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State of the Art

● Much progress in MC theory & algorithms

● Practical issues in industrial applications

● Problems:
- Large size of individual verification tasks
- Large number of verification tasks
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Ideas

● Combine verification tools

● Reuse partial and intermediate results

● Witnesses for results validation

● Tests from Verification



4

Classic Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification
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Stateful Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State
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Applications of Stateful 
Verification

● Better performance by remembering 
successful (intermediate) results

● Regression Verification

● Certify results  (verification witnesses)
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LMU
Verification Center
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FSE 2012
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Software Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification
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Problem:
Single Analysis not Effective



11

Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker
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Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE
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Classic Model Checking

SAFE UNSAFE

 System  +  Property

Model
Checker

FAILURE

Incomplete
(non-linear operations)

→ False positives
(false alarms = noise)

Unsound
(overflows)

→ False negatives
(missed bugs = disaster)
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Classic Model Checking
 System  +  Property

Model
Checker

FAILURE

Enormous amounts of resources wasted!

● Timeout
● Out of memory
● Crash of component
● Operand exception
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Conditional Model Checking

FSE 2012, joint work with Tom Henzinger, 
                          Erkan Keremoglu, Philipp Wendler
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Conditional Model Checking
 System  +  Property

Model
Checker
Model

Checker

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety
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Conditional Model Checking

Model
Checker
Model

Checker

System + Property

Directs the analysis
to parts to analyze

Condition Ψ
0

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
                 - Ψ = false: previous UNSAFE
                     - general: condition for safety
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Applications of
Conditional Model Checking
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Back to Our Example
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Back to Our Example

To show:
                          M ╞═ Φ

In this case:
                          Φ = Φ1 & Φ2

with Φ1 = “loop is correct”
and Φ2 = “multiplication is correct”
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Idea: Decompose!

● Verify Φ1 (“loop is correct”)
    → use predicate analysis

● Verify Φ2 (“multiplication is correct”)
    → use explicit-state analysis

● Final result: Φ verified
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Using CMC with Input Conditions 

● Tell model checker what to verify
● In our example:

― For conditional model checker 1: verify Φ1

― For conditional model checker 2: verify Φ2

― Full verification possible
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More General:
State space to verify
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More General:
State space to verify

Verified by
model checker 1
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More General:
State space to verify

Verified by
model checker 1

Verified by
model checker 2
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Further Input Conditions

● Limit resources
― Time
― Memory
― Model Checker will not crash, but terminate itself and

give useful result
● Restrict the search

― Loop bounds (a.k.a. “bounded model checking”)
― Path length
― Time spent on path
― ...
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Output Conditions
● Dump partial result if analysis didn't finish

― Output cond. summarizes what could be verified
● Explicitly state assumptions used by MC

― Example: “variable x does not overflow”
● Purpose:

― Give information to the user
― Verify condition with other methods

(testing, manual proofs, …)
― Comparison of checkers

(weaker output condition is better)
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Sequential Composition

● In our example,
we told the model checkers what to verify

● Now let them find out automatically!
● Conditional model checker 1 verifies

what it can verify
● Conditional model checker 2 verifies

remaining parts
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Sequential Composition

● Use input condition to limit resource usage
of first analysis

● Use output condition
as input condition for next model checker

● Iterate until finished (or run out of tools)
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Sequential Composition

State space to verify

Ψ
0
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Sequential Composition

BMC

Ψ
0

Ψ
1

State space
partially verified
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Sequential Composition

BMC

Explicit

Ψ
0

Ψ
1

Ψ
2

State space
partially verified
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Sequential Composition

BMC

Explicit

Predicate

Ψ
0

Ψ
1

Ψ
2

Ψ
3State space

fully verified
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Experiment:
Sequential Composition

● Implemented Conditional Model Checking
in CPAchecker

● 85 C programs based on “hard” programs
of Software Verification Competition 2012

● 15 min time, 15 GB RAM
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Experiment:
Sequential Composition

● A: Explicit-value analysis
● B: Predicate analysis
● C: Conditional model checking

― First: explicit-value analysis
with input condition: time limit = 100s

― Second: predicate analysis
with output condition of first analysis
as input condition
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Experiment:
Sequential Composition

➔ Sequential composition
solves more problems and is faster
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Experiment:
Sequential Composition

● A: Explicit-value analysis ; predicate analysis
● B: Explicit-value analysis ; predicate analysis

― Input condition for first analysis:
time limit = 100s

● C: Conditional model checking
― First: explicit-value analysis

with input condition: time limit = 100s
― Second: predicate analysis

with output condition of first analysis
as input condition
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Experiment:
Sequential Composition

➔ Using conditional model checking
for sequential composition is better
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Summary Part 1

Conditional Model Checking:
― Terminates with useful results

(no crashes)
― Enables partial / compositional verification
― Effective sequential composition

(solve harder problems)
― Unified view on existing approaches
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Stateful Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State
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Towards Reusing Information

● Context:  CEGAR-based verification
● Abstract model has to be constructed 

every time a verification task is started
→ Refinements of Precision
→ Reconstruction and Pruning of ARG



Precision Reuse 
for Efficient 

Regression Verification
Dirk

Beyer
Evgeny
Novikov

Andreas 
Stahlbauer

Philipp
Wendler

Stefan
Löwe

(Published in Proc. ESEC/FSE 2013, ACM.)



