved programs from the benchmark set, 16 hours
of CPU time were necessary using two separate physical cores and 25 hours
of CPU time were necessary using the same physical core, an increase of 53 %
caused by the inappropriate core assignment. This shows that hyperthreading
can have a significant negative impact, and parallel tool executions should not
be scheduled on the same physical core.

11.4. Impact of Shared Memory Bandwidth and

Caches

To show the impact of a shared memory connection and a shared level-3 cache
for multiple physical cores, we experimented with 1 to 8 parallel tool executions
on the same CPU (each on its own physical core), i.e., with 1 to 8 used physical
cores that share a common level-3 cache and the memory bandwidth. The second
virtual core of every physical core was unused, and Turbo Boost was disabled.

114

11. Impact of Hardware Characteristics on Parallel Tool Executions

A plot with the results is shown in Fig. 11.2 (shaded blue data points). For
the 2 414 solved programs from the benchmark set, 16 hours of CPU time were
necessary if only one physical core was used, whereas 20 hours of CPU time were
necessary with eight physical cores used; the increase of 22 % is caused by the
contention on cache and memory accesses. The linear-regression line in the plot
shows that the used CPU time scales linearly with the amount of used cores. This
can be explained by the CPU dynamically allocating equal shares of its memory
bandwidth and level-3 cache to each of those cores that are actively used.

This experiment shows that parallel tool executions on the same CPU can
influence the measured CPU time significantly. However, because the wall time
that is necessary for benchmarking can be decreased drastically by using parallel
tool executions, it might in practice sometimes be necessary to compromise and
use at least a few parallel tool executions during benchmarking. Note that by
utilizing only a subset of the cores of a CPU the size of the undesired influence on
CPU time can be reduced while keeping most of the wall-time savings compared
to no parallelization at all.

11.5. Impact of Turbo Boost

To show the impact of Turbo Boost, we executed benchmarks with the same setup
as in Sect. 11.4, but now with Turbo Boost enabled. This means that the CPU uses
a higher frequency depending on the current load of its cores. Without Turbo
Boost, a used core of this CPU always runs at 2.6 GHz. With Turbo Boost, a single
used core of this CPU can run at 3.4 GHz, if the CPU is otherwise idle, and even
if all eight cores are used, they can still run at 3.0 GHz. The results are also shown
in Fig. 11.2 (red data points). As expected, due to the higher frequency, the CPU
time is lower than with Turbo Boost disabled, and the more physical cores are
used in parallel, the higher the used CPU time becomes. The latter effect is larger
if Turbo Boost is enabled than if Turbo Boost is disabled, because in addition
to the contention of cache and memory bandwidth, there is now the additional
performance influence of the varying CPU frequency. Instead of increasing by
22 %, the used CPU time now increases by 39 % (from 13 to 18 hours) if using
eight instead of one physical core. Thus, a dynamic scaling of the CPU frequency
should be disabled if multiple tool executions run in parallel on a CPU.

115

Part II. Reliable Benchmarking

1 2 3 4 5 6 7 8
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

Parallel executions
(= physical cores used)

C
PU

ti
m

e
(s

)

without Turbo Boost
with Turbo Boost
1 800x + 56 000
2 600x + 44 000

Figure 11.2.: Plot showing the influence of Turbo Boost, shared Level 3 cache, and
shared memory bandwidth for 2 414 runs of CPAchecker

11.6. Impact of NUMA

To show the impact of NUMA, we executed 16 instances of the verifier in parallel,
one instance per physical core of the two CPUs of our machine. In one part of
the experiment, we assigned memory to each tool execution that was local to
the CPU that the tool was executed on. In a second part of the experiment, we
deliberately forced each of the 16 tool executions to use only memory from the
other CPU, such that all memory accesses were indirect. For the 2 414 solved
programs from the benchmark set, 23 hours of CPU time were necessary using
local memory and 24 hours of CPU time were necessary using remote memory,
an increase of 6.8 % caused by the inappropriate memory assignment. While
the performance impact in this case is not that large, there exists no reason to
not ensure a proper memory assignment in the benchmarking environment and
rule out this influence completely.

116

11. Impact of Hardware Characteristics on Parallel Tool Executions

1 2 3 4 5 6 7 8
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

Parallel executions per CPU
(= physical cores used per CPU)

C
PU

ti
m

e
(s

)

with 1 CPU
with 2 CPUs
1 800x + 56 000
3 200x + 54 000

Figure 11.3.: Plot showing the influence of using multiple CPUs for 2 414 runs of
CPAchecker

11.7. Impact of Multiple CPUs

To show the impact of multiple CPUs used in parallel, we experimented with
1 to 16 parallel tool executions across all CPUs. For one part of the experiment,
we used the same setup as in Sect. 11.4: using only one CPU and executing 1 to 8
parallel tool executions, each on a designated physical core (hence, the shaded
blue bars in Fig. 11.3 match exactly the shaded blue bars in Fig. 11.2). For a
second part of the experiment, we used both CPUs of the machine, executing
1 to 8 parallel tool executions on each CPU, i.e., with 2 to 16 parallel tool executions
on the machine. A summary of the results is shown in Fig. 11.3. If only one
physical core of the whole machine is used, 16 hours of CPU time were necessary
for the 2 414 tool executions. This increases linearly to 20 hours of CPU time if
all eight cores of one CPU are used (shaded blue data points in the plot). If one
physical core of each of the two CPUs is used (i.e., two parallel tool executions),

117

Part II. Reliable Benchmarking

1 10 100 1 000
1

10

100

1 000

CPU time with 1 CPU active (s)

C
PU

ti
m

e
w

it
h

2
C

PU
s

ac
ti

ve
(s

)

Figure 11.4.: Scatter plot showing the influence of using multiple CPUs for
2 414 runs of CPAchecker: the data points above the diagonal
show a performance decrease due to using two CPUs in parallel
instead of only one CPU

the necessary CPU time is also 16 hours: there is no significant difference to using
one physical core of only one CPU. However, if more physical cores per CPU
are used, using n physical cores of each of the two CPUs with 2n parallel tool
executions (red data points) is slower than using n physical cores of only one of
the CPUs. The maximal difference occurs for eight cores per CPU, which uses
22 hours of CPU time compared to 20 hours (an increase of 14 %).

We also show a scatter plot in Fig. 11.4 with more detail on the last part of the
experiment, i.e., for 8 and 16 physical cores per CPU, respectively. It shows that
for some of the 2 414 runs, the performance was actually equal in both cases (the
data points on the diagonal), whereas for others the CPU time is almost doubled
(the data points close to the gray line for y = 2x).

This experiment shows that parallelization of tool executions across multiple
CPUs at least sometimes needs to be treated similarly to parallelization of tool
executions across multiple cores of the same CPU.

118

11. Impact of Hardware Characteristics on Parallel Tool Executions

11.8. Investigation of Impact of Multiple CPUs

Because we did not expect the performance impact of using multiple CPUs
with separate local memory for independent parallel tool executions, we tried
to find out the source of this effect using additional experiments and to ensure
that other possible performance influences were ruled out as far as possible.
Unfortunately we did not find an explanation so far, and the respective machine
is no longer available for further experiments, so the reason for the performance
impact of multiple CPUs remains unknown to us. However, we document these
experiments here in the hope that this will help others to investigate this issue
in the future.

We repeated the complete experiment from Sect. 11.7 at least two times, and the
performance variation across the three experiments was negligible compared to
the difference between using one or two CPUs. We also tried to reproduce this ef-
fect on two other multi-CPU machines, both with AMD CPUs (four Opteron 6380
and eight Opteron 8356, respectively). In both cases there was no significant
performance change for varying the number of used CPUs. Unfortunately, we
did not have access to other multi-CPU machines with Intel CPUs. So we were
not able to reproduce the effect on the AMD CPUs.

Back to the machines with Intel CPUs, the effect of decreased performance if
both CPUs are active did not occur in experiments with a tool that uses mainly
the CPU and not much memory. To measure this, we experimented with the same
setup for the tool bc (an arbitrary-precision calculator) and let it compute π with
1 000 to 19 890 digits using the formula arctan(1)× 4. This takes between 0.43 s
and 880 s on our machine and uses less than 970 kB of memory.

Both CPUs in the machines with the two Intel CPUs have their own directly
connected memory (visible in Fig. A.2 of Appendix A), and we made sure that
all tool executions use only memory belonging to the same CPU as their CPU
core(s), to avoid performance influence from NUMA. We also made sure that
even the start of each tool execution already occurred on its assigned core, such
that migration between cores, or even between CPUs, was avoided. There are
no hardware caches that are shared between the CPUs in this system, and no
swap space. There is also no correlation between the fact that a tool execution
experienced a slow-down if both CPUs were active and the specific CPU that the

119

Part II. Reliable Benchmarking

tool was executed on. For both CPUs, there were tool executions with unaffected
performance as well as tool executions with significantly increased CPU time.

The I/O (which would be a shared bottleneck) was kept to a minimum during
benchmarking. Apart from loading the Java virtual machine and the verifier,
each run used I/O only for loading the input file and for writing a log file with
the output of the verifier (output of each tool execution was 15 kB on average
and always less than 750 kB). Switching between a local SSD and a file server
connected via network for all I/O except loading the JVM did not influence
the performance, indicating that I/O indeed was not a bottleneck. We also
verified that no additional temporary files were used. The tool executions were
independent and the processes did not communicate with each other. Enabling
Turbo Boost decreased the necessary CPU time in general and made the effect
slightly larger. Upgrading the Linux kernel from version 3.13 to 3.19 improved
the performance in general by approximately 1 to 2 %, but did not change the
effect of decreased performance for using multiple CPUs. The machine is kept in
an air-conditioned server room and did not throttle due to overheating during
benchmarking.

For further investigation, we collected some statistics about the CPUs using the
perf framework of the Linux kernel 5 while executing the tool. (These statistics
are collected using internal hardware counters of the CPU and do not affect per-
formance.) The result was that the number of context switches, CPU-migrations
of threads, page faults, executed instructions and branches, and branch misses
for one execution of the whole benchmark set were nearly the same, regardless
of whether one or two CPUs were used, and thus gave no indication where the
performance impact could come from.

One possible reason could be that Linux keeps only one global file-system
cache that is shared for all processes from all CPUs. This means that, after a
file has been loaded into the file-system cache, accessing the content of this
file will be somewhat faster from one CPU than from the other CPU(s) due to
NUMA. This behavior cannot be disabled. To avoid this effect, we used two
separate on-disk copies of the benchmarked tool, and each copy was used for
all runs executing on one specific CPU. Compared to using one on-disk copy of
the benchmarked tool, this did not change the performance. While there was

5 https://perf.wiki.kernel.org

120

https://perf.wiki.kernel.org

11. Impact of Hardware Characteristics on Parallel Tool Executions

still only a single install of the JVM used for all tool executions, we can assume
that the single copy of the JVM in the file-system cache of the Linux kernel is
not the reason for this effect. After all, the experiment from Sect. 11.6 showed
a smaller effect even if all memory accesses were indirect, not only those to the
JVM files in the file-system cache.

121

12. State-of-the-Art Benchmarking

with Cgroups and Containers

We listed aspects that are mandatory for reliable benchmarking, and explained
flaws of existing methods. In the following, we present two technologies that
can be used to avoid these pitfalls.

12.1. Introducing Cgroups for Benchmarking

Control groups (cgroups) are a feature of the Linux kernel for managing processes
and their resource usage, which is available since 2007 [218]. Differently from all
other interfaces for these problems, cgroups provide mechanisms for managing
groups of processes and their resources in an atomic and race-free manner, and
are not limited to single processes. All running processes of a system are grouped
in a hierarchical tree of cgroups, and most actions affect all processes within
a specific cgroup. Cgroups can be created dynamically and processes can be
moved between them. There exists a set of so-called controllers in the kernel, each
of which controls and measures the consumption of a specific resource by the
processes, within each cgroup. For example, there are controllers for measuring
and limiting CPU time, memory consumption, and I/O bandwidth.

The cgroups hierarchy is made accessible to programs and users as a directory
tree in a virtual file system, which is typically mounted at /sys/fs/cgroups.
Usual file-system operations can be used to read and manipulate the cgroup
hierarchy and to read resource measurements and configure limits for each of
the controllers (via specific files in each cgroup directory). Thus, it is easy to use
cgroups from any kind of tool, including shell scripts. Alternatively, one can use
a library such as libcg 1, which provides an API for accessing and manipulating

1 http://libcg.sourceforge.net

123

http://libcg.sourceforge.net

Part II. Reliable Benchmarking

the cgroup hierarchy. Settings for file permission and ownership can be used to
fine-tune who is able to manipulate the cgroup hierarchy.

When a new process is started, it inherits the current cgroup from its parent
process. The only way to change the cgroup of a process is direct access to
the cgroup virtual file system, which can be prevented using basic file-system
permissions. Any other action of the process, whether changing the POSIX
process group, detaching from its parent, etc., will not change the cgroup. Thus,
cgroups can be used to reliably track the set of (transitive) child processes of
any given process by putting this process into its own cgroup. We refer to the
manual for details.2

The following cgroup controllers are relevant for reliable benchmarking:

cpuacct measures, for each cgroup, the accumulated CPU time that is con-
sumed by all processes of the cgroup. A time limit cannot be defined, but can
be implemented in the benchmarking environment by periodically checking the
accumulated time.

cpuset supports restricting the processes in a cgroup to a subset of the available
CPU cores. On systems with more than one CPU and NUMA, it allows restricting
the processes to specific parts of the physical memory. These restrictions are
applied additionally to those set with sched_setaffinity, such that changes
to the latter will not affect restrictions made via cgroups.

freezer supports freezing all processes of a cgroup in a single operation. This
can be used for reliable termination of a group of processes by freezing them
first, sending the kill signal to all of them, and afterwards unfreezing (“thawing”)
them. This way the processes do not have the chance to start other processes
because between the time the first and the last process receive the kill signal,
none of them can execute anything.

memory supports, for each cgroup, restricting maximum memory usage of
all processes together in the cgroup, and measuring current and peak memory
consumption. If the defined memory limit is reached by the processes in a

2 https://www.kernel.org/doc/Documentation/cgroup-v1

124

https://www.kernel.org/doc/Documentation/cgroup-v1

12. State-of-the-Art Benchmarking with Cgroups and Containers

cgroup, the kernel first tries to free some internal caches that it holds for these
processes (for example disk caches), and then terminates at least one process.
Alternatively, instead of terminating processes, the kernel can send an event to
a registered process, which the benchmarking framework can use to terminate
all processes within the cgroup. The kernel counts only actually used pages
towards the memory usage, and because the accounting is done per memory
page, shared memory is handled correctly (every page that the processes use
is counted exactly once).

The memory controller supports two limits for memory usage, one on the
amount of physical memory that the processes can use, and one on the amount
of physical memory plus swap memory. If the system has swap memory, both
limits need to be set to the same value for reliable benchmarking. If only the
former limit is set to a specific value, the processes could use so much memory
plus all of the available swap memory (and the kernel would automatically start
swapping out the processes if the limit on physical memory is reached). Similarly,
for reading the peak memory consumption, the value of physical memory plus
swap memory should be used. Sometimes, the current memory consumption of
a cgroup is not zero even after all processes of the cgroup have been terminated,
if the kernel decided to still keep some pages of these processes in its disk cache.
To avoid influencing the measurements of later tool executions by this, a cgroup
should be used only for a single run and deleted afterwards, with a new tool
execution getting a new, fresh cgroup.3

As described in Sect. 10.4, the Linux kernel does not use a consistent scheme for
assigning processor ids to virtual cores and node ids to memory regions, which
are the ids used by the cpuset controller. Information about the hardware topol-
ogy and the relations of CPU cores to each other and to memory regions needs to
be read from the directory tree /sys/devices/system/cpu/.4 There, one can
find a directory named cpu<i> for each virtual core i, and inside each such direc-
tory, the following information is present: the symlinks named node<j> point to
the NUMA region(s) of this virtual core, topology/physical_package_id
contains the physical id of this virtual core, topology/core_id contains the
core id of this virtual core, topology/core_siblings_list contains the

3 Or clear the caches with drop_caches.
4 Or use a library that does this reliably.

125

Part II. Reliable Benchmarking

virtual cores of the same CPU as this virtual core, and the file topology/

thread_siblings_list contains the virtual cores of the same physical core
as this virtual core.

12.2. Benchmarking Containers Based on

Namespaces

Container is a common name for an instance of OS-level virtualization on Linux.
Contrary to virtual machines, there is no virtual hardware simulated for a
container, and a container does not have its own kernel running. Instead, the
applications in a container run directly on the same kernel as applications outside
the container, without any additional layers that would reduce performance.
However, the kernel provides a limited view of the system to processes inside
a container, such that these processes are restricted in what they can do with
regard to the system outside their container. Containers can be used to execute a
single application in isolation. A well-known framework for creating containers
in Linux is Docker.

The key technology behind containers are namespaces 5, which are a feature
of the Linux kernel for providing individual processes or groups of processes
with a different view on certain system resources compared to other processes.
There exist different kinds of namespaces, which can be used individually or
in combination, each responsible for isolating some specific system resources.
For example, assigning a different network namespace to a process will change
which network interfaces, IP addresses, etc., the process sees and is able to
use. Assigning a different namespace for process ids (PIDs) will change which
processes can be seen, and which PIDs they seem to have.

Using namespaces, we can create benchmarking containers that prevent any
communication or interference with processes outside the container. We need
only a modern (≥ 3.8) Linux kernel for this; no other software is necessary. The
benchmarked tool will typically not notice that it is executed in such a container.
The performance of executing a process within a separate namespace (i.e., inside
a container) is comparable to executing it directly in the initial namespace because

5 http://man7.org/linux/man-pages/man7/namespaces.7.html

126

http://man7.org/linux/man-pages/man7/namespaces.7.html

12. State-of-the-Art Benchmarking with Cgroups and Containers

the process still interacts directly with the same kernel and there are no additional
layers like in hardware-virtualization solutions.

Since Linux 3.8 (released February 2013) it is possible to create and configure
namespaces as a regular user without additional permissions. At a first glance
it may seem that creating and joining a namespace can give a process more
permissions than it previously had (such as changing network configuration
or file-system mounts), but all these new permissions are only valid inside the
namespace, and none of these actions affect the system outside of this namespace.

The Linux kernel provides the following namespaces that are relevant for
reliable benchmarking:

mount namespaces allow changing how the file-system layout appears to the
processes inside the namespace. Existing directories can be mounted into a
different place using “bind” mounts (similar to symbolic links), and mount points
can be set read-only. Unprivileged users cannot create new mounts of most
file systems, even if they are in a mount namespace, but for a few special file
systems this is allowed. For example, RAM disks can be mounted by everyone
in a mount namespace.

ipc namespaces provide separation of several different forms of interprocess
communication (IPC), such as POSIX message queues.

net namespaces isolate the available network interfaces and their configuration,
e.g., their IP addresses. By default, a new network namespace has only a loopback
interface with the IP addresses 127.0.0.1 (IPv4) and ::1 (IPv6) and thus,
processes in such a namespace have no access to external network communication,
but can still use the loopback interface for communication between the processes
within the same namespace (note that the loopback interfaces of different network
namespaces are different: a loopback interface cannot be used for communication
with processes of separate network namespaces).

pid namespaces, which can be nested, provide a separate range of process IDs
(PIDs), such that a process can have different PIDs, one in each (nested) namespace
that it is part of. Furthermore, the PID namespace also affects mounts of the
/proc file system, which is the place where the Linux kernel makes information

127

Part II. Reliable Benchmarking

available about the currently running processes. If a new /proc file system is
mounted in a PID namespace, it will list only those processes that are part of this
namespace. Thus, a PID namespace can be used to restrict which other processes
a process can see: only such processes that are in the same PID namespace are
visible. This prevents for example sending signals to processes and killing them,
if they are not visible in the current namespace. Additionally, because the first
process in every new PID namespace has a special role (like the init process
of the whole system), the kernel automatically terminates all other processes in
the namespace when this first process terminates. This can be used for a reliable
cleanup of all child processes.

user namespaces provide a mapping of user and group ids, such that a certain
user id inside a namespace appears as a different id outside of it. Creating a
user namespace is necessary for regular (non-root) users in order to create any
other kind of namespace.

For each kind of namespace, an initial namespace is created at boot. These
are the namespaces that are used for all processes on most systems. Processes
can create new namespaces and move between them, but for the latter they need
to get a reference to the target namespace, which can be prevented by using
the PID namespace. Thus, it is possible to prevent processes from escaping
back into an existing namespace such as the initial namespace. Furthermore,
all namespace features are implemented in a way such that it is not possible to
escape the restrictions of a namespace by creating and joining a fresh namespace:
a freshly created namespace will not allow viewing or manipulating more system
resources than its parent.

