Software Verification:
Testing vs. Model Checking
A Comparative Evaluation of the State of the Art

Thomas Lemberger
Joint work with Dirk Beyer

LMU Munich, Germany

CI A/ Software Systems




Null Hypothesis:
Testing is better at finding bugs than model checking.
Testing is faster than model checking.
Testing is more precise than model checking.

Testing is easier to use than model checking.



Thomas Lemberger

Where's the numbers?

LMU Munich, Germany

23



Overview

Thomas Lemberger LMU Munich, Germany 4/23



Terminology

» Testing:
» Execute finite set of test cases on program
» Observe compliance/violation of specification
» Focus: Test-case generation

Thomas Lemberger LMU Munich, Germany

o



Terminology

» Testing:
» Execute finite set of test cases on program
» Observe compliance/violation of specification
» Focus: Test-case generation

» Model checking:

» Formally describe possible program states
» Prove compliance/violation of specification
» Abstraction important

Thomas Lemberger LMU Munich, Germany

N
@



Terminology

» Testing:
» Execute finite set of test cases on program
» Observe compliance/violation of specification
» Focus: Test-case generation

» Model checking:

» Formally describe possible program states
» Prove compliance/violation of specification
» Abstraction important

» Automated!

Thomas Lemberger LMU Munich, Germany

N
@



Scope

» Single, sequential programs
» Whitebox programs
» Task: bug finding

Thomas Lemberger LMU Munich, Germany



Comparability

Test-case generators

Thomas Lemberger

LMU Munich, Germany

/ 23



Comparability

Test-case generators

klee_make_symbolic(&x, sizeof(x), "x");

» Different conventions for
program input

Thomas Lemberger LMU Munich, Germany 7/23



Comparability

Test-case generators

» Different conventions for
program input
» Different output formats

for test cases -

zsd; as@d

KTESTsimple.bc_sym VERIFIER_nondet_int???7... T

Thomas Lemberger LMU Munich, Germany 7/23



Comparability

Test-case generators
» Different conventions for
program input
» Different output formats
for test cases

» Different/no test
executors

klee-replay

~
N

Thomas Lemberger LMU Munich, Germany



Comparability

Model checkers

» Established standard for -

input programs

Thomas Lemberger LMU Munich, Germany 8/23



Comparability

Model checkers
» Established standard for
input programs
» Established standard for
output format of result ® FALSE
® UNKNOWN
® TRUE

Thomas Lemberger LMU Munich, Germany



Comparability

Model checkers
» Established standard for
input programs
» Established standard for
output format of result

= Adjust test-case generators to standards of model checkers

Thomas Lemberger LMU Munich, Germany

N
@



Framework

Thomas Lemberger LMU Munich, Germany 9/23



Framework: TBF

TBF: Test-based falsifier

» Apply test-case generators to model checker standards

Thomas Lemberger LMU Munich, Germany 10 / 23



Framework: TBF

TBF: Test-based falsifier
» Apply test-case generators to model checker standards

» Create, execute + observe tests

Thomas Lemberger LMU Munich, Germany



Framework: TBF

TBF: Test-based falsifier
» Apply test-case generators to model checker standards
» Create, execute + observe tests

» Only variable: Test-case generation tool

Thomas Lemberger LMU Munich, Germany

10

N
@



Framework: TBF

TBF: Test-based falsifier

Apply test-case generators to model checker standards

v

v

Create, execute + observe tests

v

Only variable: Test-case generation tool
Specification: Never call ___VERIFIER_error

v

Thomas Lemberger LMU Munich, Germany

10



Framework: TBF

TBF: Test-based falsifier

Apply test-case generators to model checker standards

v

v

Create, execute + observe tests

v

Only variable: Test-case generation tool
Specification: Never call ___VERIFIER_error

v

v

Disclaimer: Comparison of tools, not techniques

Thomas Lemberger LMU Munich, Germany

N
@



TBF Architecture

Input
Program

Thomas Lemberger LMU Munich, Germany 11 /23



TBF Architecture

Prepare Test-Case Test Test-Vector
Preprocessor p
rogram Generator Cases Extractor
Input Test
P rogram Vectors

int x = __VERIFIER _nondet_int();

int x; klee_make_symbolic(&x, sizeof(x), "x");

Preprocessor

Thomas Lemberger LMU Munich, Germany 11 /23



TBF Architecture

Prepare Test-Case Test Test-Vector
Preprocessor
Program Generator Cases Extractor
Input Test
Program Vectors

int x; klee_make_symbolic(&x, sizeof(x), "x");

KTESTsimple.bc_sym VERIFIER_nondet_int?777...

