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Software Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification
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Problem:
Single Analysis not Effective
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Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker
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ACM Turing Award 2007

● Edmund Clarke
● Allen Emmerson
● Joseph Sifakis

Invention:   “Model Checking”
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Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE
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Classic Model Checking
 System  +  Property

Model
Checker

FAILURE

Enormous amounts of resources wasted!

● Timeout
● Out of memory
● Crash of component
● Operand exception
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Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE

Incomplete
(non-linear operations)

→ False positives
(false alarms = noise)

Unsound
(overflows)

→ False negatives
(missed bugs = disaster)
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Conditional Model Checking
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Conditional Model Checking
 System  +  Property

Model
Checker
Model

Checker

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety
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Conditional Model Checking

Model
Checker
Model

Checker

System + Property

Directs the analysis
to parts to analyze

Condition Ψ
0

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety
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Applications of
Conditional Model Checking
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Back to Our Example
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Back to Our Example

To show:
                          M ╞═ Φ

In this case:
                          Φ = Φ

1
 & Φ

2

with Φ
1
 = “loop is correct”

and Φ
2
 = “multiplication is correct”
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Idea

● Verify Φ
1
 (“loop is correct”)

    → use predicate analysis
● Verify Φ

2
 (“multiplication is correct”)

    → use explicit-state analysis
● Final result: Φ verified
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Using CMC with Input Conditions 

● Tell model checker what to verify
● In our example:

― For conditional model checker 1: verify Φ
1

― For conditional model checker 2: verify Φ
2

― Full verification possible
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More General:
Properties to verify
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More General:
Properties to verify

Verified by
model checker 1
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More General:
Properties to verify

Verified by
model checker 1

Verified by
model checker 2
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Further Input Conditions

● Limit resources
― Time
― Memory
― Model Checker will not crash, but terminate itself and

give useful result
● Restrict the search

― Loop bounds (a.k.a. “bounded model checking”)
― Path length
― Time spent on path
― ...
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Output Conditions
● Dump partial result if analysis didn't finish

― Output cond. summarizes what could be verified
● Explicitly state assumptions used by MC

― Example: “variable x does not overflow”
● Purpose:

― Give information to the user
― Verify condition with other methods

(testing, manual proofs, …)
― Comparison of checkers

(weaker output condition is better)
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Sequential Composition

● In our example,
we told the model checkers what to verify

● Now let them find out automatically!
● Conditional model checker 1 verifies

what it can verify
● Conditional model checker 2 verifies

remaining parts
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Sequential Composition

● Use input condition to limit resource usage
of first analysis

● Use output condition
as input condition for next model checker

● Iterate until finished (or run out of tools)
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Sequential Composition

Property to verify

Ψ
0
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Sequential Composition

BMC

Ψ
0

Ψ
1

Property
partially verified
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Sequential Composition

BMC

Explicit

Ψ
0

Ψ
1

Ψ
2

Property
partially verified
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Sequential Composition

BMC

Explicit

Predicate

Ψ
0

Ψ
1

Ψ
2

Ψ
3Property

fully verified
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Experiment:
Sequential Composition

● Implemented Conditional Model Checking
in CPAchecker

● 85 C programs based on “hard” programs
of Software Verification Competition 2012

● 15 min time, 15 GB RAM
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Experiment:
Sequential Composition

● A: Explicit-value analysis
● B: Predicate analysis
● C: Conditional model checking

― First: explicit-value analysis
with input condition: time limit = 100s

― Second: predicate analysis
with output condition of first analysis
as input condition
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Experiment:
Sequential Composition

➔ Sequential composition
solves more problems and is faster
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Experiment:
Sequential Composition

● A: Explicit-value analysis ; predicate analysis
● B: Explicit-value analysis ; predicate analysis

― Input condition for first analysis:
time limit = 100s

● C: Conditional model checking
― First: explicit-value analysis

with input condition: time limit = 100s
― Second: predicate analysis

with output condition of first analysis
as input condition
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Experiment:
Sequential Composition

➔ Using conditional model checking
for sequential composition is better
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Summary

Conditional Model Checking:
― Terminates with useful results

(no crashes)
― Enables partial / compositional verification
― Effective sequential composition

(solve harder problems)
― Unified view on existing approaches
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