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SMT-based Software Model Checking

» Predicate Abstraction
(BLasT, CPACHECKER, SLAM, ...)

» IMPACT
(CPACHECKER, IMPACT, WOLVERINE, ...)

» Bounded Model Checking

(CeMc, CPACHECKER, ESBMC, ...)

» k-Induction
(CPACHECKER, EsBMc, 2LS, ...)
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Open Problems

» Theoretical comparison difficult:

» different conceptual optimizations
(e.g., large-block encoding)
» different presentation

— What are their core concepts and key differences?



Open Problems

» Theoretical comparison difficult:

» different conceptual optimizations
(e.g., large-block encoding)
» different presentation
— What are their core concepts and key differences?

» Experimental comparison difficult:
» implemented in different tools
» different technical optimizations (e.g., data structures)
» different front-end and utility code
» different SMT solver

— Where do performance differences actually come from?



Goals

» Provide a unifying framework for SMT-based algorithms

v

Understand differences and key concepts of algorithms

» Determine potential of extensions and combinations

v

Provide solid platform for experimental research



Approach

» Understand, and, if necessary, re-formulate the algorithms

» Design a configurable framework for SMT-based algorithms
(based upon the CPA framework)

» Use flexibility of adjustable-block encoding (ABE)
» Express existing algorithms using the common framework

» Implement framework (in CPACHECKER)



Base:

Adjustable-Block Encoding

Originally for predicate abstraction:

>

>

>

Abstraction computation is expensive
Abstraction is not necessary after every transition
Track precise path formula between abstraction states

Reset path formula and compute abstraction formula at
abstraction states

Large-Block Encoding: Abstraction only at loop heads
(hard-coded)

Adjustable-Block Encoding: Introduce block operator blk
to make it configurable



Base: Configurable Program Analysis

Configurable Program Analysis (CPA):
» Beyer, Henzinger, Théoduloz: [CAV'07]
» One single unifying algorithm for all algorithms based on
state-space exploration

» Configurable components: Abstract domain,
abstract-successor computation, path sensitivity, ...
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Using the CPA Framework

» CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains

Source 3

Code

Parser &
CFA Builder
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Using the CPA Framework

» CPA Algorithm is a configurable reachability analysis

for arbitrary abstract domains
» Provide Predicate CPA for our predicate-based abstract domain
» Reuse other CPAs
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Using the CPA Framework

» CPA Algorithm is a configurable reachability analysis
for arbitrary abstract domains
» Provide Predicate CPA for our predicate-based abstract domain
» Reuse other CPAs
» Built further algorithms on top
that make use of reachability analysis

k-induction
Algorithm

Source Parser & CEGAR
Code ?| CFA Builder| | Algorithm Results
]

CPA
Algorithm

{ i)

Location Predicate Loop-Bound
CPA CPA CPA




Predicate CPA

Dp =
(C, &, [Te)
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Predicate CPA

Dp =
(C, &, [Te)
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Predicate CPA: Abstract Domain

» Abstract state: (1, ¢)

» tuple of abstraction formula ¥ and path formula ¢
(for ABE)

» conjunctions represents state space

» abstraction formula can be a BDD or an SMT formula

» path formula is always SMT formula and concrete
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Predicate CPA: Abstract Domain

» Abstract state: (1, ¢)

» tuple of abstraction formula ¥ and path formula ¢
(for ABE)

» conjunctions represents state space

» abstraction formula can be a BDD or an SMT formula

» path formula is always SMT formula and concrete

» Precision: set of predicates (per program location)



Predicate CPA

Dp =
(C, &, [Te)

| Abstraction-Formula ;

| Representation

SMT-based
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Predicate CPA: CPA Operators

» Transfer relation:
» computes strongest post
» changes only path formula, new abstract state is (¢, )
» purely syntactic, cheap
» variety of encodings using different SMT theories possible
(different approximations
for arithmetic and heap operations)
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Predicate CPA: CPA Operators