Test-Case
Generator

Thomas Lemberger LMU Munich, Germany 11 /23



TBF Architecture

Prepare Test-Case Test Test-Vector
Preprocessor
Program Generator Cases Extractor
Input Test
Program Vectors
KTESTsimple.bc_sym____ VERIFIER_nondet_int???77...
<0,3,5>

Test-Vector
Extractor

Thomas Lemberger LMU Munich, Germany 11 /23



TBF Architecture

Prepare Test-Case Test Test-Vector
Preprocessor
Program Generator Cases Extractor
Input Test
Program Vectors

Harness
Generator

Harness

int __VERIFIER_nondet_int() {
return (int) parse(input ());
int x = __VERIFIER_nondet_int();
void ___VERIFIER_error() {
fprintf (stderr, "Err\n");
exit (1);

Harness
Generator

Thomas Lemberger LMU Munich, Germany 11 /23



TBF Architecture

Preprocessor p
rogram

Test-Vector
Extractor

Test-Case
Generator

Input m Test

Program W\ Vectors
Harness .
Harness Verdict

Generator

for vec in test_vectors:
stderr = run(prog, harness, vec)
if "Err" in stderr:
return FALSE
return UNKNOWN

Thomas Lemberger LMU Munich, Germany 11 /23



Evaluation

Thomas Lemberger LMU Munich, Germany 12 /23



Considered Tools

Tool Technique

AFL-rUZZ Greybox fuzzing

CREST-PPC Concolic execution, search-based

CPATIGER Model checking-based testing, based on CPACHECKER
FSHELL Model checking-based testing, based on Cemc

KLEE Symbolic execution, search-based

PRTEST Random testing

CBMC Bounded model checking

CPA-SEQ Explicit-state, predicate abstraction, k-induction
EsBmc-INcR  Bounded model checking, incremental loop bound

EsBMC-KIND

Thomas Lemberger

Bounded model checking, k-induction

LMU Munich, Germany 3 /23



Experiment Setup

» Benchmark tool: BENCHEXEC
» Limits:
» 2 CPUs

» 15 GB of memory
» 15min CPU time

» Benchmark set

» Openly available:
https://github.com/sosy-lab/sv-benchmarks
Largest available benchmark set

» C programs

1490 tasks with known bug

4203 tasks without bug

v

v

v

Thomas Lemberger LMU Munich, Germany

N
@


https://github.com/sosy-lab/sv-benchmarks

Experiments

1. Bug-finding capabilities: Consider 1490 tasks with bug
2. Precision: Consider 4203 tasks without bug

3. Validity: Comparison with existing KLEE-REPLAY

Thomas Lemberger LMU Munich, Germany

N
@



1. Bug-Finding Capabilities |

« = 2 @

Sl = o S Z | =

fay N I = — n —

Pl S 5 & s 2 0o o| & % %

s § g & E§ ® )% L Z2 2|5 5 s

5| & o z & 3 & m o 2 I = 2 =

=2 < O O s R4 =9} O O = = o} o o
Total Found 1490 | 605 57 376 236 826 292 | 830 889 949 844 887 1092 1176

Compilable 1115 | 605 57 376 236 826 292 | 779 819 830 761 887 930 1014

Median CPU Time (s) 11 45 3.4 6.2 3.6 3.6 1.4 15 19 23

Thomas Lemberger LMU Munich, Germany 16 / 23



1. Bug-Finding Capabilities |

« = 2 @

Sl % 0z % s 2| 2

fy N I = —_ n —

gl S & & o vl 2 o ol & £ =

sl X g g & % 2|2 1 Z Z|5 5 5

5| B & ] & - 2 & 2 & £ z =

=2 < O O £ » Ay O O = = o} o o
Total Found 1490 | 605 57 376 236 826 292 | 830 889 949 3844 887 1092 1176