With mount namespaces we can customize the file-system layout. We can
for example provide an own private /tmp directory for each tool execution by
binding a freshly created directory to /tmp in the container of the tool execution.
This avoids any interference between tool executions due to files in /tmp, and the
same solution can also be applied for all other directories whose actual content
should be invisible in the container. In order to ensure that no files created by
a tool execution are left over in other directories (and possibly influence later
tool executions), we can set all other mount points to read-only in the container.
However, this can be inconvenient, for example, if the tool should produce some

128

12. State-of-the-Art Benchmarking with Cgroups and Containers

output file, or if it expects to be able to write in some fixed directory (like the
home directory). The solution for this is to use an overlay file system.

Overlay file systems 6 use two existing directories, and appear to layer one
directory over the other. Looking at the overlay file system, a file in the upper
layer shadows a file with the same name in the lower layer. All writes done to
the overlay file system go to the upper layer, never to the lower layer, which is
guaranteed to remain unchanged. We can use this to present a directory hierarchy
to the benchmarked tool that is initially equal to the directory hierarchy of the
system and appears to be writable as usual, but all write accesses are rerouted to
a temporary directory and do not affect the system directory. To do so we mount
an overlay file system with the regular directory hierarchy of the system as lower
layer and an empty temporary directory as upper layer.

An overlay file system is available in the Linux kernel since version 3.18, and
on Ubuntu it can be used by regular users inside a mount namespace. On other
distributions or older kernels we have to fall back to either read-only mounts or
giving direct write access to the file-system at least for some directories.

6 https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

129

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

13. BENCHEXEC: A Framework for

Reliable Benchmarking

In the following, we describe our implementation BenchExec, a benchmarking
framework for Linux that fulfills the requirements from Chapter 9 by using
the techniques of cgroups and namespaces from Chapter 12. It is available on
GitHub 1 as open source under the Apache 2.0 license.

BenchExec consists of two parts, both written in Python. The first part is
runexec, responsible for benchmarking a single run of a given tool in isolation,
including the reliable limitation and accurate measurement of resources, and
encapsulates the use of cgroups and namespaces. This part is designed such
that it is easy to use also from within other benchmarking frameworks. The
second part is responsible for benchmarking a whole set of runs, i.e., executing
one or more tools on a collection of input files by delegating each run to the first
part and then aggregating the results. It consists of a program benchexec for
the actual benchmarking and a program table-generator for postprocessing
of the results.

13.1. System Requirements

Full support for all features of BenchExec is available on Ubuntu with a Linux
kernel of at least version 3.18 (default since Ubuntu 15.04). On older kernels or
other distributions, the overlay file system cannot be used and the file-system
layout inside the containers needs to be configured differently. On kernels older
than Linux 3.8, BenchExec’s use of containers needs to be disabled completely
and thus isolation of runs will not be available, but other features of BenchExec

1 https://github.com/sosy-lab/benchexec

131

https://github.com/sosy-lab/benchexec

Part II. Reliable Benchmarking

(such has accurate resource measurements and limits, and sensible allocation
of hardware resources) remain usable.

For the use of cgroups by BenchExec, a few requirements are necessary that
may demand assistance by the administrator of the benchmarking machine.
Cgroups including the four controllers listed in Sect. 12.1 must be enabled on
the system and the account for the benchmarking user needs the permissions to
manipulate (a part of) the cgroup hierarchy. If the benchmarking machine has
swap, swap accounting must be enabled for the memory controller. For enabling
cgroups and giving permissions, we refer to standard Linux documentation. For
more details on how to setup the prerequisites for BenchExec, we refer to the
respective chapter of the documentation.2

After these steps, no further root access is necessary and everything can be
done with a normal user account. Thus, it is possible to use machines for
benchmarking that are not under one’s own administrative control. By creating a
special cgroup for benchmarking and granting permissions only for this cgroup,
it is also possible for the administrator to prevent the benchmarking user from
interfering with other processes and to restrict the total amount of resources that
the benchmarking user may use. For example, one can specify that a user may
use only a specific subset of CPU cores and amount of memory for benchmarking,
or partition the resources of shared machines among several users.

13.2. Benchmarking a Single Run

We define a run as a single execution of a tool, with the following input:

• the full command line, i.e., the path to the executable with all arguments,
and optionally,

• the content supplied to the tool via stdin,

• the limits for CPU time, wall time, and memory, and

• the list of CPU cores and memory banks to use.

A run produces the following output:

2 https://github.com/sosy-lab/benchexec/blob/master/doc/INSTALL.md

132

https://github.com/sosy-lab/benchexec/blob/master/doc/INSTALL.md

13. BenchExec: A Framework for Reliable Benchmarking

Is
ol

at
io

n

Resource Limitation /
Measurement

� Process

Run

runexec

Is
ol

at
io

n

Resource Limitation /
Measurement

� Process

Run

runexec

CPU Cores � � � � Memory

Figure 13.1.: Resource control and process isolation by runexec; a run can con-
sist of many processes; the vertical bars “Isolation” illustrate that
each run is executed in isolation and protected to not access other
runs; the horizontal bars “Resource Limitation / Measurement” il-
lustrate that the resources are controlled by cgroups and a run can
access only the explicitly assigned resources

• measurement values (e.g., CPU time, wall time, and peak memory con-
sumption of the tool),

• the exit code of the main process,

• output written to stdout and stderr by the tool, and

• the files created or written by the tool.

The program runexec executes a tool with the given input, provides the output
of the run, and ensures (using cgroups and namespaces) adherence to the speci-
fied resource limits, accurate measurement of the resource usage, isolation of the
process with regard to network usage, signals, and file-system writes, and reliable
cleanup of processes after execution (i.e., no process survives). The benchmarking
containers created by runexec are illustrated in Fig. 13.1. If necessary, the bench-
marking containers can be customized via additional options, e.g., with regard
to the file-system layout (which directories are hidden in the container or made
read-only etc.), or whether network access is allowed from within the container.

If runexec is used as stand-alone tool, the inputs are passed to runexec

as command-line parameters. Alternatively, runexec can be used as a Python

133

Part II. Reliable Benchmarking

module for a more convenient integration into other Python-based benchmarking
frameworks.

An example command line for executing a tool on all 16 (virtual) cores of
the first CPU of a dual-CPU system, with a memory limit of 16 GB on the first
memory bank, and a time limit of 100 s is:

runexec --timelimit 100s --memlimit 16GB

--cores 0-7,16-23 --memoryNodes 0 --

<TOOL_CMD>

The output of runexec then looks as follows (log on stderr, result on stdout):

10:35:35 - INFO - Starting command <TOOL_CMD>

10:35:35 - INFO - Writing output to output.log

exitcode=0

returnvalue=0

walltime=1.51596093178s

cputime=2.514290687s

memory=130310144

In this case, the run took 1.5 s of wall time, and the tool used 2.5 s of CPU time
and 130 MB of RAM before returning successfully (return value 0). The same
could be achieved by importing runexec as a module from within a Python
program with a code snippet as in Listing B.1 of Appendix B, which returns
a dictionary that holds the same information as the key-value pairs printed to
stdout in the example above. The precise meaning of each of these values is
explained in the BenchExec documentation.3

13.3. Benchmarking a Set of Runs

Benchmarking typically consists of processing runs on hundreds or thousands
of input files, and there may be several different tools or several configurations
of the same tool that run on the same input files. BenchExec provides two
programs that allow to perform such large experiments and analyze the results
as easily as possible. An overview over the process of using these programs
can be seen in Fig. 13.2.
3 https://github.com/sosy-lab/benchexec/blob/master/doc/run-results.md

134

https://github.com/sosy-lab/benchexec/blob/master/doc/run-results.md

13. BenchExec: A Framework for Reliable Benchmarking

runexec

· · ·
runexec

benchexec
Bench.

Def.

Input
Files

XML
Results

table-generator

HTML
Table

CSV
Data

BENCHEXEC

Figure 13.2.: Benchmarking with benchexec; benchexec supports the user by
automating the execution of experiments with many runs; besides
the benchmarked tool, it expects the benchmark definition and a
set of input files; benchexec executes a series of runs, which are
handled (each separately) by runexec (cf. Fig. 13.1); the result is an
XML file that contains the raw result data; convenient postprocessing
is possible using table-generator, which creates customized
CSV files and data visualizations (tables and plots) based on HTML

benchexec is a program that executes a set of runs. It receives as input a
benchmark definition, which consists of the following components:

• a set of input files,

• the name of the tool to use,

• command-line arguments for the tool (e.g., to specify a tool configuration),

• the limits for CPU time, memory, and number of CPU cores, and

• the number of runs that should be executed in parallel.

This benchmark definition is given in XML format; an example is available in the
tool documentation 4 and in Listing B.2 of Appendix B. Additionally, a tool-info
module (a tool-specific Python module) needs to be written that contains functions
for creating a command-line string for a run (including input file and user-defined
command-line arguments) and for determining the result from the exit code and
the output of the tool. Such a tool-info module typically has under 50 lines of
Python code, and needs to be written only once per tool. Experience shows that

4 https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md

135

https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md

Part II. Reliable Benchmarking

this tool-info module can be written and integrated successfully into BenchExec
also by developers that previously were not familiar with BenchExec.5

We are often also interested in classifying the result into expected and incorrect
answers. BenchExec supports this for SMT solvers that are compliant to the SMT-
LIB standard [16], and for the domain of automatic software verification, where
it gets as input a property to be verified in the format used by SV-COMP [22] 6.
Classification of results for further domains can be added with a few lines of code.

benchexec and its benchmark-definition format also support specifying differ-
ent configuration options for subsets of the input files, as well as several different
tool configurations at once, each of which will be benchmarked against all input
files (cf. Listing B.2 of Appendix B).

The program benchexec starts with trying to find a suitable allocation of
the available resources (CPU cores and memory) to the number of parallel runs.
For this, it first checks whether there are enough CPU cores and memory in
the system to satisfy the core and memory requirements for all parallel runs.
Then it assigns cores to each parallel run such that (if possible) a single run is
not spread across different CPUs, and different runs use different CPUs or at
least different physical cores. Measurement problems due to NUMA are avoided
by letting each run use only memory that is directly connected to the CPU(s)
on which the run is scheduled. Thus, benchexec automatically guarantees the
best allocation of the available resources that minimizes the nondeterministic
performance influences that were shown in Chapter 11 as far as possible for the
given number of parallel runs.

Afterwards, benchexec uses runexec to execute the benchmarked tool on
each input file with the appropriate command line, resource limits, etc. It also
interprets the output of the tool according to the tool-info module (if applicable,
it also determines whether the result was correct). The result of benchexec is a
data set (in XML format) that contains all information from the runs: tool result,
exit code, and measurement values. The output of the tool for each run is available
in separate files. Additional information such as current date and time, the host

5 SV-COMP’16 for the first time required all participating teams to contribute such a module for
their tool to BenchExec [23], leading to 21 new tools being integrated into BenchExec.

6 Tools that do not support this format can also be benchmarked. In this case, the property is not
passed to the tool, but used only internally by BenchExec to determine the expected result.

136

13. BenchExec: A Framework for Reliable Benchmarking

and its system information (CPU and RAM), values of environment variables,
and the effective resource limits and hardware allocation are also recorded.
table-generator is a program that produces tables from the results of one

or more executions of benchexec. If results of several executions are given to
table-generator, they are combined and presented one per column group in
the table, allowing to easily compare the results, for example, across different
configurations or revisions of a tool, or across different tools. Each line of the
generated table contains the results for one input file. There are columns for
the tool result and measurement values (such as CPU time, wall time, memory
usage, etc.). These tables are written in two formats. A CSV-based format allows
further processing of the raw data, such as with gnuplot or R for producing plots
and statistical evaluations, a spreadsheet program, or LATEX packages for reading
CSV files in order to present results in a paper. The second format is HTML,
which allows the user to view the tables conveniently with nothing more than
a web browser. The HTML table additionally provides access to the text output
of the tool for each run and contains aggregate statistics and further relevant
information such as tool versions, resource limits, etc. Furthermore, the HTML
table is interactive and supports filtering of columns and rows. HTML tables
produced by table-generator even allow generating scatter and quantile
plots on-the-fly for selected columns upon user request. Examples of such tables
can be found online.7

If a tool outputs further interesting data (e.g., for a verifier, this could be time
statistics for individual parts of the analysis, number of created abstract states, or
SMT queries), those data can also be added to the generated tables if a function
is added to the tool-specific Python module which extracts such data values from
the output of the tool. All features of the table (such as generating plots) are
immediately available for the columns with such data values as well.

13.4. Comparison with Requirements for Reliable

Benchmarking

BenchExec fulfills all requirements for reliable benchmarking from Chapter 9.
By using the kernel features for resource management with cgroups that are
7 https://www.sosy-lab.org/research/benchmarking/#tables

137

https://www.sosy-lab.org/research/benchmarking/#tables

Part II. Reliable Benchmarking

described in Sect. 12.1, BenchExec ensures accurate measuring and limiting of
resources for sets of processes (Sect. 9.1), as well as reliable termination of pro-
cesses (Sect. 9.2). The algorithms for resource assignment that are implemented
in benchexec follow the rules of Sects. 9.3 and 9.4, and assign resources to
runs such that mutual influences are minimized as far as possible on the given
machine, while warning the user if a meaningful resource allocation cannot be
done (e.g., if attempting to execute more runs than physical cores are available, or
scheduling multiple runs on a CPU with active Turbo Boost). Note that because
runexec alone handles only single runs, it cannot enforce a proper resource
allocation across multiple runs, and users need to use either benchexec, an own
benchmarking framework, or manual interaction for proper resource allocation
across multiple runs. For swapping (cf. Sect. 9.5), BenchExec does what is
possible without root privileges: it enforces that swap memory is also limited
and measured if present, monitors swap usage, and warns the user if swapping
occurs during benchmarking.

Isolation of runs as described in Sect. 9.6 is implemented in BenchExec by
executing each run in a container with fresh namespaces. The PID namespace
prevents the tool from sending signals to other processes, and network and IPC
namespaces prevent communication with other processes and systems. The
mount namespace allows customizing the file-system layout. This is used to
provide a separate /tmp directory for each run, as well as for transparently
redirecting all write accesses such that they do not have any effect outside the
container. If necessary, the user can choose to weaken the isolation by allowing
network access or write access to some directories. Of course, it is then up to
the user to decide whether the incomplete isolation of runs will hinder reliable
benchmarking.

Additionally, note that while BenchExec cannot ensure that users always
present benchmark results correctly (e.g., in publications), BenchExec follows
standard recommendations for valid presentation of results, e.g., it always uses
SI units and rounds values to a fixed number of significant digits instead of
decimal places.

138

13. BenchExec: A Framework for Reliable Benchmarking

13.5. Discussion

We would like to discuss a few of the design decisions and goals of BenchExec.

BenchExec aims at not impacting the external validity of experiments by
avoiding to use an overly artificial environment (such as a virtual machine) or
influencing the benchmarked tool in any way (except for the specified resource
limits and the isolation). For example, while BenchExec allocates resources
such as CPU cores for runs to avoid influences between parallel runs, it does
not interfere with how the assigned resources are used inside each run. If tools
with multiple threads or processes are benchmarked, an appropriate resource
allocation between these threads and processes within the limits of the run
remains the responsibility of the user. The use of namespaces by BenchExec
allows us to execute the tool as if it were the only program on a machine with no
network connection. Both cgroups and namespaces are present and active on a
standard Linux machine anyway, and their use does not add significant overhead.

We designed BenchExec with extensibility and flexibility in mind. Support
for new tools and result classifications can be provided by adding a few lines of
Python code. The program runexec, which controls and measures resources of
the actual tool execution, can be used separately as a stand-alone tool or a Python
module, for example within other benchmarking frameworks. Result data are
present as CSV tables, which allows processing with standard software.8

We chose not to base BenchExec on an existing container framework such as
LXC or Docker because, while these provide resource limitation and isolation,
they typically do not focus on benchmarking, and a fine-grained controlling of
resource allocation as well as measuring resource consumption may be difficult
or impossible. Furthermore, requiring a container framework to be installed
would significantly limit the amount of machines on which BenchExec can be
used, for example, because on many machines (especially in clusters for high-
performance computing) the Linux kernel is too old, or such an installation is
not possible due to administrative restrictions. Using cgroups and namespaces
directly minimizes the necessary version requirements, the installation effort, and
the necessary access rights, and makes it easy to use a fallback implementation
without containers but still with reliable resource measurements due to cgroups if

8 For example, BenchExec is used to automatically check for regressions in the integration
test-suite of CPAchecker.

139

Part II. Reliable Benchmarking

necessary.9 For example, using Docker would require to give root-level access for
the benchmarking machine to all users who want to execute benchmarks.10 All
features of Docker that are necessary for reliable benchmarking (such as process
isolation) are available in BenchExec as well and are implemented in a way
that after a one-time setup, they only need a few specific privileges that can be
granted individually and without a security risk.

We use XML as input and output format because it is a structured format that
is readable and writable by both humans and tools, and it is self-documenting.
Since XML supports comments, users can also use comments in the benchmark-
specification and table-definition files to document their setup. We can store
customized result data, but also additional meta data in the result file. This
allows documenting information about the benchmarking environment, which
is important in scientific work because it increases the replicability and trust
of the results.

Python was chosen as programming language because it is expected to be
available on practically every Linux machine, and it makes it easy to write
the tool-specific module even for people that do not have much experience in
programming.

For the future, several research directions and extensions of BenchExec are
possible. If necessary, one could work on lifting some of the stated restrictions,
and, for example, implement techniques for reliable benchmarking of tools with
heavy I/O or use of GPU resources. BenchExec relies on the Linux kernel for the
precision of its measurements. To rule out remaining potential nondeterministic
effects such as the layout of memory allocations, some users might want to in-
crease the precision by running the same experiment repeatedly. This needs to be
done manually today, but of course built-in support could be added. Furthermore,
we are interested in measuring the energy consumption of benchmarks.

9 We successfully use BenchExec on four different clusters, each under different administrative
control and with software as old as SuSE Enterprise 11 and Linux 3.0, and on the machines of
the student computer pool of our department.

10 cf. https://docs.docker.com/engine/security/security/
#docker-daemon-attack-surface

140

https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface

13. BenchExec: A Framework for Reliable Benchmarking

13.6. Encouraging Replicable Experiments

Reliable benchmarking results obtained by accurate and precise measurements
are necessary but not sufficient for replicable experiments. The experimental
setup also needs to be documented precisely enough that the experiment can
be performed again by different people. While careful documentation is ulti-
mately the responsibility of the experimenter, BenchExec is designed such that
it encourages and facilitates documentation. For example, BenchExec accepts
the benchmark definition with all relevant properties in a text file (XML-based),
which can be explained using comments, and which can be easily archived us-
ing a version-control system. This strategy is used, for example, by SV-COMP
since 2016 11 [23]. BenchExec is also able to automatically store benchmark
results in a Git repository. The result files do not only contain the raw measure-
ment values, but BenchExec also documents important information about the
experimental setup, including the hardware characteristics (CPU model, RAM
size), the operating-system version, values of environment variables, the version
number of the benchmarked tool (if available), the resource limits, and the full
command-line of the executed run. Taken together, these features conveniently
allow to document everything related to a series of experiments for example in
a Git repository, which could be shared with collaborators, or even reviewers
or the general public.

11 Cf. SV-COMP benchmark definitions at https://github.com/sosy-lab/sv-comp

141

https://github.com/sosy-lab/sv-comp

14. Related Work

Replicable experiments are an important topic in computer science in general. For
example, the ACM has developed a policy on “Result and Artifact Review and
Badging” 1 with the goal of standardizing artifact evaluation, and labels articles
that support experiment replication with special badges. This work was inspired
by effort in this direction in the SIGPLAN and SIGSOFT communities.2

Besides the issues that we discussed in this thesis, there are more sources of
nondeterministic effects that may influence performance measurements in our
target domain. For example, the memory layout of the process can affect perfor-
mance due to differences in cache alignment and cache hit rates [102], and the
memory layout can be influenced by factors such as symbol names [130, 160], envi-
ronment variables and order of objects during linking [198], and nondeterministic
memory-allocation strategies of the OS [142].

Benchmarking solutions are also developed in other communities. For exam-
ple, the Mininet Hi-Fi project [135] provides a framework for experiments in
computer networking. It emulates a virtual network on a single machine by
using cgroups and namespaces to setup and control a set of virtual hosts and
network connections between them.

14.1. Benchmarking Strategies

Several strategies have been proposed for dealing with nondeterministic effects
that influence measurements by executing runs several times. The Execution-Time-
Measurement Protocol (EMP) [223] was designed for improving the precision of
time measurements by using a sequence of repeated executions and measure-
ments, for example for avoiding the influence of background processes of the

1 https://www.acm.org/publications/policies/artifact-review-badging
2 http://evaluate.inf.usi.ch/artifacts/aea

143

https://www.acm.org/publications/policies/artifact-review-badging
http://evaluate.inf.usi.ch/artifacts/aea

Part II. Reliable Benchmarking

operating system. Furthermore, the authors of EMP also identified other sources
of measurement errors that the administrator of the benchmarking machine
should address. For example, time measurements (even for CPU time) can be
imprecise on machines without time synchronization via NTP.

