
Predicate Abstraction
with CPAchecker

Philipp Wendler

2

Predicate Abstraction

● Traditional abstract domain for software model checking
● Powerful but expensive
● Given finite set π of predicates over program variables

(precision),
abstract state is boolean combination of predicates

● Predicates are usually atoms such as (x > 0)
● Abstract state is represented as BDD
● SMT solver is used for computing successors

(Given a state and a program statement,
what combination of predicates holds afterwards?)

3

Predicate Abstraction (2)

2 possibilities:
● Cartesian abstraction:

● Strongest conjunction of predicates
● Looses relations between predicates,

e.g. (x > 0) => (y > 0)

● Boolean abstraction:
● Strongest boolean combination of predicates
● Uses All-SMT query over predicates

for successor computation

5

Reminder: CEGAR

Model Check

Refine
Precision

Check
Feasibility

UNSAFE

SAFE

error path found

error path is not feasible

Program
Source
Code

feasible

Extract predicates
from Craig interpolants
and use them as precision

6

int x = 0;
while (true)
 x++;

 if (x == 2)

 x = 0;

 assert(x < 2);

Program

Error Location that
violates specification

Conditional Edge
(Assumption)

Example Program

2

x = 0

1

5

ERR

[x >= 2]

Control-Flow Automaton

x = 0

4

[x == 2]
3

x++

[x < 2]

7

Abstract
Reachability
Graph

Precision =
Predicate set

(initially empty)

Predicate Abstraction

1
(True)

2
(True)

3
(True)

4
(True)

ERR
(True)

5
(True)

5
(True)

Location

Information from
Predicate Abstraction
(as BDD)

Abstract State

2

x = 0

1

5

ERR

[x >= 2]

Control-Flow Automaton

x = 0

4

[x == 2]
3

x++

[x < 2]

8

Predicate Abstraction

Infeasible Path
to Error Location
(Counterexample)

Possible
Interpolant

true

x <= 0

x <= 1

false

false

false

2

x = 0

1

5

ERR

[x >= 2]

Control-Flow Automaton

x = 0

4

[x == 2]
3

x++

[x < 2]

1
(True)

2
(True)

3
(True)

4
(True)

ERR
(True)

5
(True)

5
(True)

9

2
(x <= 0 & x <= 1)

Recomputed
Abstract
Reachability
Graph

New Precision:
{x <= 0; x <= 1}

Predicate Abstraction

1
(True)

3
(x <= 1)

5
(x <= 1)

2

x = 0

1

5

ERR

[x >= 2]

Control-Flow Automaton

x = 0

4

[x == 2]
3

x++

[x < 2]

Left branch
not feasible

2
(x <= 1)

3
(True)

Path to ERR
not feasible

To be continued

10

Demo

● Run CPAchecker with SBE on induction2.c
● ARG
● ARGRefinements
● Predicates from predmap.txt
● Introduce bug in program
● Error path

11

Optimizations

● Lazy abstraction:
● Different predicates per location and per path
● Incremental analysis instead of restart from scratch

after refinement

● Adjustable-Block Encoding:
● Handle loop-free blocks of statements at once
● Abstract only between blocks

(less abstractions, less refinements)

12

Demo 2

● Run CPAchecker with ABE-L on induction2.c
● ARG
● Predicate Mapping from predmap.txt

13

CPAchecker

● Framework for Software Verification
● Written in Java
● Open Source: Apache 2.0 License
● 38 contributors so far

from 7 universities/institutions
● 280.000 lines of code

(170.000 without blank lines and comments)
● Started 2007

http://cpachecker.sosy-lab.org

14

CPAchecker

● Among world's best software verifiers:
http://sv-comp.sosy-lab.org/2014/results/

● In 3 consecutive years:
http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2012/results/

● Used for Linux driver verification
with real bugs found and fixed in Linux

http://cpachecker.sosy-lab.org/

15

CPAchecker

● Every analysis is implemented as a
“Configurable Program Analysis” (CPA)

● E.g. predicate abstraction, explicit-value analysis,
intervals, octagon, BDDs, and more

● Algorithms are central and implemented only once
● Completely modular,

and thus flexible and easily extensible

http://sv-comp.sosy-lab.org/2014/results/
http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2012/results/

16

CPAchecker

● Further available analyses:
● IMPACT algorithm
● Bounded model checking
● k-Induction
● Conditional Model Checking

17

CPAchecker

18

Try CPAchecker

● Online at Google AppEngine:
http://cpachecker.appspot.com

● Download for Linux/Windows:
http://cpachecker.sosy-lab.org
● Run scripts/cpa.sh | scripts\cpa.bat
● -predicateAnalysis <FILE>

● Windows/Mac: -setprop cpa.predicate.solver=smtinterpol

● Example program: http://bit.ly/1lpipUv
● Look at output / CPALog.txt for problems
● Open .dot files with dotty / xdot (www.graphviz.org)
● If there is a counterexample:
scripts/report-generator.py

19

Specification

● Model Checkers check only what you specified
● CPAchecker's default:

● Label ERROR
● Calling function __assert_fail()
● assert(pred) needs to be pre-processed

● SV-COMP:
● Calling function __VERIFIER_error()
● -spec sv-comp-reachability

http://cpachecker.appspot.com/
http://cpachecker.sosy-lab.org/
http://bit.ly/1lpipUv
http://www.graphviz.org/

20

Limitations

● Of presented analysis:
● Linear arithmetic over reals

(no overflows, no bit operators)
● No checks for memory safety
● Heap allocations with bounded size

● Other analyses do not have these limitations
● For bitvectors:
-predicateAnalysis-bitprecise

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