Compilable 1115 | 605 57 376 236 826 292 | 779 819 830 761 887 930 1014

Median CPU Time (s) 11 4.5 34 62 3.6 3.6 1.4 15 19 23

» Model checkers find more bugs

Thomas Lemberger LMU Munich, Germany 16 / 23



1. Bug-Finding Capabilities |

G & = o) z & X 7] —
gl S § &5 . s 2 0o o| & % %
3 2 & &8 ®w g% I 2 2|5 5 5
s| B = 2 & - 5 & 82 & = £ =
=z < O O £ » Ay O O €3] &3] = o =
Total Found 1490 | 605 57 376 236 826 292 | 830 889 949 344 887 1092 1176
Compilable 1115 | 605 57 376 236 826 292 | 779 819 830 761 887 930 1014
Median CPU Time (s) 11 4.5 34 62 36 36 1.4 15 19 23
» Model checkers find more bugs
» Model checkers don’t need stubs
16 / 23

Thomas Lemberger LMU Munich, Germany



1. Bug-Finding Capabilities |

o i : 5 z 2 4 _

8 8 B o vl 2 o ol & £ =

3 2 & &8 ®w g% I 2 2|5 5 5

5| & = ] & e = 2 & 2 & £ E =

=2 < O O s R4 =9} O O = = o} o o
Total Found 1490 | 605 57 376 236 826 292 | 830 889 949 3844 887 1092 1176
Compilable 1115 | 605 57 376 236 826 292 | 779 819 830 761 887 930 1014
Median CPU Time (s) 11 4.5 3.4 6.2 3.6 3.6 1.4 15 19 23

» Model checkers find more bugs
» Model checkers don’t need stubs
» Model checkers are comparable in speed

Thomas Lemberger LMU Munich, Germany 16 / 2:



1. Bug-Finding Capabilities |

1000

CPU time (s)
o

AFL-fuzz' —@--
CPATiger' —4--
Crestt — V-
FShell” — ¢
. KLEET —H-- |
PRTest' —®--
cemcM —O—
| CPA-seq™ —O—
--’/D ESBMC-incr™ —A—
T ESBMC-kind™!
0.1 . - . L . . .
0 200 400 600 800 1000 1200 1400
n-th fastest correct result
17

Thomas Lemberger LMU Munich, Germany



Time Performance

» CPU time of KLee"/AFL-ruzz" vs. ESBMC-INCRM
on solvable tasks

1000 . 1000
+

=)
=3

CPU Time for ESBMC-incr (s)
CPU Time for ESBMC-incr (s)
3

0.1

4 < — EaY
01 1 10 100 1000
CPU Time for KLEE (s) CPU Time for AFL-fuzz" (s)

Thomas Lemberger LMU Munich, Germany 18 / 23



Time Performance

» CPU time of KLee"/AFL-ruzz" vs. ESBMC-INCRM
on solvable tasks

1000 1000

=)
=3
=)
=3

CPU Time for ESBMC-inc™ (s)
3

CPU Time for ESBMC-incr (s)
3

0.1 1 R >
0.1 1 10 100 1000

CPU Time for KLEE (s) CPU Time for AFL-fuzz" (s)

= Time performance is task-specific

Thomas Lemberger LMU Munich, Germany 18 / 23



2. Precision

» 4203 tasks without bug

» Testers: No false alarms
» Model Checkers: Negligible

Worst: EsBMc-INCR, 6 false alarms

Thomas Lemberger LMU Munich, Germany



3. Validity

Comparison of TBF with KLEE-REPLAY

1000

» Specific to KLEE 10

test case format

» Same concept as
TBF

-
o

» Comparable
performance

CPU Time for KLEE + KLEE-replay (s)

0.1 1 10 100 1000
CPU Time for TBF with KLEE (s)

Thomas Lemberger LMU Munich, Germany 20 /23



Conclusion |

» TBF:
» makes 5 existing test-case generators comparable
» allows easy integration of new generators
» automatically transforms generated test cases to
executable tests

Thomas Lemberger LMU Munich, Germany



Conclusion I

Can we confirm our null hypothesis?

v

v

Testing is faster than model checking.
Testing is more precise than model checking.

v

v

Testing is easier to use than model checking.