» Transfer relation:

» computes strongest post
» changes only path formula, new abstract state is (¢, )
» purely syntactic, cheap
» variety of encodings using different SMT theories possible
(different approximations
for arithmetic and heap operations)
» Merge operator:
» standard for ABE: create disjunctions inside block
» Stop operator:
» standard for ABE: check coverage only at block ends
» Precision-adjustment operator:

» only does something at block ends (as determined by blk)
» computes abstraction of current abstract state
> new abstract state is (¢, true)



Predicate CPA

Predicate CPA P

/AR
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Predicate CPA: Refinement

Four steps:
1. Reconstruct ARG path to abstract error state
2. Check feasibility of path
3. Compute interpolants along path
4

. Refine abstract model

» add predicates to precision, cut ARG
or
» conjoin interpolants to abstract states,
recheck coverage relation



Predicate CPA

Predicate CPA P

/AR

Dp = .
1L op merge, sto prec f
| Abstraction-Formula i Strongest | B ] | Refinement |
| Representation ; Postcondition ] | Strategy |
[ l [ [ )
T i
BDD ! SMT Theory |  blkSBE Predicate
I
R

SMT-based —1 ABVFP IMPACT

QF_UFLIRA — blk™ever




Predicate Abstraction

» Predicate Abstraction
» Graf, Saidi: [CAV'97]
» Abstract-Interpretation technique
» Abstract domain constructed from a set of predicates m
» Use CEGAR to add predicates to 7 (refinement)
» Derive new predicates using Craig interpolation
» Abstraction formula as BDD



Expressing Predicate Abstraction

» Abstraction Formulas: BDDs
» Block Size (blk): e.g. blk®?F or blk' or blk'/
» Refinement Strategy: add predicates to precision, cut ARG

Use CEGAR Algorithm:

1: while true do
2: run CPA Algorithm
if target state found then
call refine
if target state reachable then
return false
else
return {rue

N R



Example Program

o (4] EN w N =

~

10

11

12

int main() {

unsigned int x = 0;
unsigned int y = 0;
while (x < 2) {
X+,
y++;
if (x 1=y) {
ERROR: return 1;
}

}

return 0;

start —>»
unsigned int x = 0;

@unsigned inty =0;

x < 2]

x4+
y++;

[x!=y]

[ !=y)]

[(x < 2)]

()

ERROR: return 1;
return 0O;



Predicate Abstraction: Example
with blk’, 7(I4) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0; eo: (lo, (true, true))

@unsigned inty =0;

()

[1(x 1= y)]

['x <2)]

[x!=y]

(3)

ERROR: return 1;
return 0;
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with blk!, 7(l;) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

eo: (lo, (true, true))

er: (I3, (true,zo = 0))

Yy
[(x 1= y)] I
Yy
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[x!=y]

(3)

ERROR: return 1;
return 0;
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eo: (lo, (true, true))

er: (I3, (true, mo = 0))

e: (la, (x =y, true))

[es (hn, (@ =y, ~(20 < 2)))|

1
e (12, ( =y, ~(w0 < 2)))|

es: (Is, (x =y, mp < 2))|

1
|€51 (le, (x =y, 20 <2 A 21 :x0+1))|
1

|e7: (l7,($=y,x0<2/\z1=zo+1/\y1=y0+1))|
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Predicate Abstraction: Example
with blk!, 7(l;) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

eo: (lo, (true, true))

er: (I3, (true, mo = 0))

e: (la, (x =y, true))

[es (hn, (@ =y, ~(20 < 2)))|

[1(x 1= y)]

1
e (12, ( =y, ~(w0 < 2)))|

['x <2)]

es: (Is, (x =y, mp < 2))|
1
[x!=y] |€51 (lﬁ,(z:y,zg<2/\11:x0+1))|

() T

|e7: (lz,(z =y,z0 <2 A 11 =zo+1/\y1=y0+1))|
ERROR: return 1; 1
return 0; |eg: (s, =y, 20 <2Arz1=20+ 1A =Y+ 1A ——(z; = yl)))|