Driver VerificationLinux
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Revision Commit Message Safe?

3 Implement button detection support ✘
4 Free MICDET IRQ on error during 

probe 
✘

5 fix typos in extcon-arizona ✘
6 Use bypass mode for MICVDD ✘
7 Merge tag ’driver-core-3.6’ of ... ✘
8 unlock mutex on error path in ... ✔
9 remove use of devexit ✘

10 remove use of devinit ✘
11 remove use of devexit p ✘
12 Merge tag ’pull req 20121122’ of ... ✔

Example
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High Resource Consumption!
Software Verification is expensive

Verifying all safety properties for all revisions 
of a software ...

… is really expensive

   ≈ 7 days

        500 drivers 
       * 60 properties
       *  2 before/after
  =  60 000 verification tasks
       * 10 seconds/verification task
  = 600 000 seconds
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LMU
Verification Center
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Reuse of Verification Results

Drawbacks of existing approaches
― Too large: space on disk, time for loading
― Too sensitive to changes between revisions
― Too complex: modification of the verification 

algorithm

➡ Reuse the “precision”
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Precision π
Defines the level of abstraction within an 
abstract domain:

Information that an abstraction-based analysis 
has to track to prove a property.



49

Examples for Precision

● Predicate Analysis
Set of predicates used to compute boolean 
abstractions

● Explicit-Value Analysis
Set of variables for which the explicit value has 
to be tracked

● Shape Analysis
Set of pointer variables to track

π = {a > 0, k == 1  e == 0}∧

π = {a, k, e}

π = {p1, p2}
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Example

ERROR
d := 2

c := 5 a := 0

a := 1

[a == 1]

[a != 1]

[b == 7]

[b != 7]

b := 0

Analysis Precision π

Explicit-Value {b, a}

Predicate {b == 7, a == 1}
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Advantages 
of Reusing Precisions

✔ No modification of the verification algorithm
✔ Easy to extract from model checkers
✔ Small memory footprint
✔ Low sensitivity to changes 

in the input programs

π
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CEGAR

Counterexample infeasible

Check feasibility

π
0
 = {}

π
i+1

 = π
i 

 Interpolants∪
i+1

Model Checking

Path to error 
(counterexample)

Safe

Unsafe

Refine precision

Program
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CEGAR + Reuse

Counterexample infeasible

Check feasibility

π
0
 = {b=7, x=5}

π
i+1

 = π
i 

 Interpolants∪
i+1

Model Checking

Path to error 
(counterexample)

Safe

Unsafe

Refine precision

Program
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Advantages 
of Reusing Precisions

✔ No modification of the verification algorithm
✔ Easy to extract from model checkers
✔ Small memory footprint
✔ Low sensitivity to changes 

in the input programs

π
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Implementation

● Implemented in CPAchecker
― Predicate Analysis
― Explicit-State Analysis

● Common to both analyses:
― Lazy abstraction
― CEGAR
― Construct an abstract reachability graph

http://cpachecker.sosy-lab.org



56

Workflow

Revision N

Precision N-1

 

   ✘ ✔

Precision N

Input Output



57

Stateful Verification

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State
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Storing Precisions

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

*:
lock

main f:
x

Explicit-State Analysis Predicate Analysis

Really simple! Dump the precision 
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Benchmark Suite

● Derived from industrial code (Linux kernel)
― 4193 verification problems
― 62 Linux device drivers
― 1119 revisions 

spanning more than 5 years of development
● Publicly available

http://sosy-lab.org/~dbeyer/cpa-reuse/
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Benchmark Setup

● Processor: Intel i7 3.4 GHz Quad Core
● Time limit: 15 minutes
● Memory limit: 15 GB

= Setup of the Intl. Competition on Software Verification



 

better

worse
With Reuse

Without Reusex

CPU time in seconds



 

better

worse
Results for Predicate Analysis



 

Results for Predicate Analysis

better

worse # Tasks 4 193

Analysis 
CPU Time

without Reuse
83 000

Analysis 
CPU Time

with Reuse
23 000

Speedup 4.3

Solved 4 048  + 30



Summary – Part 2

● Drastically improves performance
→ Reduces the number of refinements

● More problems can be solved
● Low sensitivity to changes in the program code

Precision reuse has a 
significant positive effect!
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Reusing Witnesses

● Learn from previous proofs 
● If you know a previous error path,

→ check this first, try to “re-play”
● If you know a previous proof,

→ try to “re-validate”, watch for changes
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