LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Dirk Beyer Thomas Lemberger

Symbolic Execution with
CEGAR

Tackling the Path Explosion Problem of

Symbolic Execution by Borrowing Counterexample-
Guided Abstraction Refinement from Model Checking

Outline

1.
2,
3.
4.

Symbolic Execution and Path Explosion
Applying Counterexample-Guided Abstraction Refinement
Evaluation

Conclusion

Symbolic Execution
and Path Explosion

prx 1 Z?;

N
/3L E)-
- AR
3\

LMU

LUDWIG-

MAXIMILIANS-
UNIVERSITAT

MUNCHEN

Symbolic Execution with CEGAR

Symbolic Execution and Path Explosion

Symbolic Execution is so useful!

But does not scale well. (&)

1
2
3
4
5
6
7
8

Tracks explicit/symbolic values and constraints on symbolic values

Handles unknown and non-deterministic values in dynamic and static analysis
(external functions, unavailable libraries, random ())

Test Case Generation, Error Localization, Fault Repair, Verification, Testing, ...

a := 0;
b = ?;
c := b+l;

while a < 100 do
if ? do
at++;
if ¢ <= b do
error() ;

Dirk Beyer « Thomas Lemberger, 10th October 2016

a:=0,b:=7,c:=b+1

[a<100 && 7] [a < 100 && !(?)]

branching
happens
n times

n assumptions = 2" states

Symbolic Execution and Path Explosion

— Path explosion due to amount of tracked information

— But tracked information often unnecessary...
— Use CEGAR to find out what has to be tracked () €

1 a:= 0; a:=0,b:=7,c:=b+1
2 b :=2?; [a <100 && 7] [a< 100 && (7))
3 ¢c := b+l; branching

happens
4 while a < 100 do n times s -
5 if ? do
7 if ¢ <= b do i=n =0 i=n i=n
8 error () ; ~

n assumptions = 2" states

LU -
MAXIMILIANS-

|_|V|u AT
MUNCHEN

Applying Counterexample-Guided
Abstraction Refinement (CEGAR)

Applying CEGAR to Symbolic Execution

TRUE FALSE

No target found Is feasible

Start with
initial precision

Check

counterexample

Target found

Analyze task

Refine
precision using
counterexample

Is infeasible

LMU

LUDWIG-
MAXIMILIANS-

woncnen | | | Symbolic Execution with CEGAR

Applying CEGAR to Symbolic Execution

* Initially applied to model checking, already applied to explicit value analysis
* Precision refinement based on Craig interpolants

l.

=y B0 e e

Start at location 0 with initial interpolant

Compute next value assignment and constraints based on previous interpolant
Filter values needed to proof trace infeasible

Filter constraints needed to proof trace infeasible

Combine values and constraints to interpolant

If not at last location on error trace, go to next location and continue at 2.
Based on interpolants, adjust precision at every location for both value and
constraints tracking

Example: Adjusting precision for value tracking

N X
mn

=N e

x =1 2 X:]'//f X::I'Trackfronoon
— = Z Yy Irom now
%{//r y=221"°" sy=2=_" Ssy=2_""_3
z =1 z =1 Z 1

Dirk Beyer « Thomas Lemberger, 10th October 2016

LUDWIG-

MAXIMILIANS-
LMU woncnen | | | Symbolic Execution with CEGAR

Applying CEGAR to Symbolic Execution

Further optimization: Refinement selection
* Choose good interpolants by computing them on sliced
prefixes

* Different heuristics for prefix selection
* Influence behavior and performance significantly
* Example heuristics:

* Variable domains

* Interpolant width

* Number of assumptions in prefix

Dirk Beyer « Thomas Lemberger, 10th October 2016

Evaluation

LUDWIG-

MAXIMILIANS-
LMU woncnen | | | Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR

* Setup:
* Cluster of Intel Xeon E5-2650 v2 CPUs at 2.60 GHz and 135 GB of memory
2 CPU cores and 15 GB of memory for each verification task
* 900s time limit
« SV-COMP’16 task set
* Experiments:
* Comparison of different refinement heuristics
* Comparison of Symbolic Execution with and without CEGAR and Symbiotic 3
(based on KLEE)