@
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Predicate Abstraction: Example
with blk’, 7(I4) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

er: (I3, (true,zy = 0))

[es: (1, (& =y, ~(29 < 2))) ]

[1(x 1= y)]

e (12, ( =y, ~(w0 < 2)))|

[x <2)]

es: (I5, (z = y, 20 < 2)) | covered byi
T i

[x!=y] |es: (le,(z:y,z0<2/\z1:x0+1))|

() T

|e7. (l7y(zzy)$0<2/\$1=1‘0+1/\y1:y0+1))| E
ERROR: return 1; E
return 0; — ...............
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Predicate Abstraction: Example
with blk!, 7(l;) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

eo: (lo, (true, true))

er: (I3, (true, mo = 0))

e: (la, (x =y, true))

[es (hn, (@ =y, ~(20 < 2)))|

[x 1= y)] T
e (ho (2 =y~ (w0 < 2))) |

[1(x < 2)] ,
es: (I5, (z = y, 20 < 2)) | covered by !
T H

[x!=y] |651 (lﬁ,(z:y,mg<2/\11:x0+1))|
®, T !
|e7: (I, (x =y, 20 <2 A 71 =zo+1/\y1:y0+1))| i
ERROR: return 1; E
return O; es: (la (& =y, true)) f---------mm-- -

@ |€91 (187(x:y’$0<2A561=Z0+1A?41=yo+1Aﬁ(J¢1=y1)))|
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Predicate Abstraction: Example
with blk’, 7(I4) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

er: (I3, (true,zy = 0))

|632 (l, (& =y, = (20 < 2))) |

[1(x 1= y)]

e (12, ( =y, ~(w0 < 2)))|

[x <2)]

[x!=y] |es: (le,(z:y,z0<2/\z1:x0+1))|

() T

|e7- (l7,(Z=y,Zg<2/\,’I,‘1=m0+1/\y1:y0+1))|
ERROR: return 1; E
return 0; — --------------

eq: (ls, (false, true))
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Predicate Abstraction: Example
with blk’, 7(I4) = {z = y} and 7(ls) = {false}

start —>
unsigned int x = 0;

@unsigned inty =0;

()

er: (I3, (true,zy = 0))

[es: (1, (& =y, ~(29 < 2))) ]

[(x=y)]
e (12, ( =y, ~(w0 < 2)))|
['(x < 2)] '
es: (I5, (z = y, 20 < 2)) | covered by !
T 1
[x!=y] |es: (le,(z:y,zo<2/\z1:x0+1))|
(Is) T :
|e7: (Iz, (x = y,m0 <2 A 71 =m0+1/\y1=y0+1))| E
ERROR: return 1; E
return 0;
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IMPACT

» IMPACT

» "Lazy Abstraction with Interpolants"
» McMillan: [CAV'06]
» Abstraction is derived dynamically/lazily
» Solution to avoiding expensive abstraction computations
» Compute fixed point over three operations
» Expand
» Refine
» Cover
» Abstraction formula as SMT formula
» Quick exploration of the state space



Expressing ImMpaCT

» Abstraction Formulas: SMT-based
» Block Size (blk): blk®?¥ or other (new!)