The authors of DataMill [203] propose to make benchmarking more reliable
by explicitly varying as many hardware and software factors as possible in a
controlled manner while benchmarking, e.g., the hardware architecture, CPU
model, memory size, link order, etc. To do so, they rely on a diverse set of
worker machines, which are rebooted for each benchmark run into a specific
OS installation.

In general, these strategies focus on ruling out nondeterministic measurement
noise, but do not handle some of the sources of measurement errors identified in
this work, such as the CPU-time measurement of tools with several processes, and
may thus still produce arbitrarily large measurement errors. On the other hand,
BenchExec aims at ruling out such qualitative measurement errors, and relies on
the Linux kernel for precise and accurate measurements, but does not increase
the precision in case of nondeterministic effects that it cannot control, such as
memory-allocation strategies. If such effects are present, users can of course
increase the precision by executing benchmarks several times with BenchExec
and aggregating the results. In the future, benchmarking with cgroups and
namespaces could (and should) be combined with one of the strategies described
above to address the respective problem. BenchExec can serve as low-level mea-
surement tool in a distributed framework such as DataMill, or by implementing
EMP on top of BenchExec.

14.2. Benchmarking Tools

In the verification community, there exist several benchmarking tools that have
the same intent as our benchmarking framework. However, as of June 2017, no
tool we investigated fulfills all requirements for reliable benchmarking, which are
presented in Chapter 9. In the following, we discuss several existing benchmark-
ing tools in their latest versions as of June 2017. Our selection is not exhaustive,
because there exist many such tools.

144

14. Related Work

The tool RunLim 3, in version 1.10, allows benchmarking an executable and
limits both CPU time and memory. It samples time and memory consumption
recursively for a process hierarchy, and thus cannot guarantee accurate measure-
ments and limit enforcement. The tool cannot terminate a process hierarchy
reliably, because it only terminates the main process with kill. The tool pyrun-
lim 4, a port of RunLim to the Python programming language, has a few more
features, such as setting the CPU affinity of a process, and aims at killing process
hierarchies more reliably. However, in the latest version 2.15 5, it does not use
cgroups and also takes sample measurements recursively over process hierarchies,
which —like all sampling-based methods— is not accurate.

The CProver Benchmarking Toolkit (CPBM) 6, available in version 0.5, ships
helpers for verification-task patch management and result evaluation, and also
supports benchmarking. However, the limits for CPU time and memory are
enforced by ulimit 7, and thus, the benchmarking is not accurate.

Furthermore, none of the tools mentioned so far attempts to isolate independent
benchmark runs from each other. This could be done in addition to using one of
these tools, e.g., by executing each run under a fresh user account. This would
require a substantial amount of additional implementation effort.

The Satisfiability Modulo Theories Execution Service (SMT-Exec) 8 was a solver
execution service provided by the SMT-LIB initiative. For enforcing resource lim-
its, SMT-Exec used the tool TreeLimitedRun 9, which uses the system calls wait
and setrlimit, and thus, is prone to the restrictions explained in Chapter 10.

StarExec [222], a web-based service developed at the Universities of Iowa and
Miami, is the successor of SMT-Exec. The main goal of StarExec is to facilitate
the execution of logic solvers. The Oracle Grid Engine takes care of queuing and
scheduling runs. For measuring CPU time and memory consumption, as well as
enforcing resource limits, StarExec delegates to runsolver 10 [209], available in
version 3.3.5, which also is prone to the limitations from Chapter 10.

3 http://fmv.jku.at/runlim
4 http://alviano.net/2014/02/26
5 Git revision b9b2f11 from 2017-05-02 on
https://github.com/alviano/python/tree/master/pyrunlim

6 http://www.cprover.org/software/benchmarks
7 cf. verify.sh in the CPBM package
8 http://smt-exec.org
9 http://smtexec.cs.uiowa.edu/TreeLimitedRun.c

10 http://www.cril.univ-artois.fr/∼roussel/runsolver

145

http://fmv.jku.at/runlim
http://alviano.net/2014/02/26
https://github.com/alviano/python/tree/master/pyrunlim
http://www.cprover.org/software/benchmarks
http://smt-exec.org
http://smtexec.cs.uiowa.edu/TreeLimitedRun.c
http://www.cril.univ-artois.fr/~roussel/runsolver

Part II. Reliable Benchmarking

The Versioning Competition Workflow Compiler (VCWC) [74] is an effort to
create a fault-tolerant competition platform that supports competition maintainers
in order to minimize their amount of manual work. This project, in the latest
development version 11, defines its own benchmarking container, and uses sudo
and schroot 12 for executing each run in a fresh environment. However, the
setup for this needs root access to the machine, and all parallel runs are executed
under the same user account, meaning that an executed process can still see and
influence processes of parallel runs. Furthermore, VCWC relies on ulimit to
enforce time limits. If the administrator of the benchmarking machine manually
designed and created a cgroup hierarchy that enforces an appropriate partitioning
of CPU cores and memory nodes, and defined a memory limit, VCWC can
execute runs within these existing cgroups, but it cannot automatically create
the appropriate cgroups, as BenchExec does. Furthermore, measurement of
CPU time and memory, as well as termination of processes, is not implemented
with cgroups, and hence, may fail.

The tool BenchKit 13 [170], available in version 1.1, is also used for competi-
tions, where participants submit a virtual-machine (VM) image with their tool
and all necessary software. BenchKit executes the tool within an instance of
this VM and measures the resource usage of the tool and the OS together in
the VM. Our framework executes all tools natively on the host system and al-
lows precise measurement of the resource consumption of the tool in isolation,
without influence from factors such as the VM’s OS. BenchKit measures CPU
time and memory consumption of the VM using sampling with the performance
monitoring tool sysstat 14, which is available in version 11.4.4. BenchKit does
not ensure that the CPU cores and the memory for a run are assigned such that
hyperthreading and NUMA are respected. For each single run with BenchKit,
i.e., each pair of tool and input file, a new VM has to be booted, which on
average takes 40 s to complete [170]. Execution of a tool inside a VM can also be
slower than directly on the host machine. Our approach based on cgroups and
containers has a similar effect of isolating the individual runs and their resource
usage, but comes at practically zero overhead. Our tool implementation was

11 Git revision 9d58031 from 2013-09-13 on https://github.com/tkren/vcwc
12 A utility for executing commands in a chroot environment,

cf. http://linux.die.net/man/1/schroot
13 http://www.cosyverif.org/benchkit.php
14 http://sebastien.godard.pagesperso-orange.fr

146

https://github.com/tkren/vcwc
http://linux.die.net/man/1/schroot
http://www.cosyverif.org/benchkit.php
http://sebastien.godard.pagesperso-orange.fr

14. Related Work

successfully used in SV-COMP’17, which consisted of more than 400 000 runs,
plus an uncounted number of runs for testing the setups of the participating
tools [24]. An overhead of 40 s per run would have required additional 190 CPU
days for the main competition run alone, a prohibitive overhead.

147

Part III.

Experimental Evaluation

Contents

15.Experiment Setup 153

15.1. Verification Tasks . 154
15.2. Tool Versions . 154
15.3. Configurations of the Predicate CPA 154
15.4. CPAchecker Configuration . 155
15.5. Hardware and Software Environment 156
15.6. Replicability and Availability of Results 157
15.7. Presentation of Results . 157

16.Comparison of SMT Solvers and Theories 159

16.1. Bitprecise Theories . 162
16.2. Theories with Linear Arithmetic . 167
16.3. Comparison of Bitprecise and Linear Theories 171
16.4. Conclusions . 174

17.Comparison with State of the Art 175

151

15. Experiment Setup

In the following, we evaluate our unifying framework for predicate analysis
from Part I using the techniques for reliable benchmarking from Part II. The
goal of this evaluation is to show the usefulness of our framework for predicate
analysis, i.e., that its implementation is effective and efficient and that its high
configurability and flexibility allows us to easily perform experimental studies
that provide new and valuable insights.

One such experimental study that is based on and was made possible by our
framework for predicate analysis is an already published detailed comparison
of the verification approaches BMC, k-induction, Impact, and predicate abstrac-
tion [28]. A preliminary version of our framework for predicate analysis had
already enabled an in-depth comparison of Impact and predicate abstraction
that provided insights about the key advantages of the two approaches [52].
Thus, we do not perform a study about comparing verification approaches here,
but instead exploit the flexibility of our framework for predicate analysis by
performing a study about the influence of SMT solvers and SMT theories across
the four algorithms that we have expressed in our framework. This study was
not possible before, because it requires a framework that allows combining all
algorithms with all SMT solvers and various SMT theories while at the same
time keeping all other influencing factors constant. In total, for this study we
evaluated 120 different configurations with a total of 671 280 verification runs,
which needed 3 620 days of CPU time.

In order to evaluate the effectivity and efficiency of our implementation, we
compare it with several of the most successful verifiers of the 6th International
Competition on Software Verification (SV-COMP’17) [24], which represent the
top of the state of the art. Furthermore, note that our implementation in its
configuration for predicate abstraction won four medals (including a gold medal)
in SV-COMP’12 [19, 187] and contributed to winning another 40 medals in six
years of SV-COMP (details in Sect. 1.1.2).

153

Part III. Experimental Evaluation

15.1. Verification Tasks

The set of verification tasks was taken from SV-COMP’17 [24]. We used only
verification tasks where the property to verify is the reachability of a program
location (excluding the properties for memory safety, overflows, and termination,
which are not in our scope). We excluded the categories for the verification
of recursive (ReachSafety-Recursive) and concurrent programs (ConcurrencySafety),
which are not supported by the Predicate CPA. The resulting set of categories
consists of the subcategory DeviceDriversLinux64 of the category SoftwareSystems,
and the following subcategories of the category ReachSafety: Arrays, Bitvectors,
ControlFlow, ECA, Floats, Heap, Loops, ProductLines, and Sequentialized.

In total, our benchmark set contains 5 594 verification tasks, out of which
1 444 tasks contain a known specification violation, and 4 150 tasks are considered
safe.

15.2. Tool Versions

The experiments using CPAchecker were executed with revision 24 567 of the
branch predicatecpa-evaluation. All code of this branch is also integrated
into the trunk of the project repository.1 This revision of CPAchecker includes
the latest revisions (as of January 10th, 2017) of the four integrated SMT solvers:
MathSAT5 5.3.14, Princess 2016-12-26, SMTInterpol 2.1-327-g92cafef 2, and
Z3 4.5.0-164-g8047f0d 3.

15.3. Configurations of the Predicate CPA

We are interested in evaluating our framework for predicate analysis in various
configurations. Due to its high flexibility and configurability, it is impossible
to evaluate all configurations, so we pick the following four, which resemble
state-of-the-art approaches for software verification:

1 Revision 24 567 of the branch corresponds to revision 24 091 of the trunk with the additional
bug fixes from revisions 24 551 to 24 565 applied.

2 While not an official release, this version was published by the developers via Maven Central
(https://search.maven.org/#search|gav|1|a:"smtinterpol").

3 The latest official release 4.5 had a bug that was fixed by the Z3 developers for us, so we used
the Git revision with the fix.

154

https://search.maven.org/#search|gav|1|a:"smtinterpol"

15. Experiment Setup

• BMC (cf. Sect. 5.2.1), with an initial loop bound of 1, an increment func-
tion inc(k) = k + 1, and no maximal loop bound,

• k-induction (cf. Sect. 5.2.2), with an initial loop bound of 1, an increment
function inc(k) = k + 1, no maximal loop bound, and a continuously-
refining generator for auxiliary invariants that uses an abstract domain of
disjunctions of intervals [32],

• Impact with adjustable block-encoding (cf. Sects. 5.2.4 and 5.4.1), with ABE
blocks ending at loop heads (blkl) and interpolation-based forced covering
(fcoverImpact), and

• lazy predicate abstraction (cf. Sect. 5.2.3), with ABE blocks ending at loop
heads (blkl), boolean predicate abstraction, and interpolation as source of
abstract facts for refinement.

The choices of SMT solver and strongest-postcondition operator will be discussed
below.

15.4. CPACHECKER Configuration

In order to precisely evaluate the implementation of our framework for predicate
analysis in CPAchecker, we have disabled other components of CPAchecker that
may be a threat to the validity of the results. Most notably, most configurations of
CPAchecker (including those that are part of submissions to SV-COMP) enable
so-called counterexample checks (cf. Sect. 5.4.2): A found specification violation
is only reported if a second analysis (which can be another configuration of
CPAchecker, or the verifier Cbmc) confirms the concrete error path. No such
counterexample checks were enabled for the experiments here, which makes the
results not directly comparable for example to SV-COMP results of CPAchecker
(with counterexample checks, a lower number of wrong and correct alarms is
expected).

For optimal performance, we disabled all unnecessary output of CPAchecker
(including witness files, a further difference from SV-COMP submissions). We
also disabled a heuristic that lets CPAchecker abort immediately in order to
avoid wasting time if it encounters a large array such as those in the category
ReachSafety-Arrays.

155

Part III. Experimental Evaluation

In summary, we specified the following options for all runs of CPAchecker:

-noout

-disable-java-assertions

-setprop cfa.showDeadCode=false

-setprop analysis.checkCounterexamples=false

-setprop cpa.predicate.abortOnLargeArrays=false

-setprop cpa.predicate.memoryAllocationsAlwaysSucceed=true

The last option enables the semantics of malloc never returning null as as-
sumed by the SV-COMP benchmark suite.

As discussed in Sect. 6.3.1, if using native SMT solvers it is required to reduce
the amount of memory available to the JVM in order to reserve memory for the
SMT solver. We determined the amount of memory necessary for each native
solver depending on the used SMT theories (between 2 GB and 4 GB) and let the
JVM use the remainder of the 15 GB of our total memory limit. For Princess and
Z3, which use recursive algorithms, we increased the stack size appropriately.
These adjustments are necessary for a fair comparison of the solvers.

15.5. Hardware and Software Environment

We specified resource limits that are identical to those of SV-COMP’17: 15 min
of CPU time, 15 GB of memory, and 8 processing units of a CPU.

Because our study of the influence of hardware characteristics on the perfor-
mance of parallel tool executions (cf. Chapter 11) showed that we cannot reliably
avoid nondeterministic performance influences if multiple instances of the tool
are executed in parallel, we used a dedicated machine for each tool execution. Our
benchmarking machines had a single Intel Xeon E3-1230v5 CPU with a frequency
of 3.4 GHz and 33 GB of RAM. The CPU has 4 physical cores and hyperthreading
(i.e., 8 virtual cores). Turbo Boost, i.e., dynamically increasing the CPU frequency
depending on how many cores are used, was disabled. The operating system was
Ubuntu 16.04 (64-bit) with Linux 4.4. For CPAchecker we used OpenJDK 1.8 as
JVM. This is the same system specification as used in SV-COMP’17.

In order to fulfill all our requirements for reliable benchmarking from Chapter 9
and avoid the problems shown in Chapter 10, we used BenchExec 4 (cf. Chap-

4 https://github.com/sosy-lab/benchexec

156

https://github.com/sosy-lab/benchexec

15. Experiment Setup

ter 13) in version 1.9 as benchmarking framework, i.e., the tool was executed in a
benchmarking container built with cgroups and namespaces (cf. Chapter 12).

15.6. Replicability and Availability of Results

Everything that is necessary to replicate our experiments is available online
on the supplementary webpage 5. We provide an archive with the benchmark
definitions in the format for BenchExec, which can be used to directly rerun
the experiments. For example, these benchmark definitions specify the resource
limits, all command-line arguments for each benchmarked configuration, and
the set of verification tasks.

CPAchecker in the benchmarked version can be downloaded from the sup-
plementary webpage. The source code of CPAchecker is available under the
Apache 2.0 license from the official repository 6. Archives with the other verifiers
that are used for comparison are available via links from the SV-COMP webpage 7.
The input files for the verification tasks are available in the official repository 8.

Tables with the full results are also available on the supplementary webpage.
We also provide the raw measurement results in the BenchExec format. The log
files with the tool output (stdout and stderr) of all tool executions are not
available online for space reasons (even compressed, these are several gigabytes),
but can be requested from the author.

15.7. Presentation of Results

For the presentation of measurement results, we use SI units and prefixes. This
means, for example, that 1 MB is exactly 1 000 000 B. We round measurement
results to three significant digits.

For the visualization and comparison of CPU-time results of several tool con-
figurations we use quantile plots. In these plots, a data point (x, y) is shown
if the respective configuration could solve x verification tasks in at most y sec-
onds. This leads to a plot where each graph represents the performance of one

5 https://www.sosy-lab.org/research/phd/wendler
6 https://cpachecker.sosy-lab.org/download.php
7 https://sv-comp.sosy-lab.org/2017/systems.php
8 https://github.com/sosy-lab/sv-benchmarks, Git tag svcomp17

157

https://www.sosy-lab.org/research/phd/wendler
https://cpachecker.sosy-lab.org/download.php
https://sv-comp.sosy-lab.org/2017/systems.php
https://github.com/sosy-lab/sv-benchmarks

Part III. Experimental Evaluation

configuration and the graphs are monotonically increasing. Only data points
for correct results are shown. Thus, the right-most x-value of each graph in a
quantile plot corresponds to the number of correct results that the respective
configuration produced. The area under each graph roughly indicates the sum
of the run times for all correct results of the configuration. Thus, in general,
a configuration could be considered “better” the further to the right its graph
stretches and the lower it is. Furthermore, the slope of a graph may indicate how
the configuration scales for more difficult tasks.

158

16. Comparison of SMT Solvers and

Theories

When evaluating algorithms and approaches for software model checking, the
choice of the SMT solver and the theories used to encode program semantics is
often neglected, because this choice is conceptually orthogonal to any choices
regarding the verification approach (this can for example be seen in Table 5.1).
However, it is not guaranteed that this orthogonality actually holds in practice.
It could be the case that different SMT solvers and theories influence results of
experimental studies of verification approaches and bias results for or against
certain approaches, and it is not obvious which combination of SMT solver and
theories is most suited for meaningful experiments with verification approaches.
Thus, we conduct a study that compares all available combinations of SMT
solvers and theories across the four configurations of our unifying framework
for predicate analysis from Sect. 15.3, which represent four different verification
approaches. Furthermore, we would like to find out which of these combinations
is the most effective and efficient one, i.e., solves the most verification tasks
in the least time. This includes the question whether it is worth choosing an
encoding of program semantics that is unsound (i.e., using linear arithmetic or
a bounded heap).

The eight available options for SMT theories in our framework are shown in
Table 4.2 and the four SMT solvers that are available in our implementation are
shown in Table 6.1. Because not all SMT solvers support all theories, this results
in 18 possible combinations for each of the four verification approaches that
we use in this study. Comparing 18 different combinations of SMT solvers and
theories across four verification approaches results in a large number of results,
so we split them into two parts. Furthermore, we show only numbers of correctly
and incorrectly solved tasks and CPU-time measurements. More detailed results
are available in the full tables online.

159

Part III. Experimental Evaluation

Table 16.1.: Results for bitprecise SMT theories across all available SMT solvers
and algorithms

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

BM
C

MathSAT5
QF_ABVFP 736 960 0 20 21.4 81.8

QF_UFBVFP 736 987 0 23 15.3 78.3

Z3

ABVFP 697 673 10 12 16.9 64.8

UFBVFP 702 721 12 12 18.7 69.9

QF_ABVFP 679 688 0 12 16.3 64.7

QF_UFBVFP 670 726 0 9 15.8 60.2

k-
In

du
ct

io
n

MathSAT5
QF_ABVFP 2 263 726 0 12 39.7 87.7

QF_UFBVFP 2 276 749 0 15 40.0 89.3

Z3

ABVFP 2 203 553 9 10 51.5 84.3

UFBVFP 2 193 587 10 7 50.3 90.6

QF_ABVFP 2 167 561 0 10 50.1 85.2

QF_UFBVFP 2 168 588 0 5 50.0 90.9

Im
pa

ct

MathSAT5
QF_ABVFP 1 955 784 1 32 26.1 53.9

QF_UFBVFP 1 960 812 0 46 28.4 50.5

Z3

ABVFP 1 523 454 5 30 17.3 59.6

UFBVFP 1 520 480 5 33 17.8 55.1

QF_ABVFP 1 516 470 0 30 16.4 55.8

QF_UFBVFP 1 518 487 0 34 15.4 51.8

Pr
ed

.A
bs

.