Dirk Beyer * Thomas Lemberger, 10th October 2016 11

LUDWIG-

MAXIMILIANS-
LMU i Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR

Table 1: Comparison of different refinement-selection heuristics in SYMEx™

Verdict unsolved solved correct correct incorrect incorrect
TRUE FALSE TRUE FALSE
No preference 4341 2336 1737 443 0 156
Domain good — width narrow 4444 2233 1702 531 0 171
Domain good — short 3906 2771 2042 567 0 162
Assumptions most — short 4028 2491 1892 599 0 158

Table 2: Comparison of classical symbolic execution (SYMEX) to SYMEx™ (both
implemented in CPACHECKER) and SYMBIOTIC (an external tool)

Verdict unsolved solved correct correct incorrect incorrect
TRUE FALSE TRUE FALSE
SYMEX 5756 921 171 634 1 115
SyMEx™ 3906 2771 2042 567 0 162
SYMBIOTIC 0388 1289 769 003 2 15

Dirk Beyer « Thomas Lemberger, 10th October 2016

LUDWIG- 3] ok

MAXIMILIANS- \LLUPIESA|
LMU| sz Symbolic Execution with CEGAR Niirel L

Evaluation of Symbolic Execution with CEGAR

1000 [] - 3

1000 2 o
+ LA . ¥
N v + 1 ++++ f} + ; ¥ R + %
n + + +
—~ = + o oy +
NS 9 S : ++ ++;++ ’ . i ++*+ + 4
E_j % L ot F ++ + 4 + 5 +
- +
2 100 5 0 A S 7N
> E + + + + T+ 4 o+ *, +F
(2 5"3 b HEE e
=-8 = Skt + 4o+ L+ N
) S mwﬁwﬁvw“w%t»*ww PR
E [) + f p s + < +
- 10 g 10 | f e ¢+
5 =t i + + A + + MR
[a W D s E + +
O [a W + " - +4* ++++ + *“‘tr +# ++ %
O + T iy I ’ #, 0 +jﬁ ++' e +§
+ 4y 'L Ao e ¥
A+ + +4
1 I 1 I 1 L T # ::r b %
1 10 100 1000 1 10 100 1000
CPU time for SYMEX™ (s) CPU time for SYMEX™" (s)
Comparison between Symbolic Execution Comparison between Symbolic Execution

with CEGAR and without CEGAR with CEGAR and Symbiotic 3

Dirk Beyer « Thomas Lemberger, 10th October 2016

LUDWIG-

MAXIMILIANS-
LMU woncnen | | | Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR

Using CEGAR is not always better.

SymEx™" SymEx

T
! Analysis starts with

Analysis starts with

I ..

empty precision 44.@0 , full precision
P
5 o :
3 o |
A e o I
ST Lo
B
o\

a:=2,...

|{a—»2,b—>2,...,z—»2}|

a==1)]

|{a—>2,b—>2,...,z—>2}|

(b ==1)]

[a==1] |{a—>2,b—>2,,.,,z—>2}|

|{a—»2,b—>y2,...,z—»2}|

I{a—»2,b—>2,...,z—>2}|

Dirk Beyer « Thomas Lemberger, 10th October 2016

Conclusion

Conclusion

DN

CEGAR changes behavior of Symbolic Execution significantly

Tracks only information really necessary for the analysis

We choose which characteristics this information is supposed to have, using
refinement selection

Mitigates problem of path explosion

Provides major performance boost for a significant amount of tasks
Challenge: Existence of many error paths with different error causes

Conclusion

Symbolic Execution is so useful!
» Tracks explicit and symbolic values of execution

* Handles unknown and non-deterministic values in dynamic and static analysis
(external functions, unavailable libraries, random ())

» Test Case Generation, Error Localization, Fault Repair, Verification, Testing, ...
And it scales! @

1 a:=0;

2 b := ?; b:=7,c:=b+1
3 c := bt+l; [a < 100 && 7] a < 100 && 1(7)]
4 while a < 100 do

5 if ? do

: att; [(c < b)] [c < b]

7 if ¢ <= b do B -

8 error () ; o

Thank you! Questions?

N
/3L E)-
- AR
3\