» Refinement Strategy:
conjoin interpolants to abstract states,
recheck coverage relation

Furthermore:
» Use CEGAR Algorithm

» Precision stays empty
— predicate abstraction never computed



ImpacT: Example
with blk’

start —>»
unsigned int x = 0;

|ez: (lg, (true,zo = 0 A yo = 0))|
@unsigned inty =0;

eo: (I2, (true, true))

er: (I, (true, mo = 0))

[x!=y)
lx <2)]

x!=y]

(3)

ERROR: return 1;
return 0;
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ImpacT: Example
with blk’

start —>»
unsigned int x = 0;

@unsigned inty=0; |631 (I, (true, ~(zo < 2)))|
1

eo: (I2, (true, true))

er: (I, (true, mo = 0))

ea: (ly, (true, true))

st (ha, (true, ~(0 < 2)))]|

[x!=y)
lx <2)]

x!=y]

(3)

ERROR: return 1;
return 0;
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ImpacT: Example

. l
with blk
start 5 @ er: (s, (true, zo = 0))
unsigned int x = 0; et (I, (lrue, true))
@unsigned inty=0; |631 (I, (true, ~(zo < 2)))|
1

eo: (I2, (true, true))

st (ha, (true, ~(0 < 2)))]|

es: (Is, (true, mo < 2))

[x!=y)

|es: (lg, (true,zo <2 A 1 = zo + 1))|
2
|e7: (l7,(tme,zo<2/\xl=10+1/\y1=y0+1))|

[1(x < 2)]

x!=y]

(3)

ERROR: return 1;
return 0;
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ImpacT: Example
with blk’

start —>»
unsigned int x = 0;

@unsigned inty =0;

[x!=y)
lx <2)]

x!=y]

(3)

ERROR: return 1;
return 0;
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eo: (I2, (true, true))

er: (s, (true, zo = 0))
eo: (g, (true, true))

|e3: (L1, (true, =(z¢ < 2))) |
1

st (ha, (true, ~(0 < 2)))]|

es: (Is, (true, mo < 2))

|€51 (lg, (true,zo <2 A 1 = zo + 1))|
2
|e7: (17,(true,zo<2/\xl=10+1/\y1=y0+1))|
1

|€82 (ls,(tme,z0<2/\zl:zo+1Ay1=yg+1/\ﬁ(i?o=yo)))|
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ImpacT: Example

with blk’
start ——> er: (I3, (true, zg = 0))
@unsigned int x =0;
@unsigned inty =0; |es: (L1, (true, —(zo < 2)))|
1
[ < 2] [es: (1, (true, ~(z9 < 2))) |
es: (I, (true, zo < 2))
x++; [{(x '=y)] | |
es: (lg, (true,xg < 2 Ay = 29 + 1))
[lx <2)] y++;

|e7: (l7,(true,x0<2/\x1=x0+1/\y1=y0+1))|

x!=y]

(3)

ERROR: return 1;
return 0O;
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ImpacT: Example

with blk!
er: (I3, (true, zo = 0))

start —)@
unsigned int x = 0; et (Iu, (x = y, truc))

@unsigned inty=0; |631 (I, (true, ~(zo < 2)))|
1

eo: (I2, (true, true))

[es: (1, (true, ~(z9 < 2))) |

es: (Is, (true, mo < 2))

[x!=y)

|€51 (lg, (true,zo < 2 A xq = zo + 1)) |

['(x < 2)] T
er: (lg, (true,xg <2 Ay =20+ 1 Ay =y0+1))|
ki
|891 (la, (true,zo <2 AT =0+ LAY =yo + 1 A ==(21 = y1)))|
ERROR: return 1;
return 0;
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ImpacT: Example
with blk’

start —>
unsigned int x = 0;

@unsigned inty =0;

[x < 2]

x++;
y++;

x!=y]

[0 1= y)]
[1(x < 2)]

(3)

ERROR: return 1;
return 0O;
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er: (I, (true, mo = 0))

[es: (1, (true, ~(zo < 2)))]
1

st (ha, (true, ~(0 < 2)))]|

es: (I5, (true, zo < 2))

|es: (lg, (true,zo <2 A 1 =z + 1)) |
1

7 (I7, (true, x0<2/\x1—x0+1/\y1—y0+1))|

[a5m)

eo: (ly, (true, true))
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ImpacT: Example
with blk’

start —>»
unsigned int x = 0;