MathSAT5
QF_ABVFP 2 096 749 1 34 33.7 71.7

QF_UFBVFP 2 125 777 0 40 32.1 67.7

Z3

ABVFP 1 640 406 4 30 23.1 67.7

UFBVFP 1 703 430 7 33 22.8 65.7

QF_ABVFP 1 699 417 0 30 23.8 69.1

QF_UFBVFP 1 703 439 0 33 22.7 66.4

160

16. Comparison of SMT Solvers and Theories

0 1 000 2 000 3 000
1

10

100

1 000

(a) BMC

0 1 000 2 000 3 000
1

10

100

1 000

(b) k-Induction

0 1 000 2 000 3 000
1

10

100

1 000

(c) Impact

0 1 000 2 000 3 000
1

10

100

1 000

(d) Predicate Abstraction

MathSAT5 QF_ABVFP
MathSAT5 QF_UFBVFP
Z3 ABVFP
Z3 UFBVFP
Z3 QF_ABVFP
Z3 QF_UFBVFP

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

Figure 16.1.: Quantile plots for CPU time of bitprecise SMT theories across all
available SMT solvers and algorithms

161

Part III. Experimental Evaluation

16.1. Bitprecise Theories

First, we look only at configurations using bitprecise SMT theories. A summary
of the results can be seen in Table 16.1 and quantile plots with the time results
for correct results can be seen in Fig. 16.1.

We can see that there is only a small number of wrong proofs, almost exclu-
sively for configurations using quantifiers. The number of wrong alarms is higher
across all SMT theories, which is related to remaining imprecisions of our im-
plementation, but is at most 1.1 % of the 4 150 safe verification tasks. Differences
between SMT solvers with regard to the number of wrong alarms occur due to
timeouts, with the exception of four verification tasks that show a difference in
the semantics of a floating-point operation between MathSAT5 and Z3.

For the number of correct results and the performance we can see that the
differences for the various SMT theories supported by each solver are rather small,
even though configurations that use arrays for modeling heap memory tend to
solve fewer verification tasks than configurations that use uninterpreted functions.
That the differences between SMT theories are small is also confirmed by Fig. 16.1,
where the graphs for all configurations using the same solver are close to each
other. Note that in the SV-COMP benchmark suite there exists a large number
of verification tasks (e.g., in the category DeviceDriversLinux64) that use pointers
and heap memory, but where these features are not directly relevant for the safety
property. Thus, we may conclude that in general using more complex solver
features such as arrays or quantifiers does not negatively affect performance
in such cases. However, we must also notice that the more powerful pointer
encoding does not immediately allow us to solve significantly more verification
tasks that heavily rely on arrays, e.g., those from the category Arrays. More work
needs to be done in order to be able to prove complex array properties.

Because of the similar results across the various SMT theories, in the remainder
of this subsection we will consider only the configuration QF_UFBVFP. An inter-
esting difference can be seen when comparing the two solvers MathSAT5 and
Z3 across the four algorithms in the plots of Fig. 16.1. For all of the compared
algorithms, the number of solved tasks is higher with MathSAT5. However, for
Impact and predicate abstraction this difference between the solvers is signifi-
cantly larger (38 % and 34 % more solved tasks with MathSAT5, respectively)
than for BMC and k-induction (only 9.6 % and 9.8 % more solved tasks with

162

16. Comparison of SMT Solvers and Theories

MathSAT5). This difference is caused mostly by failures of the interpolation
engine, which can occur only for Impact and predicate abstraction, but not
for BMC and k-induction. Analyzing the output of CPAchecker shows that
interpolation fails in the configuration for predicate abstraction for 70 tasks if
MathSAT5 is used, but for 662 tasks with Z3. For Impact, the difference is even
larger with 71 failures if using MathSAT5 and 1 316 failures if using Z3. As
we have discussed in Sect. 6.3.1, the interpolation component of Z3 seems to be
unmaintained, and reported bugs do not get fixed. Our experimental results
show that these issues affect a large number of verification tasks, and MathSAT5
should be preferred over Z3 for verification approaches that rely on interpolation.

Furthermore, even if we use MathSAT5 for interpolation, any comparison
between algorithms that rely on interpolation and other algorithms is still poten-
tially skewed by the 70 tasks where the interpolation engine of MathSAT5 fails.
Remember that these results are for the SMT theory combination QF_UFBVFP,
which is the only one of the bitprecise configurations considered here for which
the existence of quantifier-free interpolants is guaranteed and which could thus
be supposed to be the “easiest” configuration for an interpolation engine.

On the one hand, these results highlight that the choice of the SMT solver can
create a significant bias in an experimental comparison of verification algorithms,
specifically if these algorithms differ in their solver workload. For example, from
a comparison of k-induction vs. predicate abstraction that uses Z3 one could
draw the conclusion that predicate abstraction is not competitive, which is not
true if MathSAT5 is used. While many researchers treat the choice of the SMT
solver as a confounding variable that just needs to be kept constant in order
to avoid unwanted influences, this is not always enough for a comprehensive
comparison of algorithms. Instead, the SMT solver needs to be carefully chosen or
several SMT solvers need to be considered. This shows that the implementation
of verification approaches in an existing framework with a mature and flexible
implementation like ours, which for example allows easy switching between SMT
solvers, can be valuable for producing meaningful experimental results.

On the other hand, if we want to evaluate verification algorithms not concep-
tually but for their effectiveness when adopted in practice, we can of course
conclude that the fact that k-induction does not require interpolation (and thus,
is immune to existing solver problems in this regard) is currently an advantage,
at least for bitprecise verification.

163

Part III. Experimental Evaluation

Table 16.2.: Results for SMT theories with linear arithmetic across all available
SMT solvers and algorithms

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

BM
C

MathSAT5
QF_AUFLIRA 682 724 3 98 16.6 42.9

QF_UFLIRA 683 749 3 102 10.7 41.8

Princess

AUFLIA 635 223 12 22 13.2 13.7

UFLIA 634 230 12 37 12.4 13.8

QF_AUFLIA 618 227 9 22 13.6 16.2

QF_UFLIA 620 228 9 22 13.2 14.2

SMTInterpol
QF_AUFLIRA 687 572 2 101 20.6 104

QF_UFLIRA 691 577 2 104 18.7 102

Z3

AUFLIRA 703 721 15 55 13.2 77.1

UFLIRA 718 757 15 57 14.1 70.1

QF_AUFLIRA 683 742 2 58 12.9 70.4

QF_UFLIRA 687 769 2 63 13.2 66.3

k-
In

du
ct

io
n

MathSAT5
QF_AUFLIRA 2 024 513 4 25 38.5 85.9

QF_UFLIRA 2 018 519 4 29 37.2 79.9

Princess

AUFLIA 1 967 175 12 5 46.8 20.1

UFLIA 1 960 180 12 19 43.5 23.8

QF_AUFLIA 1 941 175 9 5 44.1 20.3

QF_UFLIA 1 953 177 9 5 46.2 27.1

SMTInterpol
QF_AUFLIRA 2 192 457 4 24 64.1 161

QF_UFLIRA 2 203 464 4 27 65.6 161

Z3

AUFLIRA 2 265 576 16 22 46.9 97.0

UFLIRA 2 265 598 17 23 47.1 98.7

QF_AUFLIRA 2 232 589 4 23 46.3 97.9

QF_UFLIRA 2 244 608 4 26 46.9 94.3

Continued on next page

164

16. Comparison of SMT Solvers and Theories

Table 16.2.: Results for SMT theories with linear arithmetic across all available
SMT solvers and algorithms

Continued from previous page

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

Im
pa

ct

MathSAT5
QF_AUFLIRA 1 743 608 4 144 18.9 69.3

QF_UFLIRA 1 744 653 2 153 20.2 64.0

Princess

AUFLIA 1 401 233 6 65 36.6 50.9

UFLIA 1 404 254 6 83 38.3 61.1

QF_AUFLIA 1 401 243 5 65 34.7 59.9

QF_UFLIA 1 412 252 5 68 38.5 70.1

SMTInterpol
QF_AUFLIRA 1 652 525 2 145 51.0 127

QF_UFLIRA 1 673 558 2 153 48.9 125

Z3

AUFLIRA 1 760 758 12 101 34.9 118

UFLIRA 1 762 764 14 103 38.1 111

QF_AUFLIRA 1 747 780 2 106 37.0 114

QF_UFLIRA 1 754 799 2 104 39.8 112

Pr
ed

ic
at

e
A

bs
tr

ac
ti

on

MathSAT5
QF_AUFLIRA 1 743 558 2 136 20.0 58.4

QF_UFLIRA 1 766 582 2 145 18.3 51.3

Princess

AUFLIA 1 162 221 5 65 37.9 48.0

UFLIA 1 160 235 5 82 38.3 51.5

QF_AUFLIA 1 203 231 5 65 40.0 67.3

QF_UFLIA 1 168 234 5 65 37.4 57.8

SMTInterpol
QF_AUFLIRA 1 710 459 2 137 40.8 113

QF_UFLIRA 1 718 491 2 146 39.6 116

Z3

AUFLIRA 1 670 463 11 98 26.8 66.8

UFLIRA 1 736 490 11 102 27.0 67.3

QF_AUFLIRA 1 740 491 4 104 27.8 69.2

QF_UFLIRA 1 749 504 4 103 28.9 61.4

165

Part III. Experimental Evaluation

0 1 000 2 000 3 000
1

10

100

1 000

(a) BMC

0 1 000 2 000 3 000
1

10

100

1 000

(b) k-Induction

0 1 000 2 000 3 000
1

10

100

1 000

(c) Impact

0 1 000 2 000 3 000
1

10

100

1 000

(d) Predicate Abstraction

MathSAT5 QF_AUFLIRA
MathSAT5 QF_UFLIRA
Princess AUFLIA
Princess UFLIA
Princess QF_AUFLIA
Princess QF_UFLIA
SMTInterpol QF_AUFLIRA
SMTInterpol QF_UFLIRA
Z3 AUFLIRA
Z3 UFLIRA
Z3 QF_AUFLIRA
Z3 QF_UFLIRA

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

Figure 16.2.: Quantile plots for CPU time of SMT theories with linear arithmetic
across all available SMT solvers and algorithms

166

16. Comparison of SMT Solvers and Theories

16.2. Theories with Linear Arithmetic

Now we consider the remaining SMT theories, i.e., those that provide only linear
arithmetic. The summarized results are shown in Table 16.2 and the CPU time
for the correct results in Fig. 16.2. Note that because the SMT solver Princess
does not support reals, we approximate all program variables with integers for
this solver.

We can see that the number of wrong results is higher than if using bitprecise
theories, especially the number of wrong alarms. This is expected due to the
imprecise approximation of bitvectors. The reason for the wrong proofs are the
unsound approximation of floats and the same quantifier-related problem that
also occurs for the bitprecise configurations. Note that for Princess more wrong
proofs occur because of the approximation of floats with integers instead of
rationals. Apart from this, the difference in the number of wrong results between
the various solvers can be explained mostly with the different performance of
the solvers.

For the bitprecise configurations we noticed that the use of quantifiers and
arrays made little difference, and the same is true for the linear configurations.

When comparing the four SMT solvers, we can see that Princess solves
significantly fewer tasks than the other solvers. This is due to a larger number
of timeouts. The fact that at the same time the average time per solved task
for Princess is comparable to those of other solvers indicates that other solvers
scale better, i.e., perform better especially for more difficult tasks. This is also
observable in the plots of Fig. 16.2, where the graphs for Princess are visibly
steeper at their right end than the graphs of the other solvers. The difference
between MathSAT5 and Z3 is much smaller for theories with linear arithmetic
than for bitprecise theories, and neither of them consistently outperforms the
other. The biggest difference in the results for MathSAT5 and Z3 occurs for
k-induction with QF_UFLIRA, where Z3 solves 12 % more tasks. The interpolation
problems of Z3 seem to not affect linear theories, because Z3 solves the most tasks
of all solvers for Impact. SMTInterpol is competitive with MathSAT5 and Z3
for k-induction and predicate abstraction, but falls behind for BMC and Impact.

167

Part III. Experimental Evaluation

Table 16.3.: Results for SMT theories with linear arithmetic (encoding with un-
sound overflows) across all available SMT solvers and algorithms

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

BM
C

MathSAT5
QF_AUFLIRA 699 806 7 111 11.5 33.9

QF_UFLIRA 698 844 7 126 7.42 32.8

Princess

AUFLIA 732 440 16 39 20.8 59.8

UFLIA 720 501 16 89 22.2 60.0

QF_AUFLIA 716 456 13 39 22.0 63.7

QF_UFLIA 711 486 13 47 19.8 55.4

SMTInterpol
QF_AUFLIRA 702 980 6 98 11.7 101

QF_UFLIRA 699 990 6 113 9.06 99.8

Z3

AUFLIRA 729 759 17 43 12.5 44.7

UFLIRA 739 794 17 43 12.8 46.0

QF_AUFLIRA 708 783 6 48 12.4 45.4

QF_UFLIRA 705 812 6 64 12.8 43.1

k-
In

du
ct

io
n

MathSAT5
QF_AUFLIRA 2 136 661 22 25 32.8 73.4

QF_UFLIRA 2 143 693 22 28 32.3 75.2

Princess

AUFLIA 2 045 285 18 11 44.2 54.0

UFLIA 2 024 324 18 42 42.7 56.9

QF_AUFLIA 2 014 295 15 11 44.1 59.9

QF_UFLIA 2 014 315 15 15 43.7 54.7

SMTInterpol
QF_AUFLIRA 2 254 683 20 27 38.2 66.4

QF_UFLIRA 2 256 691 20 31 39.1 64.5

Z3

AUFLIRA 2 290 620 29 21 38.9 53.6

UFLIRA 2 299 644 30 21 39.6 55.3

QF_AUFLIRA 2 254 635 18 21 37.7 51.6

QF_UFLIRA 2 274 654 19 26 38.9 52.9

Continued on next page

168

16. Comparison of SMT Solvers and Theories

Table 16.3.: Results for SMT theories with linear arithmetic (encoding with un-
sound overflows) across all available SMT solvers and algorithms

Continued from previous page

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

Im
pa

ct

MathSAT5
QF_AUFLIRA 1 963 792 15 222 16.0 32.4

QF_UFLIRA 1 968 836 15 238 16.8 27.9

Princess

AUFLIA 1 706 511 20 78 23.8 74.6

UFLIA 1 699 582 22 125 23.2 74.6

QF_AUFLIA 1 699 527 11 78 22.8 80.2

QF_UFLIA 1 701 559 11 88 23.5 71.6

SMTInterpol
QF_AUFLIRA 1 907 777 11 148 31.9 82.1

QF_UFLIRA 1 916 817 11 171 31.4 82.3

Z3

AUFLIRA 1 952 781 19 94 34.7 47.8

UFLIRA 1 951 790 22 94 36.2 47.0

QF_AUFLIRA 1 935 802 10 102 36.1 47.6

QF_UFLIRA 1 932 820 10 110 34.6 48.6

Pr
ed

ic
at

e
A

bs
tr

ac
ti

on

MathSAT5
QF_AUFLIRA 2 041 788 11 203 23.6 51.3

QF_UFLIRA 2 086 836 12 222 22.0 45.7

Princess

AUFLIA 1 585 443 13 79 25.8 72.3

UFLIA 1 702 514 13 119 24.6 72.0

QF_AUFLIA 1 658 453 13 79 28.3 74.5

QF_UFLIA 1 701 486 13 85 24.5 68.4

SMTInterpol
QF_AUFLIRA 2 120 747 13 157 46.3 67.7

QF_UFLIRA 2 135 794 13 178 43.1 66.6

Z3

AUFLIRA 1 858 598 19 100 23.4 70.8

UFLIRA 1 934 622 20 104 23.0 71.6

QF_AUFLIRA 1 949 627 12 114 24.5 67.1

QF_UFLIRA 1 942 641 13 121 24.0 66.2

169

Part III. Experimental Evaluation

0 1 000 2 000 3 000
1

10

100

1 000

(a) BMC

0 1 000 2 000 3 000
1

10

100

1 000

(b) k-Induction

0 1 000 2 000 3 000
1

10

100

1 000

(c) Impact

0 1 000 2 000 3 000
1

10

100

1 000

(d) Predicate Abstraction

MathSAT5 QF_AUFLIRA
MathSAT5 QF_UFLIRA
Princess AUFLIA
Princess UFLIA
Princess QF_AUFLIA
Princess QF_UFLIA
SMTInterpol QF_AUFLIRA
SMTInterpol QF_UFLIRA
Z3 AUFLIRA
Z3 UFLIRA
Z3 QF_AUFLIRA
Z3 QF_UFLIRA

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

Figure 16.3.: Quantile plots for CPU time of SMT theories with linear arithmetic
using unsound overflows across all available SMT solvers and algo-
rithms

170

16. Comparison of SMT Solvers and Theories

16.3. Comparison of Bitprecise and Linear Theories

A comparison of the results for bitprecise theories from Sect. 16.1 and theories
with linear arithmetic from Sect. 16.2 shows that for MathSAT5 the number of
solved results is sometimes significantly higher for the bitprecise theories. This
cannot be fully explained by the change in the number of wrong results. Because
it may be unexpected that using bitprecise theories allows solving more tasks,
we investigate this further. An additional difference in the encoding of program
semantics between using bitprecise theories and theories with linear arithmetic
is that for the latter additional disjunctions are needed for every arithmetic
operation in order to handle overflows soundly (cf. Sect. 4.4.1). These disjunctions
might make solving more difficult. In order to validate this hypothesis, we repeat
the experiments from Sect. 16.2 with a changed encoding of program semantics
that ignores potential overflows completely (i.e., an arithmetic operator of C is
approximated directly with its linear equivalent, without additional disjunctions).
The results for these experiments are shown in Table 16.3 and Fig. 16.3. For
an easier comparison, we also repeat the results for the theory combinations
without arrays and quantifiers (QF_UFBVFP and QF_UFLIRA) from Tables 16.1,
16.2, and 16.3 for all solvers except Princess in Table 16.4 and show plots with
the CPU time of these results in Fig. 16.4. Comparing the theory combinations
QF_ABVFP and QF_AUFLIRA produces similar results.

The unsound linear encoding indeed seems to be significantly easier for solvers
than the sound linear encoding with the many additional disjunctions. In par-
ticular, this is the case for SMTInterpol, which is fully competitive with other
solvers and even outperforms them in some cases if the unsound linear encoding
is used. Z3 performs better with both variants of the linear encoding of program
semantics than with the bitprecise encoding, especially for interpolation-based
verification approaches due to the problems discussed in Sect. 16.1. MathSAT5,
however, correctly solves a similar or even higher number of tasks with the
bitprecise encoding than with the linear encoding, even in its unsound variant.
The performance of MathSAT5 is highest for the unsound linear encoding, but
at the cost of fewer correct results and more wrong results.

171

Table 16.4.: Comparison of SMT theory combinations QF_UFBVFP and
QF_UFLIRA; * marks rows with unsound encoding of overflows.

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

BM
C

MathSAT5
QF_UFBVFP 736 987 0 23 15.3 78.3

QF_UFLIRA 683 749 3 102 10.7 41.8

QF_UFLIRA* 698 844 7 126 7.42 32.8

SMTInterpol
QF_UFLIRA 691 577 2 104 18.7 102

QF_UFLIRA* 699 990 6 113 9.06 99.8

Z3
QF_UFBVFP 670 726 0 9 15.8 60.2

QF_UFLIRA 687 769 2 63 13.2 66.3

QF_UFLIRA* 705 812 6 64 12.8 43.1

k-
In

du
ct

io
n

MathSAT5
QF_UFBVFP 2 276 749 0 15 40.0 89.3

QF_UFLIRA 2 018 519 4 29 37.2 79.9

QF_UFLIRA* 2 143 693 22 28 32.3 75.2

SMTInterpol
QF_UFLIRA 2 203 464 4 27 65.6 161

QF_UFLIRA* 2 256 691 20 31 39.1 64.5

Z3
QF_UFBVFP 2 168 588 0 5 50.0 90.9

QF_UFLIRA 2 244 608 4 26 46.9 94.3

QF_UFLIRA* 2 274 654 19 26 38.9 52.9

Im
pa

ct

MathSAT5
QF_UFBVFP 1 960 812 0 46 28.4 50.5

QF_UFLIRA 1 744 653 2 153 20.2 64.0

QF_UFLIRA* 1 968 836 15 238 16.8 27.9

SMTInterpol
QF_UFLIRA 1 673 558 2 153 48.9 125

QF_UFLIRA* 1 916 817 11 171 31.4 82.3

Z3
QF_UFBVFP 1 518 487 0 34 15.4 51.8

QF_UFLIRA 1 754 799 2 104 39.8 112

QF_UFLIRA* 1 932 820 10 110 34.6 48.6

Pr
ed

ic
at

e
A

bs
tr

ac
ti

on MathSAT5
QF_UFBVFP 2 125 777 0 40 32.1 67.7

QF_UFLIRA 1 766 582 2 145 18.3 51.3

QF_UFLIRA* 2 086 836 12 222 22.0 45.7

SMTInterpol
QF_UFLIRA 1 718 491 2 146 39.6 116

QF_UFLIRA* 2 135 794 13 178 43.1 66.6

Z3
QF_UFBVFP 1 703 439 0 33 22.7 66.4

QF_UFLIRA 1 749 504 4 103 28.9 61.4

QF_UFLIRA* 1 942 641 13 121 24.0 66.2

16. Comparison of SMT Solvers and Theories

0 1 000 2 000 3 000
1

10

100

1 000

(a) BMC

0 1 000 2 000 3 000
1

10

100

1 000

(b) k-Induction

0 1 000 2 000 3 000
1

10

100

1 000

(c) Impact

0 1 000 2 000 3 000
1

10

100

1 000

(d) Predicate Abstraction

MathSAT5 QF_UFBVFP
MathSAT5 QF_UFLIRA
MathSAT5 QF_UFLIRA*
SMTInterpol QF_UFLIRA
SMTInterpol QF_UFLIRA*
Z3 QF_UFBVFP
Z3 QF_UFLIRA
Z3 QF_UFLIRA*

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

Figure 16.4.: Quantile plots for CPU time of SMT theory combinations
QF_UFBVFP and QF_UFLIRA; * marks configurations with unsound
encoding of overflows.

