Reliable Benchmarking
of Software Verification
In the Cloud

Philipp Wendler

I\u/ y
UNIVERSITAT
_ //f((PASSAU

Software Systems

Fakultit fiir Informatik und Mathematik

Software Verification

Goal: Build an automatic software verifier

C program
int main() { SAFE
int x = 10; @ .e., assertions
int 'y = 3; :> Software cannot be violated
int z = x+y; Verifier
assert(z > 0); % UNSAFE
} i.e., bug
3 IN program
Specification

Our tool: CPAchecker
http://cpachecker.sosy-lab.org PA :

http://cpachecker.sosy-lab.org/

Verification Workload
— \

| Way more than
100 properties

Time to verify... = should be checkedﬁﬁfi
« 1300 commits \\\/\ - o ;\
» 4 drivers affected (approximately) &
e 100 (safety) properties
Linus

e 12 seconds per verification task (on average)

N— _/
v

1700 hours, or @ of CPU time

Software Verification in the Cloud

Verification of large number of tasks I

Reliable benchmarking:
Accurate and reproducible results

VerifierCloud: Design

 Distribution system for verification tasks
* Task submission, e.g., via web frontend
* Creates necessary execution environment

e Supports arbitrary worker machines
(no shared file system necessary)

VerifierCloud: Architecture

I R\
Submitted tasks |== é

7 /\%
%

Available
worker machines

VerifierCloud: Machine Allocation

* Partitions hardware resources
and executes multiple runs
In parallel on each machine

* Worker machines can be used dynamically
when not needed by other users

VerifierCloud: Architecture

Returned | = /A= ﬁ
verification results

\Unused workstation

Tasks distributed accordlng to
hardware requirements

&

Parallel runs
where possible

. \

VerifierCloud: Results

» Successful use in development of our verifier
CPAchecker

— Multiple groups, ca. 40 developers
- Significantly speeds up implement-test-roundtrip time
— Up to 800 runs executing in parallel
— 1 000 000 runs per week
e Used in teaching (Passau, Paderborn, Hamburg)

- Students can learn verification without installation
- Resources for experimenting with own implementations

10

VerifierCloud: Future
* Reuse of results '
— Similar verification tasks can benefit
from reusing intermediate results ~
- Example: new revision of same driver

e Store (Intermediate) results in database?

* Automatically use stored information
for new tasks?

Reliable Benchmarking

 Shared Machines
* Arbitrary Tools

- Non-interactive
- CPU-/Memory bound (no 1/O)

e Measure and limit CPU time

* Measure and limit memory
e Different Hardware Architectures

12

Measuring CPU time with ,,t 1me"

~$ time verifier . CPU Time may not be included
~——__IN measurement

real Xs _ _
user Ys Proc ight keep running
and occupy res S 13

Sys Zs

Limiting memory with ,ulimit”

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

|

Process may use 1 GiB

Process may use 1 GiB 14

Process may use 1 GiB Process may use 1 GiB

Cgroups

* Linux kernel ,,control groups”
* Hierarchical tree of sets of processes

5544 (firefox)J

1130 (verifier) }
1)

1131 (subprocess

15

Cgroups

* Reliable tracking of spawned processes

* Resource limits and measurements per cgroup

- CPU time
- Memory
- |/O etc.

Only solution on Linux
for race-free handling of multiple processes!

16

Hardware Architectures

Hyper Threading
Multiple threads sharing execution units
Non-Uniform Memory Access

Memory regions have different performance
depending on current CPU core

And more (caches, ...)
Can lead to non-deterministic performance

17

Machine (256GB)

CPU

Socket P#0 (64GB) & Socket F
NUMANode P#0 (32GB) NUNM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core

PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#5 PU P#6 PU P#7 PL
NUMANode P#1 (32GB) - [ne[nory reg|0n NUNM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core

PU P#8 PU P#9 PU P#10 PU P#11 PU P#12 PU P#13 PU P#14 PU P#15 PL

Socket P#1 (64GB) N\ core Socket F
NUMANode P#2 (32GB) NUNM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core

PU P#32 PU P#33 PU P#34 PU P#35 PU P#36 PU P#37 PU P#38 PU P#39 PL
NUMANode P#3 (32GB) NUNM
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core

PU P#40 PU P#41 PU P#42 PU P#43 PU P#44 PU P#45 PU P#46 PU P#47 PL

18

BenchExec

A Framework for Reliable Benchmarking
and Resource Measurement

Based on cgroups
Handles multiple processes
Allocates hardware resources appropriately

Used In International Competition
on Software Verification (SV-COMP)

22 tools this year

19

BenchExec

Open source: Apache 2.0 License
https://github.com/dbeyer/benchexec
Paper under submission

Extensible

— Arbitrary tools
— Not only for software verification

20

https://github.com/dbeyer/benchexec

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

