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Predicate Abstraction

● Traditional abstract domain for software model checking
● Powerful but expensive
● Given finite set π of predicates over program variables 

(precision),
abstract state is boolean combination of predicates

● Predicates are usually atoms such as (x > 0)
● Abstract state is represented as BDD
● SMT solver is used for computing successors

(Given a state and a program statement,
what combination of predicates holds afterwards?)
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Predicate Abstraction (2)

2 possibilities:
● Cartesian abstraction:

● Strongest conjunction of predicates
● Looses relations between predicates,

e.g. (x > 0) => (y > 0)

● Boolean abstraction:
● Strongest boolean combination of predicates
● Uses All-SMT query over predicates

for successor computation
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Reminder: CEGAR
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int x = 0;
while (true)
  x++;

  if (x == 2)

    x = 0;

  assert(x < 2);
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(Assumption)

Example Program
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Predicate Abstraction

Infeasible Path
to Error Location
(Counterexample)
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2
(x <= 0 & x <= 1)
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To be continued
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Demo

● Run CPAchecker with SBE on induction2.c
● ARG
● ARGRefinements
● Predicates from predmap.txt
● Introduce bug in program
● Error path
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Optimizations

● Lazy abstraction:
● Different predicates per location and per path
● Incremental analysis instead of restart from scratch 

after refinement

● Adjustable-Block Encoding:
● Handle loop-free blocks of statements at once
● Abstract only between blocks

(less abstractions, less refinements)
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Demo 2

● Run CPAchecker with ABE-L on induction2.c
● ARG
● Predicate Mapping from predmap.txt
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CPAchecker

● Framework for Software Verification
● Written in Java
● Open Source: Apache 2.0 License
● 38 contributors so far

from 7 universities/institutions
● 280.000 lines of code

(170.000 without blank lines and comments)
● Started 2007

http://cpachecker.sosy-lab.org
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CPAchecker

● Among world's best software verifiers:
http://sv-comp.sosy-lab.org/2014/results/

● In 3 consecutive years:
http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2012/results/

● Used for Linux driver verification
with real bugs found and fixed in Linux

http://cpachecker.sosy-lab.org/
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CPAchecker

● Every analysis is implemented as a
“Configurable Program Analysis” (CPA)

● E.g. predicate abstraction, explicit-value analysis,
intervals, octagon, BDDs, and more

● Algorithms are central and implemented only once
● Completely modular,

and thus flexible and easily extensible

http://sv-comp.sosy-lab.org/2014/results/
http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2012/results/
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CPAchecker

● Further available analyses:
● IMPACT algorithm
● Bounded model checking
● k-Induction
● Conditional Model Checking



17

CPAchecker
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Try CPAchecker

● Online at Google AppEngine:
http://cpachecker.appspot.com

● Download for Linux/Windows:
http://cpachecker.sosy-lab.org
● Run scripts/cpa.sh | scripts\cpa.bat
● -predicateAnalysis <FILE>

● Windows/Mac: -setprop cpa.predicate.solver=smtinterpol

● Example program: http://bit.ly/1lpipUv
● Look at output / CPALog.txt for problems
● Open .dot files with dotty / xdot (www.graphviz.org)
● If there is a counterexample:
scripts/report-generator.py
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Specification

● Model Checkers check only what you specified
● CPAchecker's default:

● Label ERROR
● Calling function __assert_fail() 
● assert(pred) needs to be pre-processed

● SV-COMP:
● Calling function __VERIFIER_error()
● -spec sv-comp-reachability

http://cpachecker.appspot.com/
http://cpachecker.sosy-lab.org/
http://bit.ly/1lpipUv
http://www.graphviz.org/
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Limitations

● Of presented analysis:
● Linear arithmetic over reals

(no overflows, no bit operators)
● No checks for memory safety
● Heap allocations with bounded size

● Other analyses do not have these limitations
● For bitvectors:
-predicateAnalysis-bitprecise
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