173

Part III. Experimental Evaluation

16.4. Conclusions

In the following, we summarize the conclusions that we can draw from the
results described in this chapter:

• The use of arrays and quantifiers in the formula encoding does not nega-
tively affect performance across all solvers, but also does not help solving
more tasks correctly compared to the bounded pointer encoding that uses
uninterpreted functions.

• Interpolation for bitprecise theories is still a problem, especially for Z3.

• The choice of the SMT solver does not only significantly affect performance
results, but also creates a bias against specific verification approaches, such
that drawn conclusions depend on the solver.

• Even small differences in the encoding of program semantics, such as
whether overflows are handled for linear arithmetic, can change perfor-
mance drastically, and create a bias against specific verification approaches.

• The most effective configurations overall are MathSAT5 with one of the
bitprecise theory combinations. These configurations produce the least
wrong results and the highest or almost the highest number of correct
results.

174

17. Comparison with State of the Art

In order to evaluate the usefulness of the implementation of our unifying frame-
work for predicate analysis, we compare it with other successful software verifiers.
The goal of this evaluation is to show that a verifier with a modular and flexible
design that supports a high level of configurability is possible without significant
overhead. We show two achievements: Our implementation of the verification
approaches BMC, k-induction, Impact, and predicate abstraction is highly com-
petitive in its pure form, and tuned extensions and combinations that are built
on top of this implementation are among the best verification tools worldwide.

For the comparison, we take all submissions to SV-COMP’17 [24] that partici-
pated in the categories of our benchmark set (cf. Sect. 15.1): 2ls, Cbmc, Ceagle, all
CPAchecker submissions (CPA-BAM-BnB, CPA-KInd, and CPA-Seq), DepthK,
all Esbmc submissions (Esbmc, Esbmc-Falsi, Esbmc-Incr, and Esbmc-KInd),
Smack, Symbiotic, and all Ultimate submissions (Ultimate Automizer, Ul-
timate Kojak, and Ultimate Taipan). This list includes the highest-ranking
verifiers of the category Overall as well as the highest-ranking verifiers of the
categories ReachSafety and SoftwareSystems, from which our verification tasks are
taken. The CPAchecker submissions are all partially based on our framework
for predicate analysis and our implementation, and show what results can be
achieved by combining it with other approaches: CPA-BAM-BnB uses predicate
abstraction, CPA-KInd uses k-induction, and CPA-Seq uses a sequential combi-
nation of several verification approaches, including k-induction and predicate
abstraction.

We compare these verifiers that represent the state of the art against our
implementation of the Predicate CPA in the pure configurations for each of
the four verification approaches we have integrated (cf. Sect. 15.3). Following
from the results of Chapter 16, we use MathSAT5 as SMT solver and the theory
combination QF_UFBVFP for encoding program semantics.

175

Part III. Experimental Evaluation

Table 17.1.: Results for verifiers from SV-COMP’17 (official raw results) and con-
figurations of our framework for predicate-based software verification

Number of Results Avg. CPU Time (s)

Correct Wrong Correct

Proofs Alarms Proofs Alarms Proofs Alarms

SV-COMP’17

2ls 1 951 608 9 32 26.5 65.0

Cbmc 419 788 1 0 20.6 40.8

Ceagle 1 609 587 0 1 12.5 13.1

CPA-BAM-BnB 3 022 797 18 53 41.7 89.8

CPA-KInd 2 263 405 0 5 34.4 70.4

CPA-Seq 2 665 852 0 5 72.8 53.8

DepthK 785 698 0 8 112 240

Esbmc 1 164 480 5 32 114 112

Esbmc-Falsi 0 931 0 6 — 58.0

Esbmc-Incr 367 924 0 6 18.0 75.3

Esbmc-KInd 943 802 1 5 13.5 72.8

Smack 2 362 830 0 1 198 48.3

Symbiotic 1 205 850 3 7 2.86 47.2

Ultimate Automizer 2 495 464 4 7 63.1 129

Ultimate Kojak 1 169 281 0 0 133 64.0

Ultimate Taipan 2 148 293 4 7 62.8 69.7

Predicate CPA (MathSAT5 QF_UFBVFP)

BMC 736 987 0 23 15.3 78.3

k-Induction 2 276 749 0 15 40.0 89.3

Impact 1 960 812 0 46 28.4 50.5

Predicate Abstraction 2 125 777 0 40 32.1 67.7

176

17. Comparison with State of the Art

1

10

100

1 000

C
PU

ti
m

e
(s

)

0 500 1 000 1 500 2 000 2 500 3 000 3 500
0

n-th fastest correct result

SV-COMP’17 Predicate CPA (MathSAT5 QF_UFBVFP)
CPA-BAM-BnB BMC
CPA-KInd k-Induction
CPA-Seq Impact
Cbmc Predicate Abstraction
DepthK
Esbmc
Esbmc-KInd
Smack
Ultimate Automizer

Figure 17.1.: Quantile plots for CPU time of verifiers from SV-COMP’17 (official
raw results) and configurations of our framework for predicate-
based software verification (linear scale for time range from 0 s to
1 s, logarithmic scale otherwise)

177

Part III. Experimental Evaluation

Because our experiment setup is the same as in SV-COMP’17 (cf. Sect. 15.5), we
use the official raw results of SV-COMP’17 1. This ensures the highest possible
validity of the results, which have been produced after careful tuning and testing
and were approved by the respective tool authors. However, because we are
interested in directly comparing the tool effectivity, we use the raw results before
witness validation, i.e., each result that a verifier outputs is counted (if it matches
the expected verification result). For the SV-COMP’17 ranking, results are only
counted fully if the witness that was produced by the verifier can be validated
independently. Note that our presented summary results further differ from
the official SV-COMP results because we use only a subset of the verification
tasks (cf. Sect. 15.1) and we do not use the scoring and weighting scheme of
SV-COMP’17.

The results for this comparison are shown in Table 17.1. Figure 17.1 contains a
quantile plot with the CPU time for correct results of the configurations of our uni-
fying framework as well as for the most relevant verifiers of SV-COMP’17. In order
to clutter the plot not too much we show only the CPAchecker configurations
as well as Cbmc and Esbmc because they are similar to our BMC configuration,
DepthK and Esbmc-KInd because they are similar to our k-induction configu-
ration, and Smack and Ultimate Automizer because they have a competitive
number of correctly solved tasks.

Most SV-COMP’17 verifiers in our comparison achieve a lower number of
wrong alarms than our Predicate CPA. However, note that several of them use
further tools to double check found specification violations in order to reduce
the number of wrong alarms, which is possible with our Predicate CPA as well;
we explicitly disabled such counterexample checks to avoid unwanted influences
on the results (cf. Sect. 15.4). CPA-BAM-BnB and CPA-Seq produce significantly
more correct proofs than the four configurations of our unifying framework: both
verifiers are partially based on our implementation and benefit from combining
it with other verification approaches that have complementary strengths. Smack
has more correct proofs than any pure configuration of our Predicate CPA, but
we can see in Fig. 17.1 from the horizontal line at the right end of Smack’s
graph that in many cases Smack terminates right before the timeout and outputs
a guessed result. This is also the reason for the high average CPU time of

1 Available on https://sv-comp.sosy-lab.org/2017/results/results-verified/

178

https://sv-comp.sosy-lab.org/2017/results/results-verified/

Smack. From the plot we can see that without these guesses, Smack would
produce fewer correct results than the configurations for k-induction, Impact,
and predicate abstraction of our framework for predicate analysis. Ultimate
Automizer and Ultimate Taipan also produce a high number of correct proofs,
but both have 4 wrong proofs and a low number of correct alarms. All other
SV-COMP’17 verifiers have fewer correct proofs and fewer correct results overall
for our benchmark set than our unifying framework for predicate analysis in
its unbounded configurations. Furthermore, the BMC configuration of our
framework finds more correct alarms in our benchmark set than any of the SV-
COMP’17 verifiers. The average CPU time per correctly solved verification tasks
for the configurations of our unifying framework is in the range of the average
CPU time of the SV-COMP’17 verifiers, for both correct proofs and correct alarms,
and even if we exclude the disproportionately high CPU time of Smack.

In summary, this comparison shows that our implementation is highly com-
petitive with the best verifiers of SV-COMP’17 in both the number of correct
results as well as performance.

179

18. Summary and Future Work

This concluding chapter summarizes the work presented in this thesis and lists
possible extensions in the future.

18.1. Summary

In Chapter 4 we have developed a unifying framework for software verification
based on predicates. Our framework is highly flexible and configurable, and
provides many possible choices, allowing us to express the existing and suc-
cessful software-verification approaches bounded model checking (BMC) [54],
k-induction [217], Impact [190], and lazy predicate abstraction [125, 140] as spe-
cific instantiations of our framework (cf. Chapter 5). This unification of ap-
proaches in a common framework enables easy studying, experimentation with,
extending and combining the integrated approaches, preparing the grounds
for all kinds of further research in the domain of software verification using
predicates. The amount of research projects that have already benefited from
this work [28, 29, 30, 31, 36, 43, 45, 47, 52, 75, 164, 233] shows that our framework
is already successful in enabling thriving research. Furthermore, our study in
Chapter 16 on how the choice of SMT solvers and SMT theories affect verification
approaches, in which 120 different configurations were evaluated, would not
have been possible without such a flexible and configurable unifying framework.

The open-source implementation of our framework for predicate analysis
in CPAchecker, which is described in Chapter 6, supports the verification of
sequential C programs. This implementation is used in practice for verification
of Linux kernel drivers [165], where it has found several dozens of real kernel
bugs, and by the International Competition on Software Verification (SV-COMP)
as one of two witness validators for validating the results of all tools [23, 24]. The
predicate analysis of CPAchecker has won four medals, including a gold medal,

181

https://cpachecker.sosy-lab.org

in its first year of participation in SV-COMP [19], and helped to win another
36 medals in six years of SV-COMP as a part of other submissions (cf. Sect. 1.1.2
for full list). These achievements of CPAchecker in SV-COMP have also been
awarded by the Kurt Gödel Society with a Gödel medal at the Vienna Summer
of Logic 2014.1 Our evaluation in Chapter 17 shows that our implementation is
highly competitive and can outperform many existing software verifiers.

We have investigated in Chapters 9, 10, and 11 what needs to be fulfilled for
reliable benchmarking of verifiers. The requirements that we established can
serve as a checklist for experimenters as well as reviewers of reports on exper-
imental results. Because we have found that existing benchmarking solutions
can cause arbitrarily large measurement errors in practice, we developed our
open-source and easy-to-use benchmarking framework BenchExec, which is
described in Chapter 13. It builds benchmarking containers using the Linux
kernel techniques cgroups and namespaces (cf. Chapter 12) in order to ensure
that all our requirements for reliable benchmarking are fulfilled, e.g., a proper
isolation of runs.

BenchExec has not only made it possible to perform an experimental study
with 671 280 verification runs and 3 620 days of CPU time for this thesis, but is
already used by several research groups in their work on developing verification
tools. Furthermore, it is the technical foundation of SV-COMP [23], where (in 2017)
32 different submissions were benchmarked, with all results approved by the
respective tool authors. The experience of the SV-COMP organization shows that,
without the techniques on which BenchExec is based, large measurement errors
would have occurred in past instances of SV-COMP.

A preliminary version of our framework for predicate analysis was published
at FMCAD’12 [52], and an updated version is to appear in the Springer journal
JAR [33]. Its implementation was described in a series of reports for submissions
to SV-COMP [100, 186, 187, 231]. A preliminary version of our requirements for
reliable benchmarking and BenchExec was published at SPIN’15 [46], and an
updated version was accepted with minor revisions by the Springer journal
STTT [49].

In summary, we have provided a unifying framework for software verification
based on predicates, with a mature and efficient implementation, as an alternative

1 https://cpachecker.sosy-lab.org/achieve.php#awards

182

https://github.com/sosy-lab/benchexec
https://cpachecker.sosy-lab.org/achieve.php#awards

18. Summary and Future Work

to the existing fragmented verification algorithms and tools. We established a
solution for reliable benchmarking that makes it possible to effectively evaluate
verification approaches. This brings research on predicate-based software verifi-
cation and its usage in practice onto the next level towards practical predicate
analysis.

18.2. Future Work

In the following, we provide a few interesting directions for possible future work.

18.2.1. Predicate Analysis

The most interesting extension of our framework for predicate analysis would be
to integrate more algorithms, in particular some variants of IC3/PDR [62, 113].
One possibility would be to implement the clause-learning strategy of PDR
as a source of abstract facts for refinement [78]. Integrating the approach of
MCMT [122, 123] into our framework would allow comparing MCMT (which can
be seen as a version of Impact with backwards reachability) with Impact and
other algorithms that are based on forwards reachability.

A goal of MCMT is to prove universally quantified properties over arrays, and
a better handling of such properties is interesting also for the existing CEGAR-
based approaches, for which techniques are necessary that provide suitable
abstract facts about array properties during refinement. In general, for predicate
abstraction and Impact the quality of the interpolants that are used during
refinement can be crucial for the effectiveness and efficiency of the analysis. Thus,
we would like to benefit from some of the techniques that attempt to generate
interpolants that are better suited for verification than the interpolants that are
returned by off-the-shelf SMT solvers [47, 182].

As we have seen in our experimental evaluation, the choice of the SMT solver
and the way how program semantics are encoded into formulas can have a sig-
nificant impact on the performance of the analysis. Thus, if further interpolating
SMT solvers are developed, we plan to integrate them as well. We would also
like to further optimize our formula encoding, for example by exploiting knowl-
edge about program variables that can be gained from inferring fine-grained
types [8, 105, 213, 225] and bounds [210] for an improved encoding, e.g., with

183

fewer bits for variables with a small range of values [148], or by automatically
choosing between a bitprecise encoding and a linear approximation depending
on the used operators [96].

18.2.2. Benchmarking

For our benchmarking framework BenchExec, we are interested in extending
its measurement capabilities from time and memory to other resources such as
energy consumption, either by accessing external power meters or by using the
built-in energy-measurement capabilities of modern CPUs [230]. This would allow
comparing verification approaches and tools for their energy- and cost-efficiency.
A preliminary version of energy measurements was already implemented and
used for SV-COMP’17 [24].

Currently the benchmarking containers of BenchExec do not provide a way
to limit and measure I/O operations and bandwidth. This is not a problem for
benchmarking most verifiers, however, there do exist verifiers that produce a
lot of I/O during verification 2, and the ability to limit I/O would improve the
repeatability of experiments with these tools.

Furthermore, we are interested in further reducing the mutual performance
influences of several parallel runs on a single machine. Making it possible to
execute runs for performance experiments in parallel on a single CPU could
significantly reduce the necessary wall time for benchmarking in typical verifica-
tion scenarios, where we have multi-core CPUs but most cores currently remain
unused because many verifiers are single-threaded. This would need the ability
to control cache allocation of CPUs and limit memory-bandwidth usage.

2 In SV-COMP’17, one verifier created several GB of temporary files for some verification tasks.

184

Bibliography

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpretation. In
Proc. SAS, LNCS 7460, pages 300–316. Springer, 2012.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-
approximations to over-approximations and back. In Proc. TACAS,
LNCS 7214, pages 157–172. Springer, 2012.

[3] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-
based algorithm for inter-procedural verification. In Proc. VMCAI,
LNCS 7148, pages 39–55. Springer, 2012.

[4] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework
for abstraction- and interpolation-based software verification. In Proc. CAV,
LNCS 7358, pages 672–678. Springer, 2012.

[5] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. An
extension of lazy abstraction with interpolation for programs with arrays.
Formal Methods in System Design, 45(1):63–109, 2014.

[6] J. Alglave, A. F. Donaldson, D. Kroening, and M. Tautschnig. Making
software verification tools really work. In Proc. ATVA, LNCS 6996, pages
28–42. Springer, 2011.

[7] P. Andrianov, K. Friedberger, M. U. Mandrykin, V. S. Mutilin, and A. Volkov.
CPA-BAM-BnB: Block-abstraction memoization and region-based mem-
ory models for predicate abstractions (competition contribution). In Proc.
TACAS, LNCS 10206, pages 355–359. Springer, 2017.

[8] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. v. Rhein. Domain
types: Abstract-domain selection based on variable usage. In Proc. HVC,
LNCS 8244, pages 262–278. Springer, 2013.

185

http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-33125-1_21
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-28756-5_12
http://dx.doi.org/10.1007/978-3-642-27940-9_4
http://dx.doi.org/10.1007/978-3-642-27940-9_4
http://dx.doi.org/10.1007/978-3-642-27940-9_4
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/s10703-014-0209-9
http://dx.doi.org/10.1007/s10703-014-0209-9
http://dx.doi.org/10.1007/s10703-014-0209-9
http://dx.doi.org/10.1007/978-3-642-24372-1_3
http://dx.doi.org/10.1007/978-3-642-24372-1_3
http://dx.doi.org/10.1007/978-3-642-24372-1_3
http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-HVC.Domain_Types_Abstract-Domain_Selection_Based_on_Variable_Usage.pdf

Bibliography

[9] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of
software using SMT solvers instead of SAT solvers. STTT, 11(1):69–83, 2009.

[10] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver
verification with under 4% false alarms. In Proc. FMCAD, pages 35–42.
IEEE, 2010.

[11] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam and Static Driver
Verifier: Technology transfer of formal methods inside Microsoft. In Proc.
IFM, LNCS 2999, pages 1–20. Springer, 2004.

[12] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstraction
for model checking C programs. In Proc. TACAS, LNCS 2031, pages 268–283.
Springer, 2001.

[13] T. Ball and S. K. Rajamani. The Slam project: Debugging system software
via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[14] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration
in symbolic model checking. In Proc. ATVA, LNCS 3707, pages 474–488.
Springer, 2005.

[15] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of floating-point
exceptions. In Proc. ACM, pages 549–560. ACM, 2013.

[16] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5.
Technical report, University of Iowa, 2015. Available at www.smt-lib.org.

[17] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
Proc. SMT, 2010.

[18] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector
arithmetic. In Proc. DAC, pages 522–527. ACM, 1998.

[19] D. Beyer. Competition on software verification (SV-COMP). In Proc. TACAS,
LNCS 7214, pages 504–524. Springer, 2012.

[20] D. Beyer. Second competition on software verification (Summary of SV-
COMP 2013). In Proc. TACAS, LNCS 7795, pages 594–609. Springer, 2013.

[21] D. Beyer. Status report on software verification (Competition summary
SV-COMP 2014). In Proc. TACAS, LNCS 8413, pages 373–388. Springer,
2014.

186

http://dx.doi.org/10.1007/s10009-008-0091-0
http://dx.doi.org/10.1007/s10009-008-0091-0
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770931
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1145/503272.503274
http://dx.doi.org/10.1145/503272.503274
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1145/2429069.2429133
http://dx.doi.org/10.1145/2429069.2429133
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://www.smt-lib.org
http://smtlib.cs.uiowa.edu/language.shtml
http://smtlib.cs.uiowa.edu/language.shtml
http://dx.doi.org/10.1145/277044.277186
http://dx.doi.org/10.1145/277044.277186
http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_25

Bibliography

[22] D. Beyer. Software verification and verifiable witnesses (Report on SV-
COMP 2015). In Proc. TACAS, LNCS 9035, pages 401–416. Springer, 2015.

[23] D. Beyer. Reliable and reproducible competition results with BenchExec
and witnesses (Report on SV-COMP 2016). In Proc. TACAS, LNCS 9636,
pages 887–904. Springer, 2016.

[24] D. Beyer. Software verification with validation of results (Report on SV-
COMP 2017). In Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017.

[25] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar.
Generating tests from counterexamples. In Proc. ICSE, pages 326–335. IEEE,
2004.

[26] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The
Blast query language for software verification. In Proc. SAS, LNCS 3148,
pages 2–18. Springer, 2004.

[27] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Proc. FMCAD, pages
25–32. IEEE, 2009.

[28] D. Beyer and M. Dangl. SMT-based software model checking: An experi-
mental comparison of four algorithms. In Proc. VSTTE, LNCS 9971, pages
181–198. Springer, 2016.

[29] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses:
Exchanging verification results between verifiers. In Proc. FSE, pages 326–
337. ACM, 2016.

[30] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proc. FSE,
pages 721–733. ACM, 2015.

[31] D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-
refined invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

[32] D. Beyer, M. Dangl, and P. Wendler. Combining k-induction with
continuously-refined invariants. Technical Report MIP-1503, University of
Passau, January 2015. arXiv:1502.00096.

