
Conditional
Model Checking

Philipp Wendler

Joint work with Dirk Beyer,
Tom Henzinger, Erkan Keremoglu



2

Software Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification



3

Problem:
Single Analysis not Effective



4

Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker



5

ACM Turing Award 2007

● Edmund Clarke
● Allen Emmerson
● Joseph Sifakis

Invention:   “Model Checking”



6

Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE



7

Classic Model Checking
 System  +  Property

Model
Checker

FAILURE

Enormous amounts of resources wasted!

● Timeout
● Out of memory
● Crash of component
● Operand exception



8

Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE

Incomplete
(non-linear operations)

→ False positives
(false alarms = noise)

Unsound
(overflows)

→ False negatives
(missed bugs = disaster)



9

Conditional Model Checking



10

Conditional Model Checking
 System  +  Property

Model
Checker
Model

Checker

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety



11

Conditional Model Checking

Model
Checker
Model

Checker

System + Property

Directs the analysis
to parts to analyze

Condition Ψ
0

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety



12

Applications of
Conditional Model Checking



13

Back to Our Example



14

Back to Our Example

To show:
                          M ╞═ Φ

In this case:
                          Φ = Φ

1
 & Φ

2

with Φ
1
 = “loop is correct”

and Φ
2
 = “multiplication is correct”



15

Idea

● Verify Φ
1
 (“loop is correct”)

    → use predicate analysis
● Verify Φ

2
 (“multiplication is correct”)

    → use explicit-state analysis
● Final result: Φ verified



16

Using CMC with Input Conditions 

● Tell model checker what to verify
● In our example:

― For conditional model checker 1: verify Φ
1

― For conditional model checker 2: verify Φ
2

― Full verification possible



17

More General:
Properties to verify



18

More General:
Properties to verify

Verified by
model checker 1



19

More General:
Properties to verify

Verified by
model checker 1

Verified by
model checker 2



20

Further Input Conditions

● Limit resources
― Time
― Memory
― Model Checker will not crash, but terminate itself and

give useful result
● Restrict the search

― Loop bounds (a.k.a. “bounded model checking”)
― Path length
― Time spent on path
― ...



21

Output Conditions
● Dump partial result if analysis didn't finish

― Output cond. summarizes what could be verified
● Explicitly state assumptions used by MC

― Example: “variable x does not overflow”
● Purpose:

― Give information to the user
― Verify condition with other methods

(testing, manual proofs, …)
― Comparison of checkers

(weaker output condition is better)



22

Sequential Composition

● In our example,
we told the model checkers what to verify

● Now let them find out automatically!
● Conditional model checker 1 verifies

what it can verify
● Conditional model checker 2 verifies

remaining parts



23

Sequential Composition

● Use input condition to limit resource usage
of first analysis

● Use output condition
as input condition for next model checker

● Iterate until finished (or run out of tools)



24

Sequential Composition

Property to verify

Ψ
0



25

Sequential Composition

BMC

Ψ
0

Ψ
1

Property
partially verified



26

Sequential Composition

BMC

Explicit

Ψ
0

Ψ
1

Ψ
2

Property
partially verified



27

Sequential Composition

BMC

Explicit

Predicate

Ψ
0

Ψ
1

Ψ
2

Ψ
3Property

fully verified



28

Experiment:
Sequential Composition

● Implemented Conditional Model Checking
in CPAchecker

● 85 C programs based on “hard” programs
of Software Verification Competition 2012

● 15 min time, 15 GB RAM



29

Experiment:
Sequential Composition

● A: Explicit-value analysis
● B: Predicate analysis
● C: Conditional model checking

― First: explicit-value analysis
with input condition: time limit = 100s

― Second: predicate analysis
with output condition of first analysis
as input condition



30

Experiment:
Sequential Composition

➔ Sequential composition
solves more problems and is faster



31

Experiment:
Sequential Composition

● A: Explicit-value analysis ; predicate analysis
● B: Explicit-value analysis ; predicate analysis

― Input condition for first analysis:
time limit = 100s

● C: Conditional model checking
― First: explicit-value analysis

with input condition: time limit = 100s
― Second: predicate analysis

with output condition of first analysis
as input condition



32

Experiment:
Sequential Composition

➔ Using conditional model checking
for sequential composition is better



33

Summary

Conditional Model Checking:
― Terminates with useful results

(no crashes)
― Enables partial / compositional verification
― Effective sequential composition

(solve harder problems)
― Unified view on existing approaches


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	ACM Turing Award 2008
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33