Thomas Lemberger LMU Munich, Germany

Testing is better at finding bugs than model checking.

N
@



Conclusion I

Can we confirm our null hypothesis?

v

v

Testing is faster than model checking.
Testing is more precise than model checking.

v

v

Testing is easier to use than model checking.

Thomas Lemberger LMU Munich, Germany

Testing is better at finding bugs than model checking.

N

)



Conclusion I

Can we confirm our null hypothesis?

v

v

Testing is faster than model checking.
Testing is more precise than model checking.

v

v

Testing is easier to use than model checking.

Thomas Lemberger LMU Munich, Germany

Testing is better at finding bugs than model checking.



Conclusion I

Can we confirm our null hypothesis?

v

Testing is better at finding bugs than model checking.

v

Testing is faster than model checking.

v

Testing is more precise than model checking.

v

Testing is easier to use than model checking.

Thomas Lemberger LMU Munich, Germany 22 /23



Conclusion I

Can we confirm our null hypothesis?
Testing is better at finding bugs than model checking.

v

v

Testing is faster than model checking.

v

Testing is more precise than model checking.

v

Testing is easier to use than model checking.

Thomas Lemberger LMU Munich, Germany 22 /23



Conclusion Il

New null hypothesis:

» Model Checking

» can find more bugs
» in less time
» requires less adjustments to input program

Thomas Lemberger LMU Munich, Germany 23 /23



Consequence

— Give us “better” benchmark tasks
= Invest more time in development of testing tools

= Use model checking (or symbolic execution)

Thomas Lemberger LMU Munich, Germany



Benchmark Resources

» Computing Resources:

» Intel Xeon E3-1230 vb CPU, 3.4 GHz, 8 CPUs each
» 33 GB of memory
» Ubuntu 16.04 with Linux 4.4

Thomas Lemberger LMU Munich, Germany



Benchmark Set: Programs with known bug

Category Tasks LOC C features

Sum Min Max Avg Median
Arrays 40 1389 15 57 35 35 C arrays
BitVectors 14 2236 13 636 160 32 Bit vector arithmetics
ControlFlow 42 83034 220 10835 1977 1694  Complicated control flow
ECA 411 11948617 566 185053 29072 4827  Lots of (deep) branching
Floats 31 963 15 154 31 31 Floats (+ arithmetics)
Heap 66 50430 19 4605 764 656 Heap structures
Loops 51 3989 14 1644 78 22 C loops
ProductLines 265 620859 847 3789 2343 2951 Lots of branching
Recursive 45 1227 12 49 27 27 Use of recursion
Sequentialized 170 325168 330 18239 2126 1098 Sequentialized threading
LDV 355 6116255 1389 85772 17229 13420 Linux device driver modules
Total 1490 19154167 12 185053 12855 2984

Thomas Lemberger

LMU Munich, Germany



Benchmark Set: Programs with no known bug

Category Tasks LOC C features

Sum Min Max Avg Median
Arrays 95 4108 14 1161 43 30 Carrays
BitVectors 36 8275 15 696 320 47  Bit vector arithmetics
ControlFlow 52 100841 94 22300 1939 1057  Complicated control flow
ECA 738 17737301 344 185053 24034 2590 Lots of (deep) branching
Floats 142 46536 9 1122 328 48  Floats (+ arithmetics)
Heap 107 86519 11 4576 809 437  Heap structures
Loops 105 5781 14 476 55 25 C loops
ProductLines 332 539446 838 3693 1625 979 Lots of branching
Recursive 53 1730 12 100 33 30 Use of recursion
Sequentialized 103 255233 330 18239 2478 1223 Sequentialized threading
LDV 2440 35241787 339 227732 14443 8664 Linux device driver modules
Total 4203 54027557 9 227732 12855 4055

Thomas Lemberger

LMU Munich, Germany



Discussion

» Use case for test-case generators:
Create realiable test suite

» Use case for model checker:
Prove program /entity safe

» “Does a test suite cover a bug?"” directly correlates with
test-suite quality

» 15 min should be enough time to cover bug in considered
programs



	Overview
	Framework
	Evaluation
	Appendix