[33] D. Beyer, M. Dangl, and P. Wendler. A unifying view on SMT-based
software verification. J. Autom. Reasoning, 2017. Accepted, currently under
revision.

187

http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://www.sosy-lab.org/~dbeyer/Publications/2004-ICSE.Generating_Tests_from_Counterexamples.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2004-ICSE.Generating_Tests_from_Counterexamples.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2004-ICSE.Generating_Tests_from_Counterexamples.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2004-SAS.The_Blast_Query_Language_for_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2004-SAS.The_Blast_Query_Language_for_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2004-SAS.The_Blast_Query_Language_for_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2009-FMCAD.Software_Model_Checking_via_Large-Block_Encoding.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2009-FMCAD.Software_Model_Checking_via_Large-Block_Encoding.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2009-FMCAD.Software_Model_Checking_via_Large-Block_Encoding.pdf
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
https://www.sosy-lab.org/~dbeyer/Publications/2015-PA-TR1503.Combining_k-Induction_with_Continuously-Refined_Invariants.pdf
https://www.sosy-lab.org/~dbeyer/Publications/2015-PA-TR1503.Combining_k-Induction_with_Continuously-Refined_Invariants.pdf
https://www.sosy-lab.org/~dbeyer/Publications/2015-PA-TR1503.Combining_k-Induction_with_Continuously-Refined_Invariants.pdf
http://arxiv.org/abs/1502.00096
https://www.sosy-lab.org/research/k-ind-compare/
https://www.sosy-lab.org/research/k-ind-compare/

Bibliography

[34] D. Beyer, G. Dresler, and P. Wendler. Software verification in the Google
App-Engine cloud. In Proc. CAV, LNCS 8559, pages 327–333. Springer, 2014.

[35] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525, 2007.

[36] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional
model checking: A technique to pass information between verifiers. In
Proc. FSE, pages 57:1–57:11. ACM, 2012.

[37] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant
synthesis for combined theories. In Proc. VMCAI, LNCS 4349, pages 378–
394. Springer, 2007.

[38] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invari-
ants. In Proc. PLDI, pages 300–309. ACM, 2007.

[39] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program
analysis. In Proc. CAV, LNCS 4590, pages 504–518. Springer, 2007.

[40] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with
dynamic precision adjustment. In Proc. ASE, pages 29–38. IEEE, 2008.

[41] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer,
2011.

[42] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

[43] D. Beyer and T. Lemberger. Symbolic execution with CEGAR. In Proc.
ISoLA, LNCS 9952, pages 195–211. Springer, 2016.

[44] D. Beyer and S. Löwe. Explicit-state software model checking based on
CEGAR and interpolation. In Proc. FASE, LNCS 7793, pages 146–162.
Springer, 2013.

[45] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision
reuse for efficient regression verification. In Proc. FSE, pages 389–399. ACM,
2013.

[46] D. Beyer, S. Löwe, and P. Wendler. Benchmarking and resource measure-
ment. In Proc. SPIN, LNCS 9232, pages 160–178. Springer, 2015.

188

http://dx.doi.org/10.1007/978-3-319-08867-9_21
http://dx.doi.org/10.1007/978-3-319-08867-9_21
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1007/978-3-540-69738-1_27
http://dx.doi.org/10.1007/978-3-540-69738-1_27
http://dx.doi.org/10.1007/978-3-540-69738-1_27
http://www.sosy-lab.org/~dbeyer/Publications/2007-PLDI.Path_Invariants.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2007-PLDI.Path_Invariants.pdf
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://www.sosy-lab.org/~dbeyer/Publications/2008-ASE.Program_Analysis_with_Dynamic_Precision_Adjustment.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2008-ASE.Program_Analysis_with_Dynamic_Precision_Adjustment.pdf
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://www.sosy-lab.org/~dbeyer/Publications/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2010-FMCAD.Predicate_Abstraction_with_Adjustable-Block_Encoding.pdf
http://dx.doi.org/10.1007/978-3-319-47166-2_14
http://dx.doi.org/10.1007/978-3-319-47166-2_14
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-FASE.Explicit-State_Software_Model_Checking_Based_on_CEGAR_and_Interpolation.pdf
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12

Bibliography

[47] D. Beyer, S. Löwe, and P. Wendler. Refinement selection. In Proc. SPIN,
LNCS 9232, pages 20–38. Springer, 2015.

[48] D. Beyer, S. Löwe, and P. Wendler. Sliced path prefixes: An effective method
to enable refinement selection. In Proc. FORTE, LNCS 9039, pages 228–243.
Springer, 2015.

[49] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer, 2017. Accepted, currently
under revision.

[50] D. Beyer and A. K. Petrenko. Linux driver verification. In Proc. ISoLA,
LNCS 7610, pages 1–6. Springer, 2012.

[51] D. Beyer and A. Stahlbauer. BDD-based software model checking with
CPAchecker. In Proc. MEMICS, LNCS 7721, pages 1–11. Springer, 2013.

[52] D. Beyer and P. Wendler. Algorithms for software model checking: Predicate
abstraction vs. Impact. In Proc. FMCAD, pages 106–113. FMCAD, 2012.

[53] D. Beyer and P. Wendler. Reuse of verification results: Conditional
model checking, precision reuse, and verification witnesses. In Proc. SPIN,
LNCS 7976, pages 1–17. Springer, 2013.

[54] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer, 1999.

[55] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample
to induction-guided abstraction-refinement (CTIGAR). In Proc. CAV,
LNCS 8559, pages 831–848. Springer, 2014.

[56] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A static analyzer for large safety-critical software. In
Proc. PLDI, pages 196–207. ACM, 2003.

[57] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
Faculté des Sciences Appliquées de Université de Liège, 1998.

[58] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Per-
spectives in Mathematical Logic. Springer, 1997.

[59] R. Bornat. Proving pointer programs in hoare logic. In Proc. Mathematics of
Program Construction, LNCS 1837, pages 102–126. Springer, 2000.

189

http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1007/978-3-319-19195-9_15
http://dx.doi.org/10.1007/978-3-319-19195-9_15
http://dx.doi.org/10.1007/978-3-319-19195-9_15
https://www.sosy-lab.org/research/benchmarking/
https://www.sosy-lab.org/research/benchmarking/
http://dx.doi.org/10.1007/978-3-642-34032-1_1
http://dx.doi.org/10.1007/978-3-642-34032-1_1
http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2013-MEMICS.BDD-Based_Software_Model_Checking_with_CPAchecker.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-319-08867-9_55
http://dx.doi.org/10.1007/978-3-319-08867-9_55
http://dx.doi.org/10.1007/978-3-319-08867-9_55
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://hdl.handle.net/2268/74874
http://hdl.handle.net/2268/74874
https://www.springer.com/de/book/9783540423249
https://www.springer.com/de/book/9783540423249
http://dx.doi.org/10.1007/10722010_8
http://dx.doi.org/10.1007/10722010_8

Bibliography

[60] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point
computations. Softw. Test., Verif. Reliab., 16(2):97–121, 2006.

[61] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking.
In Proc. CAV, LNCS 1855, pages 403–418. Springer, 2000.

[62] A. R. Bradley. SAT-based model checking without unrolling. In Proc.
VMCAI, LNCS 6538, pages 70–87. Springer, 2011.

[63] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays?
In Proc. VMCAI, LNCS 3855, pages 427–442. Springer, 2006.

[64] M. Brain, S. Joshi, D. Kröning, and P. Schrammel. Safety verification and
refutation by k-invariants and k-induction. In Proc. SAS, LNCS 9291, pages
145–161. Springer, 2015.

[65] G. Brat, J. A. Navas, N. Shi, and A. Venet. Ikos A framework for static
analysis based on abstract interpretation. In Proc. SEFM, LNCS 8702, pages
271–277. Springer, 2014.

[66] A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-point
arithmetic. In Proc. FMCAD, pages 69–76. IEEE, 2009.

[67] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller. Replication’s role in
software engineering. In Guide to Advanced Empirical Software Engineering,
pages 365–379. Springer, 2008.

[68] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing abstractions.
Fundam. Inform., 89(4):369–392, 2008.

[69] R. Bruttomesso, S. Ghilardi, and S. Ranise. Rewriting-based quantifier-
free interpolation for a theory of arrays. In Proc. Int. Conf. on Rewriting
Techniques and Applications, pages 171–186. Schloss Dagstuhl, 2011.

[70] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[71] R. M. Burstall. Some techniques for proving correctness of programs which
alter data structures. Machine Intelligence, 7:23–50, 1972.

[72] N. Caniart, E. Fleury, J. Leroux, and M. Zeitoun. Accelerating interpolation-
based model-checking. In Proc. TACAS, LNCS 4963, pages 428–442.
Springer, 2008.

190

http://dx.doi.org/10.1002/stvr.333
http://dx.doi.org/10.1002/stvr.333
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/978-3-662-48288-9_9
http://dx.doi.org/10.1007/978-3-662-48288-9_9
http://dx.doi.org/10.1007/978-3-662-48288-9_9
http://dx.doi.org/10.1007/978-3-319-10431-7_20
http://dx.doi.org/10.1007/978-3-319-10431-7_20
http://dx.doi.org/10.1007/978-3-319-10431-7_20
http://dx.doi.org/10.1109/FMCAD.2009.5351141
http://dx.doi.org/10.1109/FMCAD.2009.5351141
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://dx.doi.org/10.1007/978-1-84800-044-5_14
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-02
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-02
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.171
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.171
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.171
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1007/978-3-540-78800-3_32
http://dx.doi.org/10.1007/978-3-540-78800-3_32
http://dx.doi.org/10.1007/978-3-540-78800-3_32

Bibliography

[73] M. Carter, S. He, J. Whitaker, Z. Rakamaric, and M. Emmi. Smack software
verification toolchain. In Proc. ICSE (Companion Volume), pages 589–592.
ACM, 2016.

[74] G. Charwat, G. Ianni, T. Krennwallner, M. Kronegger, A. Pfandler, C. Redl,
M. Schwengerer, L. Spendier, J. Wallner, and G. Xiao. VCWC: A versioning
competition workflow compiler. In Proc. LPNMR, LNCS 8148, pages 233–
238. Springer, 2013.

[75] Y. Chen, C. Hsieh, M. Tsai, B. Wang, and F. Wang. Verifying recursive
programs using intraprocedural analyzers. In Proc. SAS, LNCS 8723, pages
118–133. Springer, 2014.

[76] Y. Chen, C. Hsieh, M. Tsai, B. Wang, and F. Wang. CPArec: Verifying recur-
sive programs via source-to-source program transformation (competition
contribution). In Proc. TACAS, LNCS 9035, pages 426–428. Springer, 2015.

[77] J. Christ, J. Hoenicke, and A. Nutz. SMTInterpol: An interpolating SMT
solver. In Proc. SPIN, LNCS 7385, pages 248–254. Springer, 2012.

[78] A. Cimatti and A. Griggio. Software model checking via IC3. In Proc. CAV,
LNCS 7358, pages 277–293. Springer, 2012.

[79] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri. Kratos:
A software model checker for SystemC. In Proc. CAV, LNCS 6806, pages
310–316. Springer, 2011.

[80] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 modulo theories via
implicit predicate abstraction. In Proc. TACAS, LNCS 8413, pages 46–61.
Springer, 2014.

[81] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5
SMT solver. In Proc. TACAS, LNCS 7795, pages 93–107. Springer, 2013.

[82] A. Cimatti, A. Griggio, and R. Sebastiani. Computing small unsatisfiable
cores in satisfiability modulo theories. J. Artif. Intell. Res. (JAIR), 40:701–728,
2011.

[83] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proc. Logic of Programs
1981, LNCS 131, pages 52–71. Springer, 1982.

191

http://dx.doi.org/10.1145/2889160.2889163
http://dx.doi.org/10.1145/2889160.2889163
http://dx.doi.org/10.1145/2889160.2889163
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-642-40564-8_23
http://dx.doi.org/10.1007/978-3-319-10936-7_8
http://dx.doi.org/10.1007/978-3-319-10936-7_8
http://dx.doi.org/10.1007/978-3-319-10936-7_8
http://dx.doi.org/10.1007/978-3-662-46681-0_35
http://dx.doi.org/10.1007/978-3-662-46681-0_35
http://dx.doi.org/10.1007/978-3-662-46681-0_35
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31424-7_23
http://dx.doi.org/10.1007/978-3-642-31424-7_23
http://dx.doi.org/10.1007/978-3-642-22110-1_24
http://dx.doi.org/10.1007/978-3-642-22110-1_24
http://dx.doi.org/10.1007/978-3-642-22110-1_24
http://dx.doi.org/10.1007/978-3-642-54862-8_4
http://dx.doi.org/10.1007/978-3-642-54862-8_4
http://dx.doi.org/10.1007/978-3-642-54862-8_4
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://jair.org/papers/paper3196.html
http://jair.org/papers/paper3196.html
http://jair.org/papers/paper3196.html
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774

Bibliography

[84] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[85] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT, 1999.

[86] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Proc. TACAS, LNCS 2988, pages 168–176. Springer, 2004.

[87] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SatAbs: SAT-
based predicate abstraction for ANSI-C. In Proc. TACAS, LNCS 3440, pages
570–574. Springer, 2005.

[88] E. M. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C
and Verilog programs using bounded model checking. Technical Report
CMU-CS-03-126, Carnegie Mellon University, School of Computer Science,
2003.

[89] E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient
memory model for C. Electr. Notes Theor. Comput. Sci., 254:85–103, 2009.

[90] D. R. Cok, D. Déharbe, and T. Weber. The 2014 SMT competition. JSAT,
9:207–242, 2016.

[91] C. S. Collberg and T. A. Proebsting. Repeatability in computer-systems
research. Commun. ACM, 59(3):62–69, 2016.

[92] P. Collingbourne, C. Cadar, and P. H. J. Kelly. Symbolic crosschecking of
floating-point and SIMD code. In Proc. EuroSys, pages 315–328. ACM, 2011.

[93] M. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant genera-
tion using non-linear constraint solving. In Proc. CAV, LNCS 2725, pages
420–432. Springer, 2003.

[94] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. In Proc. CAV, LNCS 3576, pages 296–300.
Springer, 2005.

[95] L. C. Cordeiro, B. Fischer, and J. Marques-Silva. Continuous verification of
large embedded software using smt-based bounded model checking. In
Proc. ECBS, pages 160–169. IEEE Computer Society, 2010.

192

http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
https://mitpress.mit.edu/books/model-checking
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://reports-archive.adm.cs.cmu.edu/anon/2003/abstracts/03-126.html
http://reports-archive.adm.cs.cmu.edu/anon/2003/abstracts/03-126.html
http://reports-archive.adm.cs.cmu.edu/anon/2003/abstracts/03-126.html
http://reports-archive.adm.cs.cmu.edu/anon/2003/abstracts/03-126.html
http://dx.doi.org/10.1016/j.entcs.2009.09.061
http://dx.doi.org/10.1016/j.entcs.2009.09.061
https://satassociation.org/jsat/index.php/jsat/article/view/122
https://satassociation.org/jsat/index.php/jsat/article/view/122
http://dx.doi.org/10.1145/2812803
http://dx.doi.org/10.1145/2812803
http://dx.doi.org/10.1145/1966445.1966475
http://dx.doi.org/10.1145/1966445.1966475
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/11513988_30
http://dx.doi.org/10.1007/11513988_30
http://dx.doi.org/10.1007/11513988_30
http://dx.doi.org/10.1109/ECBS.2010.24
http://dx.doi.org/10.1109/ECBS.2010.24
http://dx.doi.org/10.1109/ECBS.2010.24

Bibliography

[96] L. C. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded
model checking for embedded ANSI-C software. IEEE Trans. Software Eng.,
38(4):957–974, 2012.

[97] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log., 22(3):250–268, 1957.

[98] D. Cyrluk, M. O. Möller, and H. Rueß. An efficient decision procedure for
the theory of fixed-sized bit-vectors. In Proc. CAV, LNCS 1254, pages 60–71.
Springer, 1997.

[99] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[100] M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic (competition contribution). In Proc.
TACAS, LNCS 9035, pages 423–425. Springer, 2015.

[101] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
TACAS, LNCS 4963, pages 337–340. Springer, 2008.

[102] A. B. de Oliveira, J.-C. Petkovich, and S. Fischmeister. How much does
memory layout impact performance? A wide study. In Proc. REPRODUCE,
2014.

[103] R. DeLine and R. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-70,
Microsoft Research, 2005.

[104] Y. Demyanova, P. Rümmer, and F. Zuleger. Systematic predicate abstraction
using variable roles. In Proc. NFM, LNCS 10227, pages 265–281. Springer,
2017.

[105] Y. Demyanova, H. Veith, and F. Zuleger. On the concept of variable roles
and its use in software analysis. In Proc. FMCAD, pages 226–230. IEEE,
2013.

[106] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[107] I. Dillig, T. Dillig, B. Li, and K. L. McMillan. Inductive invariant generation
via abductive inference. In Proc. OOPSLA, pages 443–456. ACM, 2013.

193

http://dx.doi.org/10.1109/TSE.2011.59
http://dx.doi.org/10.1109/TSE.2011.59
http://dx.doi.org/10.1109/TSE.2011.59
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.1007/3-540-63166-6_9
http://dx.doi.org/10.1007/3-540-63166-6_9
http://dx.doi.org/10.1007/3-540-63166-6_9
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1007/978-3-662-46681-0_34
http://dx.doi.org/10.1007/978-3-662-46681-0_34
http://dx.doi.org/10.1007/978-3-662-46681-0_34
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://uwaterloo.ca/embedded-software-group/publications/how-much-does-memory-layout-impact-performance-wide-study
https://uwaterloo.ca/embedded-software-group/publications/how-much-does-memory-layout-impact-performance-wide-study
https://uwaterloo.ca/embedded-software-group/publications/how-much-does-memory-layout-impact-performance-wide-study
https://www.microsoft.com/en-us/research/publication/boogiepl-a-typed-procedural-language-for-checking-object-oriented-programs/
https://www.microsoft.com/en-us/research/publication/boogiepl-a-typed-procedural-language-for-checking-object-oriented-programs/
https://www.microsoft.com/en-us/research/publication/boogiepl-a-typed-procedural-language-for-checking-object-oriented-programs/
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6679414
http://dx.doi.org/10.1145/2509136.2509511
http://dx.doi.org/10.1145/2509136.2509511

Bibliography

[108] M. Dittrich. Bit-precise predicate analysis with CPAchecker. Bachelor’s
thesis, University of Passau, Software Systems Lab, 2013.

[109] A. F. Donaldson, L. Haller, and D. Kroening. Strengthening induction-based
race checking with lightweight static analysis. In Proc. VMCAI, LNCS 6538,
pages 169–183. Springer, 2011.

[110] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. Software verifica-
tion using k-induction. In Proc. SAS, LNCS 6887, pages 351–368. Springer,
2011.

[111] A. F. Donaldson, D. Kroening, and P. Rümmer. Automatic analysis of DMA
races using model checking and k-induction. FMSD, 39(1):83–113, 2011.

[112] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
strength. In Proc. VMCAI, LNCS 5944, pages 129–145. Springer, 2010.

[113] N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of
property directed reachability. In Proc. FMCAD, pages 125–134. FMCAD
Inc., 2011.

[114] E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In Proc.
VMCAI, LNCS 7148, pages 186–201. Springer, 2012.

[115] E. Ermis, A. Nutz, D. Dietsch, J. Hoenicke, and A. Podelski. Ultimate Kojak
(competition contribution). In Proc. TACAS, LNCS 8413, pages 421–423.
Springer, 2014.

[116] S. Falke, F. Merz, and C. Sinz. The bounded model checker Llbmc. In Proc.
ASE, pages 706–709. IEEE, 2013.

[117] R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of
Computer Science, pages 19–32. AMS, 1967.

[118] K. Friedberger. Block-abstraction memoization as an approach to verify
recursive procedures. Master’s thesis, University of Passau, Software
Systems Lab, 2015.

[119] K. Friedberger. CPA-BAM: Block-abstraction memoization with value
analysis and predicate analysis (competition contribution). In Proc. TACAS,
LNCS 9636, pages 912–915. Springer, 2016.

