
Reliable Benchmarking
of Software Verification

in the Cloud

Philipp Wendler

SoSy-Lab
Software Systems

2

Software Verification

int main() {
 int x = 10;
 int y = 3;
 int z = x+y;
 assert(z > 0);
}

C program

Software
Verifier

SAFE
i.e., assertions
cannot be violated

UNSAFE
i.e., bug
in program

Specification

Goal: Build an automatic software verifier

Our tool: CPAchecker
http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org/

Photo: (c) Sean Bonner, 2013

Driver VerificationLinux



4

Weekly Verification Workload

Linus

Way more than
100 properties

should be checked!

1700 hours, or 72 days of CPU time

Time to verify...
● 1300 commits
● 4 drivers affected (approximately)
● 100 (safety) properties
● 12 seconds per verification task (on average)

5

Software Verification in the Cloud

Verification of large number of tasks

Reliable benchmarking:
Accurate and reproducible results

6

VerifierCloud: Design

● Distribution system for verification tasks
● Task submission, e.g., via web frontend
● Creates necessary execution environment
● Supports arbitrary worker machines

(no shared file system necessary)

7

VerifierCloud: Architecture
Submitted tasks

Available
worker machines

8

VerifierCloud: Machine Allocation

● Partitions hardware resources
and executes multiple runs
in parallel on each machine

● Worker machines can be used dynamically
when not needed by other users

VerifierCloud: Architecture
Returned

verification results

Tasks distributed according to
hardware requirements

Parallel runs
where possible

Unused workstation

10

VerifierCloud: Results
● Successful use in development of our verifier

CPAchecker
– Multiple groups, ca. 40 developers
– Significantly speeds up implement-test-roundtrip time
– Up to 800 runs executing in parallel
– 1 000 000 runs per week

● Used in teaching (Passau, Paderborn, Hamburg)
– Students can learn verification without installation
– Resources for experimenting with own implementations

11

VerifierCloud: Future

● Reuse of results
– Similar verification tasks can benefit

from reusing intermediate results
– Example: new revision of same driver

● Store (intermediate) results in database?
● Automatically use stored information

for new tasks?

12

Reliable Benchmarking

● Shared Machines
● Arbitrary Tools

– Non-interactive
– CPU-/Memory bound (no I/O)

● Measure and limit CPU time
● Measure and limit memory
● Different Hardware Architectures

13

Measuring CPU time with „time“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

Ve
rif

ie
r

~$ time verifier

real Xs
user Ys
sys Zs

CPU Time may not be included
in measurement

Process might keep running
and occupy ressources

14

Limiting memory with „ulimit“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

Ve
rif

ie
r

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB

15

Cgroups

● Linux kernel „control groups“
● Hierarchical tree of sets of processes

/

/user1

/benchmarks

/benchmarks/run1
1130 (verifier)
1131 (subprocess1)
...

...

5542 (bash)
5544 (firefox)
...

...

16

Cgroups

● Reliable tracking of spawned processes
● Resource limits and measurements per cgroup

– CPU time
– Memory
– I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

17

Hardware Architectures

● Hyper Threading
Multiple threads sharing execution units

● Non-Uniform Memory Access
Memory regions have different performance
depending on current CPU core

● And more (caches, …)
● Can lead to non-deterministic performance

18

CPU

core

memory region

19

BenchExec

● A Framework for Reliable Benchmarking
and Resource Measurement

● Based on cgroups
● Handles multiple processes
● Allocates hardware resources appropriately
● Used in International Competition

on Software Verification (SV-COMP)
22 tools this year

20

BenchExec

● Open source: Apache 2.0 License
● https://github.com/dbeyer/benchexec
● Paper under submission
● Extensible

– Arbitrary tools
– Not only for software verification

https://github.com/dbeyer/benchexec

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

