
Explicit-State Model Checking
Based on CEGAR
and Interpolation

Dirk Beyer – Stefan Löwe

2

State of the art: SV-COMP'12 participants

Predicate Abstraction
• BLAST
• CPAchecker ABE
• CPAchecker ABM
• QARMC-HSF
• SATABS
• Wolverine

Bounded Model Checking
• ESBMC
• FShell
• LLBMC

All these rely on expensive calls to underlying decision procedure

3

… Dramatization ...

4

How to circumvent?

● Use a less expensive domain
● Signs (-, isZero, +)
● Explicit values ({ a → 1, b → -5, c → T })

➢More efficient successor computation

➢Less precise state representation

 state-space explosion still a major issue

5

Explicit-Value Model Checking

int main() {

 int a, b, c;

 a = 0;

 b = a;

 c = a;

 if(a == 0) {
a = 1;

 } else {

 }

 if(a == -1) {
ERROR:
 goto ERROR;

 }

}

 {a → T, b → T, c → T}

 {a → 0, b → T, c → T}

 {a → 0, b → 0, c → T}

 {a → 0, b → 0, c → 0}

 {a → 0, b → 0, c → 0}

 {a → 1, b → 0, c → 0}

error location is unreachable
{a → 1, b → 0, c → 0}

6

The Good

Scores some 200 points in SV-COMP setting – winner had 280

7

The Bad

8

The Ugly

9

Up to now: plain and simple

? Abstraction

? Counterexample-Guided Abstraction Refinement

? Interpolation

All known in the predicate domain for years

Explicit-Value Model Checking

10

As of now: with CEGAR and Interpolation

• Abstraction – Easy, just drop information

• Counterexamples – We get these for free

• Refinement – This is the hardest part

➢ Explicit-Value Model Checking
based on CEGAR

 and Interpolation

Explicit-Value Model Checking

11

Abstraction

int main() {

 int a, b, c;

 a = 0;

 b = a;

 c = a;

 if(a == 0) {
a = 1;

 } else {

 }

 if(a == -1) {
ERROR:
 goto ERROR;

 }

}

 { }

 { }

 { }

 { }

 { }

This spurious counterexample
trace will always be reported …

… unless we define a precision π,
i.e. a mapping from program
locations to a set of variable

identifiers,
e.g. {N2 → {a, b}, N7 → {a, c}}

{ }

 { }

 { }
 { }

12

Craig Interpolation

For a pair of formulas φ− and φ+ such that,
φ− φ∧ + is unsatisfiable, a Craig interpolant
ψ is a formula that fulfills
the following requirements:

1) φ− implies ψ
2) ψ φ∧ + is unsatisfiable
3) ψ only contains symbols that are common to

both φ− and φ+.

→ use this for the Explicit Domain

13

“Explicit” Craig Interpolation (1)

For a pair of path assignments φ− and φ+ such that,
φ− and φ+ are contradicting, a Craig interpolant
ψ is a variable assignment that fulfills
the following requirements:

1) φ− implies ψ
2) ψ and φ+ are contradicting
3) ψ only contains symbols that are common to

both φ− and φ+.

14

„Explicit“ Craig Interpolation (2)

φ−

2
 = {a → 0}

φ+

2
 = {a → -1}

ψ = {a → 0}

✔ Check if path is infeasible

➢ Add [N2 → {a}] to the precision

✔ φ−

2
 implies ψ

✔ φ−

2
 and φ+

2
 are contradicting

✔ common symbols

15

„Explicit“ Craig Interpolation (3)

ψ

ψ

ψ

ψ

ψ

ψ

ψ

16

„Explicit“ Craig Interpolation (4)

Program proven safe

ψ

ψ

ψ

ψ

ψ

ψ

ψ

17

What do we have so far?

✔ Abstraction
✔ CEGAR
✔ Interpolation

✗ Precise state representation
✗ Inequalities [a != b]
✗ Intervals [a < b]

18

CPAchecker: Architecture

• Add auxiliary predicate analysis
• Refinement of both domains based on (lack of) expressiveness
• Predicate analysis tracks only what is beyond explicit domain

19

Comparison with SV-COMP Run Times

20

Comparison with SV-COMP Scores

Results taken from SV-COMP'12 Results from our experiments

BLAST 2.7 SATABS CPA-Memo CPA-Expl
CPA-Expl-

Itp
CPA-Expl-
Itp-Pred

ControlFlow

71 75 140 124 123 141

 Drivers32 72 71 51 53 53 71

 Drivers64 55 32 49 5 33 37

 Heap -- -- 4 1 1 8

 SystemC 33 57 36 34 34 61

 Overall 231 236 280 217 244 318

21

Conclusion

● We defined abstraction, CEGAR and Craig
interpolation for the explicit domain

● Results are very encouraging
● Valid methods to lower size of reached set

➢ Circumvent state-space explosion

● ExplicitCPA proofs to be competitive
● Especially in combination with

auxiliary predicate analysis

22

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

