
Dirk Beyer • Thomas Lemberger

Symbolic Execution with
CEGAR

Tackling the Path Explosion Problem of
Symbolic Execution by Borrowing Counterexample-
Guided Abstraction Refinement from Model Checking

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Outline

1. Symbolic Execution and Path Explosion

2. Applying Counterexample-Guided Abstraction Refinement

3. Evaluation

4. Conclusion

2

Symbolic Execution
and Path Explosion

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution and Path Explosion

Symbolic Execution with CEGAR

Symbolic Execution is so useful!
• Tracks explicit/symbolic values and constraints on symbolic values
• Handles unknown and non-deterministic values in dynamic and static analysis

(external functions, unavailable libraries, random())
• Test Case Generation, Error Localization, Fault Repair, Verification, Testing, …
But does not scale well. 🤔

1 a := 0;
2 b := ?;
3 c := b+1;
4 while a < 100 do
5 if ? do
6 a++;
7 if c <= b do
8 error();

4

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Symbolic Execution and Path Explosion

1 a := 0;
2 b := ?;
3 c := b+1;
4 while a < 100 do
5 if ? do
6 a++;
7 if c <= b do
8 error();

→ Path explosion due to amount of tracked information
→ But tracked information often unnecessary...
→ Use CEGAR to find out what has to be tracked 😮 ☝️

5

Applying Counterexample-Guided
Abstraction Refinement (CEGAR)

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Applying CEGAR to Symbolic Execution

7

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Applying CEGAR to Symbolic Execution
• Initially applied to model checking, already applied to explicit value analysis
• Precision refinement based on Craig interpolants

1. Start at location 0 with initial interpolant
2. Compute next value assignment and constraints based on previous interpolant
3. Filter values needed to proof trace infeasible
4. Filter constraints needed to proof trace infeasible
5. Combine values and constraints to interpolant
6. If not at last location on error trace, go to next location and continue at 2.
7. Based on interpolants, adjust precision at every location for both value and

constraints tracking

x = 1
y = 2
z = 1

x = 1
y = 2
z = 1

x = 1
y = 2
z = 1

x = 1 y = 2 z = 1
x = 1
y = 2
z = 1

Example: Adjusting precision for value tracking

Track y from now on

8

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Applying CEGAR to Symbolic Execution
Further optimization: Refinement selection
• Choose good interpolants by computing them on sliced

prefixes
• Different heuristics for prefix selection
• Influence behavior and performance significantly
• Example heuristics:

• Variable domains
• Interpolant width
• Number of assumptions in prefix

9

Evaluation

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR
• Setup:

• Cluster of Intel Xeon E5-2650 v2 CPUs at 2.60 GHz and 135 GB of memory
• 2 CPU cores and 15 GB of memory for each verification task
• 900s time limit
• SV-COMP’16 task set

• Experiments:
• Comparison of different refinement heuristics
• Comparison of Symbolic Execution with and without CEGAR and Symbiotic 3

(based on KLEE)

11

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR

12

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR

Comparison between Symbolic Execution
with CEGAR and Symbiotic 3

Comparison between Symbolic Execution
with CEGAR and without CEGAR

13

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Evaluation of Symbolic Execution with CEGAR
Using CEGAR is not always better.

14

Conclusion

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Conclusion
• CEGAR changes behavior of Symbolic Execution significantly
• Tracks only information really necessary for the analysis
• We choose which characteristics this information is supposed to have, using

refinement selection

ü Mitigates problem of path explosion
ü Provides major performance boost for a significant amount of tasks
o Challenge: Existence of many error paths with different error causes

16

Dirk Beyer Dirk Beyer • Thomas Lemberger, 10th October 2016

Symbolic Execution with CEGAR

Conclusion
Symbolic Execution is so useful!
• Tracks explicit and symbolic values of execution
• Handles unknown and non-deterministic values in dynamic and static analysis

(external functions, unavailable libraries, random())
• Test Case Generation, Error Localization, Fault Repair, Verification, Testing, …
And it scales! 🙂

1 a := 0;
2 b := ?;
3 c := b+1;
4 while a < 100 do
5 if ? do
6 a++;
7 if c <= b do
8 error();

17

Thank you! Questions?