@unsigned inty =0;

[x!=y)

lx <2)]

x!=y]

(3)

ERROR: return 1;
return 0;
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eo: (I2, (true, true))
er: (I, (true, o = 0))

es: (lu, (x =y, true))

|e3: (L1, (true, =(z¢ < 2))) |
1

[es: (1, (true, ~(z9 < 2))) |

es: (Is, (true, mo < 2))

|€51 (lg, (true,zo <2 A 1 = zo + 1))|
2
er: (lg, (true,xg <2 Ay =20+ 1 Ay =y0+1))|

eg: (ly, (true, true))
e0: (Is, (true, z; < 2))

|en: (lg, (true,x1 <2 A xg = 1 + 1))|
2

|6122 (I7, (true, z; <2/\12=zl+1/\y2=y1+1))|
L
|5131 (Is, (true, z, <2Azz:11+1Ay2:y1+1Aﬁ(12:y2)))|
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ImpacT: Example

with blk!
er: (I3, (true, zo = 0))

start —)@
unsigned int x = 0; e (s, (@ =y, true))

@unsigned inty=0; |631 (I, (true, ~(zo < 2)))|
1

eo: (I2, (true, true))

st (ha, (true, ~(0 < 2)))]|

es: (Is, (true, mo < 2))

|€51 (lg, (true,zo <2 A 1 = zo + 1))|
2
er: (lg, (true,xg <2 Ay =20+ 1 Ay =y0+1))|

eg: (ly, (true, true))
ew: (Is, (true, 3, < 2))

|en: (lg, (true,x1 <2 A xg = 1 + 1))|
2

[x!=y)

[1(x < 2)]

x!=y]

(3)

ERROR: return 1;
return 0;

|6122 (Iz, (true,zy <2 A zs =21+ 1 AYys =y +1))|
1
ezt (s, (true, true))
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ImpacT: Example
with blk’

start —)@
unsigned int x = 0; S ACELE )

@unsigned inty=0; |631 (I, (true, ~(zo < 2)))|
1
[ex: (o, (true, =(wo < 2)))]

es: (Is, (true, mo < 2))

|€51 (lg, (true,zo <2 A 1 = zo + 1))|
2
er: (lg, (true,xg <2 Ay =20+ 1 Ay =y0+1))|

ew: (Is, (true, zy < 2))

|en: (lg, (true,x1 <2 A xg = 1 + 1))|
2

eo: (I2, (true, true))
er: (I, (true, o = 0))

[x!=y)

[1(x < 2)]

x!=y]

(s

ERROR: return 1;
return 0;

|6122 (l7,(tme,zl<2/\Ig=11+1/\y2=y1+1))|
1
Gt (0 72,1502
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ImpacT: Example
with blk’

start —>
unsigned int x = 0;

@unsigned inty =0;

[x < 2]

er: (I, (true, mo = 0))

eg: (I, (true, —(zo < 2))) |
1

st (ha, (true, ~(0 < 2)))]|

[ 1= )] es: (Is, (true, zg < 2)) covered by

|es: (lg, (true,zo <2 A 1 =z + 1)) |
1

x++;
[t(x < 2)] y++;

x!=y]

7 (I7, (true, x0<2/\x1—x0+1/\y1—y0+1))|

[a5m)

ew: (Is, (true, 3, < 2))

(3)

ERROR: return 1;
return 0O;

|en: (lg, (true,x1 <2 A xg = 1 + 1))|

|612: (I7, (true, z; <2Ax2=xl+1/\y2=y1+1))|

(BT
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Bounded Model Checking

» Bounded Model Checking:

» Biere, Cimatti, Clarke, Zhu: [TACAS'99]
» No abstraction
» Unroll loops up to a loop bound &

» Check that P holds in the first k iterations:

Dirk Beyer, Matthias Dangl, and Philipp Wendler LMU Munich, Germany
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Expressing BMC