194

http://dx.doi.org/10.1007/978-3-642-18275-4_13
http://dx.doi.org/10.1007/978-3-642-18275-4_13
http://dx.doi.org/10.1007/978-3-642-18275-4_13
http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1007/s10703-011-0124-2
http://dx.doi.org/10.1007/s10703-011-0124-2
http://dx.doi.org/10.1007/978-3-642-11319-2_12
http://dx.doi.org/10.1007/978-3-642-11319-2_12
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
http://dx.doi.org/10.1007/978-3-642-27940-9_13
http://dx.doi.org/10.1007/978-3-642-27940-9_13
http://dx.doi.org/10.1007/978-3-642-54862-8_36
http://dx.doi.org/10.1007/978-3-642-54862-8_36
http://dx.doi.org/10.1007/978-3-642-54862-8_36
http://dx.doi.org/10.1109/ASE.2013.6693138
http://dx.doi.org/10.1109/ASE.2013.6693138
https://www.sosy-lab.org/research/msc/2015.Friedberger.Block-Abstraction_Memoization_as_an_Approach_to_Verify_Recursive_Procedures.pdf
https://www.sosy-lab.org/research/msc/2015.Friedberger.Block-Abstraction_Memoization_as_an_Approach_to_Verify_Recursive_Procedures.pdf
https://www.sosy-lab.org/research/msc/2015.Friedberger.Block-Abstraction_Memoization_as_an_Approach_to_Verify_Recursive_Procedures.pdf
http://dx.doi.org/10.1007/978-3-662-49674-9_58
http://dx.doi.org/10.1007/978-3-662-49674-9_58
http://dx.doi.org/10.1007/978-3-662-49674-9_58

Bibliography

[120] M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in
bounded model checking of C programs via k-induction. STTT, pages 1–18,
2015.

[121] A. Galloway, G. Lüttgen, J. T. Mühlberg, and R. Siminiceanu. Model-
checking the Linux virtual file system. In Proc. VMCAI, LNCS 5403, pages
74–88. Springer, 2009.

[122] S. Ghilardi and S. Ranise. Goal-directed invariant synthesis for model
checking modulo theories. In Proc. TABLEAUX, LNCS 5607, pages 173–188.
Springer, 2009.

[123] S. Ghilardi and S. Ranise. Backward reachability of array-based systems
by SMT solving: Termination and invariant synthesis. Logical Methods in
Computer Science, 6(4), 2010.

[124] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[125] S. Graf and H. Saïdi. Construction of abstract state graphs with Pvs. In
Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[126] M. Greitschus, D. Dietsch, M. Heizmann, A. Nutz, C. Schätzle, C. Schilling,
F. Schüssele, and A. Podelski. Ultimate Taipan: Trace abstraction
and abstract interpretation (competition contribution). In Proc. TACAS,
LNCS 10206, pages 399–403. Springer, 2017.

[127] M. Greitschus, D. Dietsch, and A. Podelski. Refining trace abstraction using
abstract interpretation. CoRR, abs/1702.02369, 2017.

[128] A. Griggio. Effective word-level interpolation for software verification. In
Proc. FMCAD, pages 28–36. FMCAD Inc., 2011.

[129] A. Griggio and M. Roveri. Comparing different variants of the IC3 algorithm
for hardware model checking. IEEE Trans. on CAD of Integrated Circuits and
Systems, 35(6):1026–1039, 2016.

[130] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source of noise in
JVM performance. Stud. Inform. Univ., 4(1):83–99, 2005.

[131] A. Gurfinkel, A. Albarghouthi, S. Chaki, Y. Li, and M. Chechik. Ufo:
Verification with interpolants and abstract interpretation (competition con-
tribution). In Proc. TACAS, LNCS 7795, pages 637–640. Springer, 2013.

195

http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/978-3-540-93900-9_10
http://dx.doi.org/10.1007/978-3-540-93900-9_10
http://dx.doi.org/10.1007/978-3-540-93900-9_10
http://dx.doi.org/10.1007/978-3-642-02716-1_14
http://dx.doi.org/10.1007/978-3-642-02716-1_14
http://dx.doi.org/10.1007/978-3-642-02716-1_14
http://dx.doi.org/10.2168/LMCS-6(4:10)2010
http://dx.doi.org/10.2168/LMCS-6(4:10)2010
http://dx.doi.org/10.2168/LMCS-6(4:10)2010
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://arxiv.org/abs/1702.02369
http://arxiv.org/abs/1702.02369
http://dl.acm.org/citation.cfm?id=2157662
http://dl.acm.org/citation.cfm?id=2157662
http://dx.doi.org/10.1109/TCAD.2015.2481869
http://dx.doi.org/10.1109/TCAD.2015.2481869
http://dx.doi.org/10.1109/TCAD.2015.2481869
http://studia.complexica.net/index.php?option=com_content&view=article&id=85
http://studia.complexica.net/index.php?option=com_content&view=article&id=85
http://dx.doi.org/10.1007/978-3-642-36742-7_52
http://dx.doi.org/10.1007/978-3-642-36742-7_52
http://dx.doi.org/10.1007/978-3-642-36742-7_52

Bibliography

[132] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn
verification framework. In Proc. CAV, LNCS 9206, pages 343–361. Springer,
2015.

[133] Á. Hajdu, T. Tóth, A. Vörös, and I. Majzik. A configurable CEGAR frame-
work with interpolation-based refinements. In Proc. FORTE, LNCS 9688,
pages 158–174. Springer, 2016.

[134] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-point
logic with systematic abstraction. In Proc. FMCAD, pages 131–140. IEEE,
2012.

[135] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. Repro-
ducible network experiments using container-based emulation. In Proc.
CoNEXT, pages 253–264. ACM, 2012.

[136] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa,
C. Schätzle, C. Schilling, F. Schüssele, and A. Podelski. Ultimate Automizer
with an on-demand construction of floyd-hoare automata (competition
contribution). In Proc. TACAS, LNCS 10206, pages 394–398. Springer, 2017.

[137] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.
In Proc. SAS, LNCS 5673, pages 69–85. Springer, 2009.

[138] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In Proc.
POPL, pages 471–482. ACM, 2010.

[139] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. In Proc. POPL, pages 232–244. ACM, 2004.

[140] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proc. POPL, pages 58–70. ACM, 2002.

[141] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[142] M. Hocko and T. Kalibera. Reducing performance non-determinism via
cache-aware page allocation strategies. In Proc. ICPE, pages 223–234. ACM,
2010.

[143] K. Hoder and N. Bjørner. Generalized property directed reachability. In
Proc. SAT, LNCS 7317, pages 157–171. Springer, 2012.

196

http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462565
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462565
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462565
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1007/978-3-662-54580-5_30
http://dx.doi.org/10.1007/978-3-662-54580-5_30
http://dx.doi.org/10.1007/978-3-662-54580-5_30
http://dx.doi.org/10.1007/978-3-662-54580-5_30
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1145/1706299.1706353
http://dx.doi.org/10.1145/1706299.1706353
http://dx.doi.org/10.1145/964001.964021
http://dx.doi.org/10.1145/964001.964021
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/1712605.1712640
http://dx.doi.org/10.1145/1712605.1712640
http://dx.doi.org/10.1145/1712605.1712640
http://dx.doi.org/10.1007/978-3-642-31612-8_13
http://dx.doi.org/10.1007/978-3-642-31612-8_13

Bibliography

[144] K. Hoder, L. Kovács, and A. Voronkov. Interpolation and symbol elimi-
nation in Vampire. In Proc. IJCAR, LNCS 6173, pages 188–195. Springer,
2010.

[145] H. Hojjat, R. Iosif, F. Konecný, V. Kuncak, and P. Rümmer. Accelerating
interpolants. In Proc. ATVA, LNCS 7561, pages 187–202. Springer, 2012.

[146] A. E. J. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina. OpenSMT2: An
SMT solver for multi-core and cloud computing. In Proc. SAT, LNCS 9710,
pages 547–553. Springer, 2016.

[147] ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011: Programming Languages –
C. International Organization for Standardization, 2011.

[148] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, and P. Ashar. Efficient SAT-
based bounded model checking for software verification. Theor. Comput.
Sci., 404(3):256–274, 2008.

[149] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically
computed invariants inside the predicate abstraction and refinement loop.
In Proc. CAV, LNCS 4144, pages 137–151. Springer, 2006.

[150] JCGM Working Group 2. International vocabulary of metrology – basic
and general concepts and associated terms (VIM), 3rd edition. Technical
Report JCGM 200:2012, BIPM, 2012.

[151] B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract acceleration
of general linear loops. In Proc. POPL, pages 529–540. ACM, 2014.

[152] R. Jhala and R. Majumdar. Path slicing. In Proc. PLDI, pages 38–47. ACM,
2005.

[153] R. Jhala and R. Majumdar. Software model checking. ACM Computing
Surveys, 41(4), 2009.

[154] R. Jhala and K. L. McMillan. A practical and complete approach to predicate
refinement. In Proc. TACAS, LNCS 3920, pages 459–473. Springer, 2006.

[155] R. Jhala and K. L. McMillan. Array abstractions from proofs. In Proc. CAV,
LNCS 4590, pages 193–206. Springer, 2007.

[156] D. Jovanovic and B. Dutertre. Property-directed k-induction. In Proc.
FMCAD, pages 85–92. IEEE, 2016.

197

http://dx.doi.org/10.1007/978-3-642-14203-1_16
http://dx.doi.org/10.1007/978-3-642-14203-1_16
http://dx.doi.org/10.1007/978-3-642-14203-1_16
http://dx.doi.org/10.1007/978-3-642-33386-6_16
http://dx.doi.org/10.1007/978-3-642-33386-6_16
http://dx.doi.org/10.1007/978-3-319-40970-2_35
http://dx.doi.org/10.1007/978-3-319-40970-2_35
http://dx.doi.org/10.1007/978-3-319-40970-2_35
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://dx.doi.org/10.1016/j.tcs.2008.03.013
http://dx.doi.org/10.1016/j.tcs.2008.03.013
http://dx.doi.org/10.1016/j.tcs.2008.03.013
http://dx.doi.org/10.1007/11817963_15
http://dx.doi.org/10.1007/11817963_15
http://dx.doi.org/10.1007/11817963_15
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://dx.doi.org/10.1145/2535838.2535843
http://dx.doi.org/10.1145/2535838.2535843
http://dx.doi.org/10.1145/1065010.1065016
http://dx.doi.org/10.1145/1065010.1065016
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1007/11691372_33
http://dx.doi.org/10.1007/11691372_33
http://dx.doi.org/10.1007/978-3-540-73368-3_23
http://dx.doi.org/10.1007/978-3-540-73368-3_23
http://dx.doi.org/10.1109/FMCAD.2016.7886665
http://dx.doi.org/10.1109/FMCAD.2016.7886665

Bibliography

[157] N. Juristo and O. S. Gómez. Replication of software engineering ex-
periments. In Empirical Software Engineering and Verification, pages 60–88.
Springer, 2012.

[158] T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant discovery. In
Proc. NFM, LNCS 6617, pages 192–206. Springer, 2011.

[159] T. Kahsai and C. Tinelli. PKind: A parallel k-induction based model
checker. In Proc. Int. Workshop on Parallel and Distributed Methods in Verifi-
cation, EPTCS 72, pages 55–62, 2011.

[160] T. Kalibera, L. Bulej, and P. Tuma. Benchmark precision and random initial
state. In Proc. SPECTS, pages 484–490. SCS, 2005.

[161] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures.
In Proc. FSE, SIGSOFT ’06/FSE-14, pages 105–116. ACM, 2006.

[162] E. G. Karpenkov. LPI: Software verification with local policy iteration
(competition contribution). In Proc. TACAS, LNCS 9636, pages 930–933.
Springer, 2016.

[163] E. G. Karpenkov, K. Friedberger, and D. Beyer. JavaSMT: A unified inter-
face for SMT solvers in Java. In Proc. VSTTE, LNCS 9971, pages 139–148.
Springer, 2016.

[164] E. G. Karpenkov, D. Monniaux, and P. Wendler. Program analysis with
local policy iteration. In Proc. VMCAI, LNCS 9583, pages 127–146. Springer,
2016.

[165] A. V. Khoroshilov, V. S. Mutilin, E. Novikov, P. Shved, and A. Strakh.
Towards an open framework for C verification tools benchmarking. In Proc.
Ershov Memorial Conference 2011, LNCS 7162, pages 179–192. Springer, 2012.

[166] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. Establish-
ing Linux driver verification process. In Proc. Ershov Memorial Conference,
LNCS 5947, pages 165–176. Springer, 2009.

[167] G. A. Kildall. A unified approach to global program optimization. In Proc.
POPL, pages 194–206. ACM, 1973.

[168] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

198

http://dx.doi.org/10.1007/978-3-642-25231-0_2
http://dx.doi.org/10.1007/978-3-642-25231-0_2
http://dx.doi.org/10.1007/978-3-642-25231-0_2
http://dx.doi.org/10.1007/978-3-642-20398-5_15
http://dx.doi.org/10.1007/978-3-642-20398-5_15
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.4204/EPTCS.72
http://d3s.mff.cuni.cz/publications/download/KaliberaBulejTuma-BenchmarkPrecision.pdf
http://d3s.mff.cuni.cz/publications/download/KaliberaBulejTuma-BenchmarkPrecision.pdf
http://dx.doi.org/10.1145/1181775.1181789
http://dx.doi.org/10.1145/1181775.1181789
http://dx.doi.org/10.1007/978-3-662-49674-9_63
http://dx.doi.org/10.1007/978-3-662-49674-9_63
http://dx.doi.org/10.1007/978-3-662-49674-9_63
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/978-3-642-29709-0_17
http://dx.doi.org/10.1007/978-3-642-29709-0_17
http://dx.doi.org/10.1007/978-3-642-29709-0_17
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252

Bibliography

[169] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic
abstraction in SMT-based unbounded software model checking. In Proc.
CAV, LNCS 8044, pages 846–862. Springer, 2013.

[170] F. Kordon and F. Hulin-Hubard. BenchKit, a tool for massive concurrent
benchmarking. In Proc. ACSD, pages 159–165. IEEE, 2014.

[171] L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In
Proc. CAV, LNCS 8044, pages 1–35. Springer, 2013.

[172] S. Krishnamurthi and J. Vitek. The real software crisis: Repeatability as a
core value. Commun. ACM, 58(3):34–36, 2015.

[173] D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating loops
in C programs for fast counterexample detection. Formal Methods in System
Design, 47(1):75–92, 2015.

[174] D. Kroening and G. Weissenbacher. Verification and falsification of
programs with loops using predicate abstraction. Formal Asp. Comput.,
22(2):105–128, 2010.

[175] D. Kroening and G. Weissenbacher. Interpolation-based software verifica-
tion with wolverine. In Proc. CAV, LNCS 6806, pages 573–578. Springer,
2011.

[176] O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

[177] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast
predicate abstraction. In Proc. CAV, LNCS 4144, pages 424–437. Springer,
2006.

[178] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification
by abstraction. In Proc. TACAS, LNCS 2031, pages 98–112. Springer, 2001.

[179] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories.
In Proc. CAV, LNCS 7358, pages 427–443. Springer, 2012.

[180] C. Y. Lee. Representation of switching circuits by binary-decision programs.
Bell Syst. Tech. J., 38(4):985–999, July 1959.

[181] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Proc. LPAR, LNCS 6355, pages 348–370. Springer, 2010.

199

http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1109/ACSD.2014.12
http://dx.doi.org/10.1109/ACSD.2014.12
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1145/2658987
http://dx.doi.org/10.1145/2658987
http://dx.doi.org/10.1007/s10703-015-0228-1
http://dx.doi.org/10.1007/s10703-015-0228-1
http://dx.doi.org/10.1007/s10703-015-0228-1
http://dx.doi.org/10.1007/s00165-009-0110-2
http://dx.doi.org/10.1007/s00165-009-0110-2
http://dx.doi.org/10.1007/s00165-009-0110-2
http://dx.doi.org/10.1007/978-3-642-22110-1_45
http://dx.doi.org/10.1007/978-3-642-22110-1_45
http://dx.doi.org/10.1007/978-3-642-22110-1_45
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1007/11817963_39
http://dx.doi.org/10.1007/11817963_39
http://dx.doi.org/10.1007/11817963_39
http://dx.doi.org/10.1007/3-540-45319-9_8
http://dx.doi.org/10.1007/3-540-45319-9_8
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01585.x
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01585.x
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-17511-4_20

Bibliography

[182] J. Leroux, P. Rümmer, and P. Subotic. Guiding craig interpolation with
domain-specific abstractions. Acta Inf., 53(4):387–424, 2016.

[183] M. Leucker, G. Markin, and M. R. Neuhäußer. A new refinement strategy
for CEGAR-based industrial model checking. In Proc. HVC, LNCS 9434,
pages 155–170. Springer, 2015.

[184] S. Löwe. CPAchecker with explicit-value analysis based on CEGAR and
interpolation (competition contribution). In Proc. TACAS, LNCS 7795, pages
610–612. Springer, 2013.

[185] S. Löwe. CPA-RefSel: CPAchecker with refinement selection (competition
contribution). In Proc. TACAS, LNCS 9636, pages 916–919. Springer, 2016.

[186] S. Löwe, M. U. Mandrykin, and P. Wendler. CPAchecker with sequential
combination of explicit-value analyses and predicate analyses (competition
contribution). In Proc. TACAS, LNCS 8413, pages 392–394. Springer, 2014.

[187] S. Löwe and P. Wendler. CPAchecker with adjustable predicate analysis
(competition contribution). In Proc. TACAS, LNCS 7214, pages 528–530.
Springer, 2012.

[188] S. Lukasczyk. Unbounded heap support for CPAchecker’s predicate
analysis using SMT arrays. Bachelor’s thesis, University of Passau, Software
Systems Lab, 2016.

[189] J. McCarthy. Towards a mathematical science of computation. In Proc. IFIP
Congress, pages 21–28. North-Holland, 1962.

[190] K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV,
LNCS 4144, pages 123–136. Springer, 2006.

[191] K. L. McMillan. Interpolants from Z3 proofs. In Proc. FMCAD, pages 19–27.
FMCAD Inc., 2011.

[192] K. L. McMillan and N. Amla. Automatic abstraction without counterexam-
ples. In Proc. TACAS, LNCS 2619, pages 2–17. Springer, 2003.

[193] K. L. McMillan and A. Rybalchenko. Computing relational fixed points
using interpolation. Technical Report MSR-TR-2013-6, Microsoft Research,
2013.

200

http://dx.doi.org/10.1007/s00236-015-0236-z
http://dx.doi.org/10.1007/s00236-015-0236-z
http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.1007/978-3-642-36742-7_44
http://dx.doi.org/10.1007/978-3-642-36742-7_44
http://dx.doi.org/10.1007/978-3-642-36742-7_44
http://dx.doi.org/10.1007/978-3-662-49674-9_59
http://dx.doi.org/10.1007/978-3-662-49674-9_59
http://dx.doi.org/10.1007/978-3-642-54862-8_27
http://dx.doi.org/10.1007/978-3-642-54862-8_27
http://dx.doi.org/10.1007/978-3-642-54862-8_27
http://dx.doi.org/10.1007/978-3-642-28756-5_40
http://dx.doi.org/10.1007/978-3-642-28756-5_40
http://dx.doi.org/10.1007/978-3-642-28756-5_40
https://research.lukasczyk.me/heaparray/
https://research.lukasczyk.me/heaparray/
https://research.lukasczyk.me/heaparray/
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dl.acm.org/citation.cfm?id=2157661
http://dl.acm.org/citation.cfm?id=2157661
http://dx.doi.org/10.1007/3-540-36577-X_2
http://dx.doi.org/10.1007/3-540-36577-X_2
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-interpolation/
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-interpolation/
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-interpolation/

Bibliography

[194] C. Meudec. ATGen: Automatic test data generation using constraint logic
programming and symbolic execution. Softw. Test., Verif. Reliab., 11(2):81–96,
2001.

[195] J. Morse, L. C. Cordeiro, D. Nicole, and B. Fischer. Handling un-
bounded loops with Esbmc 1.20 (competition contribution). In Proc. TACAS,
LNCS 7795, pages 619–622. Springer, 2013.

[196] J. T. Mühlberg and G. Lüttgen. Blasting Linux code. In Proc. FMICS/PDMC,
LNCS 4346, pages 211–226. Springer, 2006.

[197] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. Wiley
Publishing, 3rd edition, 2011.

[198] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proc. ASPLOS,
pages 265–276. ACM, 2009.

[199] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Unbounded Lazy-
CSeq: A lazy sequentialization tool for C programs with unbounded context
switches (competition contribution). In Proc. TACAS, LNCS 9035, pages
461–463. Springer, 2015.

[200] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[201] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS 2283. Springer, 2002.

[202] A. Nutz, D. Dietsch, M. M. Mohamed, and A. Podelski. Ultimate Kojak
with memory safety checks (competition contribution). In Proc. TACAS,
LNCS 9035, pages 458–460. Springer, 2015.

[203] J. Petkovich, A. B. de Oliveira, Y. Zhang, T. Reidemeister, and S. Fischmeis-
ter. DataMill: A distributed heterogeneous infrastructure for robust
experimentation. Softw., Pract. Exper., 46(10):1411–1440, 2016.

[204] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proc. Symposium on Programming, LNCS 137, pages
337–351. Springer, 1982.