» Block Size (blk): blk™*"

Furthermore:
» Add CPA for bounding state space (e.g., loop bounds)
» Choices for abstraction formulas and refinement irrelevant
because block end never encountered
» Use Algorithm for iterative BMC:
1. k=1
2: while !finished do

3:  run CPA Algorithm
4. check feasibility of each abstract error state
5

ket +



Bounded Model Checking: Example with & =1

start —>»
unsigned int x = 0;

@unsigned inty =0;

@ [60: (ly, (true, true), {ly — —1})]
1

[ex: Us, (true, zy = 0), {la — —1})]
3

['x!=y)]

et (L, (true, 30 = 0 A yo = 0), {la — 0|
T

|€33 (ha, (true,zo = 0 A yo = 0 A —(20 < 2)), {la — 0}) |
3

[x!=y] |eA: (la, (true,xg = 0 A yo = 0 A = (g < 2)), {l4 — 0}) |

es5: (Is, (true,mg = 0 A yo = 0 A g < 2), {ly — 0}) |
ERROR: return 1; 1
return 0;

|es: (ls,(tT‘uE,l‘g:Ol\y():OAIg<2/\Zl:I0+1),{l4>—>0})|
er: (17,(tme,zg=0/\yg=0AIU<2l/\xl=z0+1/\y1=y0+1),{l4o—>0})|
|€3: (Is, (true,zo =0 A yo =0 A g < 2 A 21 =J'.l‘0+1/\y1=y0+1/\_‘(1'1 =y1)),{l4>—>0})|
|59: (l2, (true,zo =0 A yo =0 A Tg < 2 A 21 :zg+1Ay1=y0+1/\—(zl=y1)),{l4>—>0})|

e10: (14,(157‘“6110=0/\yo=0/\10<2/\11=10+1/\y1=Z/0+1A“(“(Il=y1)))7{l4H1})|
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Insights

» BMC naturally follows by increasing block size
to whole (bounded) program
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Insights

» BMC naturally follows by increasing block size
to whole (bounded) program

» Difference between predicate abstraction and ImpacT:

>

BDDs vs. SMT-based formulas:

costly abstractions vs. costly coverage checks
Recompute ARG vs. rechecking coverage

We know that only these differences are relevant!
Predicate abstraction pays for creating more general
abstract model

ImpacT is lazier but this can lead to many refinements
— forced covering or large blocks help



SMT Study: Motivation

Which do you think is “better”,
i.e., solves more SV-COMP tasks?

» k-Induction
» Predicate abstraction

Dirk Beyer, Matthias Dangl, and Philipp Wendler LMU Munich, Germany
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SMT Study: Motivation

» Predicate abstraction solves 3 % more tasks
than k-induction
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SMT Study: Motivation

» Predicate abstraction solves 3 % more tasks
than k-induction

» k-Induction solves 29 % more tasks
than predicate abstraction
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SMT Study: Motivation

» Predicate abstraction solves 3 % more tasks
than k-induction:
MATHSATS5 with linear arithmetic
» k-Induction solves 29 % more tasks
than predicate abstraction:
73 with bitprecise arithmetic
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Comparison of SMT Solvers and Theories

» Which SMT solver should CPAcHECKER use by default?
» Which formula encoding?
» Which of these should we use for benchmarks in papers?
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Comparison of SMT Solvers and Theories

v

Which SMT solver should CPAcHECKER use by default?
Which formula encoding?

v

v

Which of these should we use for benchmarks in papers?

v

Large study made possible by our framework

v

Produced some interesting insights

» Prepare for changes in CPACHECKER



Comparison of SMT Solvers and Theories

» Which SMT solver should CPAcHECKER use by default?
» Which formula encoding?
» Which of these should we use for benchmarks in papers?

» Large study made possible by our framework
» Produced some interesting insights

» Prepare for changes in CPACHECKER

» SV-COMP’17 benchmark set
(only reachability, without recursion and concurrency)

» 5594 verification tasks
» 15 min time limit, 15 GB memory limit

» On Apollon cluster



SMT Study: 120 Configurations

BMC ‘ k-Induction ‘ IMPACT ‘ Pred. Abs
X
MATHSATS ‘ PRINCESS ‘ SMTINTERPOL ‘ 73
X
Bitprecise | Linear | Linear unsound

X

with Quantifiers ‘ Quantifier-free

X
Arrays ‘ UFs
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Point of View: SMT Solvers

» Princess is never competitive

v

Interpolation in Z3 is unmaintained since 2015

Bitvector interpolation in Z3 produces up to 24 % crashes

v

v

MATHSATS5 has known interpolation problem for bitvectors,
but problem occurs rarely



Point of View: Theories and Encodings

» Unsound linear encoding always the easiest (as expected)
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Point of View: Theories and Encodings

» Unsound linear encoding always the easiest (as expected)

» Correctness as expected:
BV > sound LIRA > unsound LIRA
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Point of View: Theories and Encodings

» Unsound linear encoding always the easiest (as expected)

» Correctness as expected:
BV > sound LIRA > unsound LIRA

» Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA
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Point of View: Theories and Encodings

» Unsound linear encoding always the easiest (as expected)

» Correctness as expected:
BV > sound LIRA > unsound LIRA

» Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

» Effectivity for MaTHSATS5:
sound LIRA < BV ~ unsound LIRA
(but BV needs more CPU time)

= MaTHSATS5 is really good with bitvectors.



Point of View: Theories and Encodings

» Unsound linear encoding always the easiest (as expected)

» Correctness as expected:
BV > sound LIRA > unsound LIRA

» Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

» Effectivity for MaTHSATS5:
sound LIRA < BV = unsound LIRA
(but BV needs more CPU time)

» Effectivity for SMTINTERPOL:
sound LIRA « unsound LIRA

= MaTHSATS5 is really good with bitvectors.



Point of View: Theories and Encodings

U

U

Unsound linear encoding always the easiest (as expected)

Correctness as expected:
BV > sound LIRA > unsound LIRA

Effectivity for Z3 as expected:
BV < sound LIRA < unsound LIRA

Effectivity for MATHSAT5:
sound LIRA < BV = unsound LIRA
(but BV needs more CPU time)

Effectivity for SMTINTERPOL:
sound LIRA « unsound LIRA

MATHSATS is really good with bitvectors.

Sound LIRA encoding rarely makes sense.



Point of View: Algorithms

» Mostly, the best configurations of MATHSATS,
SMTINTERPOL, and Z3 are close for each algorithm
» Gives confidence for valid comparison of algorithm
» But outlier exists:
73 is worse than others for predicate abstraction
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Point of View: Algorithms

» Mostly, the best configurations of MATHSATS,
SMTINTERPOL, and Z3 are close for each algorithm
» Gives confidence for valid comparison of algorithm
» But outlier exists:
73 is worse than others for predicate abstraction
» Predicate abstraction and ImpacT suffer most from
disjunctions of sound LIRA encoding.



Point of View: Arrays and Quantifiers

» Little difference with /without arrays/quantifiers

= Arrays don't hurt:
we should find a way to get better array predicates
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Point of View: Arrays and Quantifiers

» Little difference with /without arrays/quantifiers

= Arrays don't hurt:
we should find a way to get better array predicates

» But quantifiers would restrict solver choice too much
(PrincEss and Z3)
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SMT Study: Final Conclusions

» Choice of theories, solver, and encoding details affects
comparisons of algorithms!

» For now:
use MATHSATS5 with bitvectors and arrays if possible

» Upcoming default for CPAcHECKER
» Possible problems for users: license, native binary
» Next-best choice:
SMTINTERPOL With unsound linear arithmetic
» No improvement of situation in sight