201

http://onlinelibrary.wiley.com/doi/10.1002/stvr.225/abstract
http://onlinelibrary.wiley.com/doi/10.1002/stvr.225/abstract
http://onlinelibrary.wiley.com/doi/10.1002/stvr.225/abstract
http://dx.doi.org/10.1007/978-3-642-36742-7_47
http://dx.doi.org/10.1007/978-3-642-36742-7_47
http://dx.doi.org/10.1007/978-3-642-36742-7_47
http://dx.doi.org/10.1007/978-3-540-70952-7_14
http://dx.doi.org/10.1007/978-3-540-70952-7_14
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1145/1508244.1508275
http://dx.doi.org/10.1007/978-3-662-46681-0_45
http://dx.doi.org/10.1007/978-3-662-46681-0_45
http://dx.doi.org/10.1007/978-3-662-46681-0_45
http://dx.doi.org/10.1007/978-3-662-46681-0_45
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-662-03811-6
https://link.springer.com/book/10.1007/3-540-45949-9
https://link.springer.com/book/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-662-46681-0_44
http://dx.doi.org/10.1007/978-3-662-46681-0_44
http://dx.doi.org/10.1007/978-3-662-46681-0_44
http://dx.doi.org/10.1002/spe.2382
http://dx.doi.org/10.1002/spe.2382
http://dx.doi.org/10.1002/spe.2382
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22

Bibliography

[205] Z. Rakamarić and M. Emmi. SMACK: Decoupling source language details
from verifier implementations. In Proc. CAV, LNCS 8559, pages 106–113.
Springer, 2014.

[206] E. F. Rizzi, S. Elbaum, and M. B. Dwyer. On the techniques we create, the
tools we build, and their misalignments: A study of Klee. In Proc. ICSE,
pages 132–143. ACM, 2016.

[207] H. Rocha, H. I. Ismail, L. C. Cordeiro, and R. S. Barreto. Model checking
embedded C software using k-induction and invariants. In Proc. SBESC,
pages 90–95. IEEE, 2015.

[208] W. Rocha, H. Rocha, H. Ismail, L. C. Cordeiro, and B. Fischer. DepthK: A k-
induction verifier based on invariant inference for C programs (competition
contribution). In Proc. TACAS, LNCS 10206, pages 360–364. Springer, 2017.

[209] O. Roussel. Controlling a solver execution with the runsolver tool. JSAT,
7:139–144, 2011.

[210] R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. ACM Trans. Program. Lang. Syst.,
27(2):185–235, 2005.

[211] P. Rümmer. Calculi for Program Incorrectness and Arithmetic. PhD thesis,
University of Gothenburg, 2008.

[212] P. Rümmer and T. Wahl. An SMT-LIB theory of binary floating-point
arithmetic. In Proc. SMT Workshop, 2010.

[213] J. Sajaniemi. An empirical analysis of roles of variables in novice-level
procedural programs. In Proc. HCC, pages 37–39. IEEE, 2002.

[214] C. Scholl, F. Pigorsch, S. Disch, and E. Althaus. Simple interpolants for
linear arithmetic. In Proc. DATE, pages 1–6. IEEE, 2014.

[215] V. Schuppan and A. Biere. Liveness checking as safety checking for infinite
state spaces. Electr. Notes Theor. Comput. Sci., 149(1):79–96, 2006.

[216] R. Sebastiani and P. Trentin. OptiMathSAT: A tool for optimization modulo
theories. In Proc. CAV, LNCS 9206, pages 447–454. Springer, 2015.

[217] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a SAT-solver. In Proc. FMCAD, LNCS 1954, pages 127–144.
Springer, 2000.

202

http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1145/2884781.2884835
http://dx.doi.org/10.1145/2884781.2884835
http://dx.doi.org/10.1145/2884781.2884835
http://dx.doi.org/10.1109/SBESC.2015.24
http://dx.doi.org/10.1109/SBESC.2015.24
http://dx.doi.org/10.1109/SBESC.2015.24
http://dx.doi.org/10.1007/978-3-662-54580-5_23
http://dx.doi.org/10.1007/978-3-662-54580-5_23
http://dx.doi.org/10.1007/978-3-662-54580-5_23
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_12_Roussel.pdf
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_12_Roussel.pdf
http://dx.doi.org/10.1145/1057387.1057388
http://dx.doi.org/10.1145/1057387.1057388
http://dx.doi.org/10.1145/1057387.1057388
http://hdl.handle.net/2077/18717
http://hdl.handle.net/2077/18717
http://www.philipp.ruemmer.org/publications/smt-fpa.pdf
http://www.philipp.ruemmer.org/publications/smt-fpa.pdf
http://dx.doi.org/10.1109/HCC.2002.1046340
http://dx.doi.org/10.1109/HCC.2002.1046340
http://dx.doi.org/10.7873/DATE.2014.128
http://dx.doi.org/10.7873/DATE.2014.128
http://dx.doi.org/10.1016/j.entcs.2005.11.018
http://dx.doi.org/10.1016/j.entcs.2005.11.018
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.1007/3-540-40922-X_8

Bibliography

[218] B. Singh and V. Srinivasan. Containers: Challenges with the memory
resource controller and its performance. In Proc. Ottawa Linux Symposium
(OLS), pages 209–222, 2007.

[219] C. Sinz, S. Falke, and F. Merz. A precise memory model for low-level
bounded model checking. In Proc. Int. Workshop on Systems Software Verifi-
cation (SSV). USENIX Association, 2010.

[220] T. Stieglmaier. Augmenting predicate analysis with auxiliary invariants.
Master’s thesis, University of Passau, Software Systems Lab, 2016.

[221] A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for
an extensional theory of arrays. In Proc. Logic in Computer Science, pages
29–37. IEEE, 2001.

[222] A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: A cross-community
infrastructure for logic solving. In Proc. IJCAR, LNCS 8562, pages 367–373.
Springer, 2014.

[223] Y.-K. Suh, R. T. Snodgrass, J. D. Kececioglu, P. J. Downey, R. S. Maier, and
C. Yi. EMP: Execution time measurement protocol for compute-bound
programs. Software: Practice and Experience, 47(4):559–597, 2017.

[224] W. F. Tichy. Should computer scientists experiment more? IEEE Computer,
31(5):32–40, 1998.

[225] A. van Deursen and L. Moonen. Understanding COBOL systems using
inferred types. In Proc. IWPC, pages 74–81. IEEE, 1999.

[226] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: Reducing, reusing and
recycling constraints in program analysis. In Proc. FSE, pages 58:1–58:11.
ACM, 2012.

[227] J. Vitek and T. Kalibera. Repeatability, reproducibility, and rigor in systems
research. In Proc. EMSOFT, pages 33–38. ACM, 2011.

[228] A. Volkov and M. U. Mandrykin. Predicate abstractions memory modeling
method with separation into disjoint regions. In Proc. SYRCoSE, pages 69–
73. Institute for System Programming of the Russian Academy of Sciences
(ISPRAS), 2017.

[229] T. Wahl. The k-induction principle, 2013. Available at http://www.ccs.
neu.edu/home/wahl/Publications/k-induction.pdf.

203

https://www.kernel.org/doc/ols/2007/ols2007v2-pages-209-222.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-209-222.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-209-222.pdf
https://www.usenix.org/conference/ssv10/precise-memory-model-low-level-bounded-model-checking
https://www.usenix.org/conference/ssv10/precise-memory-model-low-level-bounded-model-checking
https://www.usenix.org/conference/ssv10/precise-memory-model-low-level-bounded-model-checking
https://www.sosy-lab.org/research/msc/stieglmaier
https://www.sosy-lab.org/research/msc/stieglmaier
http://dx.doi.org/10.1109/LICS.2001.932480
http://dx.doi.org/10.1109/LICS.2001.932480
http://dx.doi.org/10.1109/LICS.2001.932480
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://onlinelibrary.wiley.com/doi/10.1002/spe.2476/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.2476/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.2476/full
http://dx.doi.org/10.1109/2.675631
http://dx.doi.org/10.1109/2.675631
http://dx.doi.org/10.1109/WPC.1999.777746
http://dx.doi.org/10.1109/WPC.1999.777746
http://dx.doi.org/10.1145/2393596.2393665
http://dx.doi.org/10.1145/2393596.2393665
http://dx.doi.org/10.1145/2393596.2393665
http://dx.doi.org/10.1145/2038642.2038650
http://dx.doi.org/10.1145/2038642.2038650
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

Bibliography

[230] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore. Measuring energy and power with PAPI. In Proc.
ICPPW, pages 262–268. IEEE Computer Society, 2012.

[231] P. Wendler. CPAchecker with sequential combination of explicit-state
analysis and predicate analysis (competition contribution). In Proc. TACAS,
LNCS 7795, pages 613–615. Springer, 2013.

[232] D. Wonisch. Block abstraction memoization for CPAchecker (competition
contribution). In Proc. TACAS, LNCS 7214, pages 531–533. Springer, 2012.

[233] D. Wonisch and H. Wehrheim. Predicate analysis with block-abstraction
memoization. In Proc. ICFEM, LNCS 7635, pages 332–347. Springer, 2012.

[234] I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. Novikov, A. K. Petrenko,
and A. V. Khoroshilov. Configurable toolset for static verification of oper-
ating systems kernel modules. Programming and Comp. Softw., 41(1):49–64,
2015.

204

http://dx.doi.org/10.1109/ICPPW.2012.39
http://dx.doi.org/10.1109/ICPPW.2012.39
http://dx.doi.org/10.1109/ICPPW.2012.39
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-28756-5_41
http://dx.doi.org/10.1007/978-3-642-28756-5_41
http://dx.doi.org/10.1007/978-3-642-34281-3_24
http://dx.doi.org/10.1007/978-3-642-34281-3_24
http://dx.doi.org/10.1134/S0361768815010065
http://dx.doi.org/10.1134/S0361768815010065
http://dx.doi.org/10.1134/S0361768815010065
http://dx.doi.org/10.1134/S0361768815010065

Appendix

A. Machine Architectures with

Hyperthreading and Nonuniform

Memory Access

As indication how complex and divergent today’s machines can be, we show
two exemplary machine architectures, which are shown in Figs. A.1 and A.2.
In the figures, each CPU is represented by a node labeled with “Socket” and
the physical package id, each physical CPU core by a node labeled with “Core”
and the core id, and each processing unit by a node labeled with “PU” and the
processor id. A processing unit is what a process running under Linux sees as
a core. Nodes whose label starts with “L” represent the various caches (“L” for
level). Contiguous regions of memory are represented by nodes labeled with
“NUMANode” and the node id, and each memory region is grouped together
with the CPU cores that it belongs to in a green unlabeled node. The numeric ids
in the figures are those that the Linux kernel assigns to the respective unit. The
numbering scheme is explained in Sect. 10.4. Such figures can be created with
the tool lstopo from the Portable Hardware Locality (hwloc) project 1.

Both examples are systems with a NUMA architecture. Figure A.1 shows a
system with two AMD Opteron 6380 16-core CPUs with a total of 137 GB of
RAM. On this CPU, always two virtual cores together form what AMD calls a
“module”, a physical core that has separate integer-arithmetic units and level-1
data cache for each virtual core, but shared floating-point units, level-1 instruction
cache, and level-2 cache. The cores of each CPU are split into two groups of
eight virtual cores. The memory of the system is split into four regions, each
of which is coupled with one group of cores. This means that, for example,
core 0 can access the memory of NUMANode 0 directly and thus fast, whereas

1 https://www.open-mpi.org/projects/hwloc

207

https://www.open-mpi.org/projects/hwloc

Appendix

GiB)

GiB)

GiB)

KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

GiB)

KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

GiB)

GiB)

KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

GiB)

KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

KiB)

KiB)

KiB) KiB)

Figure A.1.: Example for a machine with a NUMA architecture:
2 AMD Opteron 6380 CPUs, each with two groups of four modules
of two cores and 69 GB (64 GiB) of RAM

accesses to NUMANode 1 would be indirect and thus slower, and accesses to
NUMANode 2 and 3 would be even slower as they need to be done via inter-CPU
communication channels. Note that on this machine, the two virtual cores of
each physical core (“module”) got adjacent processor ids and different core ids
assigned by the Linux kernel, whereas virtual cores with the same core id on the
same CPU actually belong to different physical cores.

Figure A.2 shows a system with two Intel Xeon E5-2650 v2 eight-core CPUs
with a total of 135 GB of RAM (caches omitted for space reasons). This CPU
model has hyperthreading, and thus there are always two virtual cores that share
both integer-arithmetic and floating-point units and the caches of one physical
core. The memory in this system is also split into two memory regions, one per
CPU. Note that the numbering system differs from the other machine: the virtual
cores of one physical core have the same core id, which uniquely identifies a

208

A. Machine Architectures with Hyperthreading and Nonuniform Memory Access

GiB)

GiB)

GiB)

Figure A.2.: Example for a machine with a NUMA architecture:
2 Intel Xeon E5-2650 v2 CPUs, each with eight physical cores with
hyperthreading and 68 GB (63 GiB) of RAM

physical core on a CPU here. The processor ids for virtual cores, however, are
not consecutive but jump between the CPUs.

Note that both presented systems could appear equal at a cursory glance,
because they both have the same number of processing units and approximately
the same amount of RAM. However, they differ in their architecture and (de-
pending on the workload) could deliver substantially different performance even
if running at the same frequency.

209

B. Listings

1 from benchexec.runexecutor import RunExecutor
2 executor = RunExecutor()
3 result = executor.execute_run(
4 args = [<TOOL_CMD>],
5 output_filename = ’output.log’,
6 hardtimelimit = 100,
7 memlimit = 16*1000*1000*1000,
8 cores = list(range(0,8)) + list(range(16,24)),
9 memory_nodes = [0])

Listing B.1: Example for using module runexec from a Python program

211

Appendix

1 <?xml version="1.0"?>
2 <!DOCTYPE benchmark PUBLIC
3 "+//IDN sosy-lab.org//DTD BenchExec benchmark 1.9//EN"
4 "https://www.sosy-lab.org/benchexec/benchmark-1.9.dtd" >
5

6 <!−− Example f i l e f o r benchmark d e f i n i t i o n , us ing t o o l " c p a c h e c k e r "
7 with CPU t ime l i m i t , memory l i m i t , and 4 CPU c o r e s . −−>
8 <benchmark tool="cpachecker"
9 timelimit="900 s" memlimit="8000 MB" cpuCores="4">

10

11 <!−− D e f i n e two d i f f e r e n t c o n f i g u r a t i o n s t o benchmark ,
12 with d i f f e r e n t command−l i n e o p t i o n s . −−>
13 <rundefinition name="predicateAnalysis">
14 <option name="-predicateAnalysis"/>
15 </rundefinition>
16

17 <rundefinition name="valueAnalysis">
18 <option name="-valueAnalysis"/>
19 </rundefinition>
20

21 <!−− G l o b a l command−l i n e o p t i o n s f o r a l l c o n f i g u r a t i o n s . −−>
22 <option name="-heap">7000M</option>
23 <option name="-noout"/>
24

25 <!−− D e f i n e which i n p u t f i l e s s h o u l d be used f o r benchmark ing
26 (two groups o f f i l e s d e c l a r e d in s e p a r a t e f i l e s) . −−>
27 <tasks name="ControlFlowInteger">
28 <includesfile>programs/ControlFlowInteger.set</includesfile>
29 </tasks>
30

31 <tasks name="DeviceDrivers64">
32 <includesfile>programs/DeviceDrivers64.set</includesfile>
33 <!−− These f i l e s need a s p e c i a l command−l i n e o p t i o n : −−>
34 <option name="-64"/>
35 </tasks>
36

37 <!−− Use an SV−COMP p r o p e r t y f i l e a s s p e c i f i c a t i o n
38 (f i l e ALL . prp in t h e same d i r e c t o r y as e a c h i n p u t f i l e) . −−>
39 <propertyfile>${inputfile_path}/ALL.prp</propertyfile>
40 </benchmark>

Listing B.2: Example for an XML file as input for program benchexec,
defining a benchmark of two configurations of a tool on two sets
of files

212

	1 Introduction
	1.1 Contributions
	1.1.1 Availability of Data and Tools
	1.1.2 Achievements

	1.2 Structure

	I A Flexible Domain Based on Predicates
	2 Motivation
	2.1 Overview
	2.2 Restrictions

	3 Background
	3.1 Program Representation
	3.2 Configurable Program Analysis
	3.2.1 CPA Algorithm
	3.2.2 Composite CPA
	3.2.3 Basic CPAs

	3.3 Predicate Abstraction
	3.3.1 Counterexample-Guided Abstraction Refinement
	3.3.2 Lazy Abstraction
	3.3.3 Adjustable-Block Encoding

	3.4 Impact (Lazy Abstraction with Interpolants)
	3.4.1 Impact with Forced Covering

	3.5 Bounded Model Checking and k-Induction
	3.6 CPAchecker

	4 Predicate CPA
	4.1 Abstract Domain, Precisions, and CPA Operators
	4.1.1 Abstract States
	4.1.2 Precisions
	4.1.3 Transfer Relation
	4.1.4 Merge Operator
	4.1.5 Stop Operator
	4.1.6 Precision-Adjustment Operator

	4.2 Refinement
	4.2.1 Abstract-Counterexample Construction
	4.2.2 Feasibility Check
	4.2.3 Abstract Facts and Discovery Strategies
	4.2.4 Refinement Strategies

	4.3 Forced Covering
	4.4 Encoding C Semantics
	4.4.1 Nonlinear Arithmetic
	4.4.2 Pointer Accesses
	4.4.3 Heap Memory

	5 Applications
	5.1 An Extended CPA Algorithm
	5.2 Unifying SMT-Based Approaches for Software Verification
	5.2.1 Bounded Model Checking
	5.2.2 k-Induction
	5.2.3 Lazy Predicate Abstraction
	5.2.4 Lazy Abstraction with Interpolants (Impact)

	5.3 Comparison of SMT-based Approaches for Software Verification
	5.4 Configurability and Extensions
	5.4.1 Adjustable-Block Encoding for Impact
	5.4.2 Flexible Bounded Analyses and Counterexample Checks
	5.4.3 Further Configuration Options
	5.4.4 Sequential Combinations of Configurations

	6 Implementation in CPAchecker
	6.1 Discovery Strategies for Abstract Facts
	6.2 Strongest-Postcondition Operator
	6.3 SMT Solvers
	6.3.1 Comparison
	6.3.2 Integration in CPAchecker

	7 Related Work
	7.1 SMT-Based Algorithms for Software Model Checking
	7.2 Extensions of the Studied Approaches
	7.3 Software Verifiers

	II Reliable Benchmarking
	8 Motivation
	8.1 Overview
	8.2 Restrictions

	9 Requirements for Reliable Benchmarking
	9.1 Measure and Limit Resources Accurately
	9.1.1 Measuring CPU Time and Wall Time
	9.1.2 Measuring Peak Memory Consumption

	9.2 Terminate Processes Reliably
	9.3 Assign Cores Deliberately
	9.4 Respect Nonuniform Memory Access
	9.5 Avoid Swapping
	9.6 Isolate Individual Runs

	10 Limitations of Existing Methods
	10.1 Measuring Resources May Fail
	10.1.1 Measuring CPU Time and Wall Time
	10.1.2 Measuring Peak Memory Consumption

	10.2 Enforcing Limits May Fail
	10.3 Termination of Processes May Fail
	10.4 Hardware Allocation May be Ineffective
	10.5 Isolation of Runs may be Incomplete

	11 Impact of Hardware Characteristics on Parallel Tool Executions
	11.1 Overview of Hardware Characteristics
	11.2 Experiment Setup
	11.3 Impact of Hyperthreading
	11.4 Impact of Shared Memory Bandwidth and Caches
	11.5 Impact of Turbo Boost
	11.6 Impact of NUMA
	11.7 Impact of Multiple CPUs
	11.8 Investigation of Impact of Multiple CPUs

	12 State-of-the-Art Benchmarking with Cgroups and Containers
	12.1 Introducing Cgroups for Benchmarking
	12.2 Benchmarking Containers Based on Namespaces

	13 BenchExec: A Framework for Reliable Benchmarking
	13.1 System Requirements
	13.2 Benchmarking a Single Run
	13.3 Benchmarking a Set of Runs
	13.4 Comparison with Requirements for Reliable Benchmarking
	13.5 Discussion
	13.6 Encouraging Replicable Experiments

	14 Related Work
	14.1 Benchmarking Strategies
	14.2 Benchmarking Tools

	III Experimental Evaluation
	15 Experiment Setup
	15.1 Verification Tasks
	15.2 Tool Versions
	15.3 Configurations of the Predicate CPA
	15.4 CPAchecker Configuration
	15.5 Hardware and Software Environment
	15.6 Replicability and Availability of Results
	15.7 Presentation of Results

	16 Comparison of SMT Solvers and Theories
	16.1 Bitprecise Theories
	16.2 Theories with Linear Arithmetic
	16.3 Comparison of Bitprecise and Linear Theories
	16.4 Conclusions

	17 Comparison with State of the Art

	18 Summary and Future Work
	18.1 Summary
	18.2 Future Work
	18.2.1 Predicate Analysis
	18.2.2 Benchmarking

	Bibliography
	Appendix
	A Machine Architectures with Hyperthreading and Nonuniform Memory Access
	B Listings

