
Practical Issues of
Software Verification

Dirk Beyer

2

State of the Art

● Much progress in MC theory & algorithms

● Practical issues in industrial applications

● Problems:
- Large size of individual verification tasks
- Large number of verification tasks

3

Ideas

● Combine verification tools

● Reuse partial and intermediate results

● Witnesses for results validation

● Tests from Verification

4

Classic Verification

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

5

Stateful Verification

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State

6

Applications of Stateful
Verification

● Better performance by remembering
successful (intermediate) results

● Regression Verification

● Certify results (verification witnesses)

7

LMU
Verification Center

8

FSE 2012

9

Software Verification

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

10

Problem:
Single Analysis not Effective

11

Model Checking

SAFE UNSAFE

 System + Property

Model
Checker

12

Classic Model Checking

SAFE UNSAFE

 System + Property

Model
Checker

FAILURE

13

Classic Model Checking

SAFE UNSAFE

 System + Property

Model
Checker

FAILURE

Incomplete
(non-linear operations)

→ False positives
(false alarms = noise)

Unsound
(overflows)

→ False negatives
(missed bugs = disaster)

14

Classic Model Checking
 System + Property

Model
Checker

FAILURE

Enormous amounts of resources wasted!

● Timeout
● Out of memory
● Crash of component
● Operand exception

15

Conditional Model Checking

FSE 2012, joint work with Tom Henzinger,
 Erkan Keremoglu, Philipp Wendler

16

Conditional Model Checking
 System + Property

Model
Checker
Model

Checker

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
 - Ψ = false: previous UNSAFE
 - general: condition for safety

17

Conditional Model Checking

Model
Checker
Model

Checker

System + Property

Directs the analysis
to parts to analyze

Condition Ψ
0

Ψ
(“SAFE under Condition Ψ”)

Examples: - Ψ = true: previous SAFE
 - Ψ = false: previous UNSAFE
 - general: condition for safety

18

Applications of
Conditional Model Checking

19

Back to Our Example

20

Back to Our Example

To show:
 M ╞═ Φ

In this case:
 Φ = Φ1 & Φ2

with Φ1 = “loop is correct”
and Φ2 = “multiplication is correct”

21

Idea: Decompose!

● Verify Φ1 (“loop is correct”)
 → use predicate analysis

● Verify Φ2 (“multiplication is correct”)
 → use explicit-state analysis

● Final result: Φ verified

22

Using CMC with Input Conditions

● Tell model checker what to verify
● In our example:

― For conditional model checker 1: verify Φ1

― For conditional model checker 2: verify Φ2

― Full verification possible

23

More General:
State space to verify

24

More General:
State space to verify

Verified by
model checker 1

25

More General:
State space to verify

Verified by
model checker 1

Verified by
model checker 2

26

Further Input Conditions

● Limit resources
― Time
― Memory
― Model Checker will not crash, but terminate itself and

give useful result
● Restrict the search

― Loop bounds (a.k.a. “bounded model checking”)
― Path length
― Time spent on path
― ...

27

Output Conditions
● Dump partial result if analysis didn't finish

― Output cond. summarizes what could be verified
● Explicitly state assumptions used by MC

― Example: “variable x does not overflow”
● Purpose:

― Give information to the user
― Verify condition with other methods

(testing, manual proofs, …)
― Comparison of checkers

(weaker output condition is better)

28

Sequential Composition

● In our example,
we told the model checkers what to verify

● Now let them find out automatically!
● Conditional model checker 1 verifies

what it can verify
● Conditional model checker 2 verifies

remaining parts

29

Sequential Composition

● Use input condition to limit resource usage
of first analysis

● Use output condition
as input condition for next model checker

● Iterate until finished (or run out of tools)

30

Sequential Composition

State space to verify

Ψ
0

31

Sequential Composition

BMC

Ψ
0

Ψ
1

State space
partially verified

32

Sequential Composition

BMC

Explicit

Ψ
0

Ψ
1

Ψ
2

State space
partially verified

33

Sequential Composition

BMC

Explicit

Predicate

Ψ
0

Ψ
1

Ψ
2

Ψ
3State space

fully verified

34

Experiment:
Sequential Composition

● Implemented Conditional Model Checking
in CPAchecker

● 85 C programs based on “hard” programs
of Software Verification Competition 2012

● 15 min time, 15 GB RAM

35

Experiment:
Sequential Composition

● A: Explicit-value analysis
● B: Predicate analysis
● C: Conditional model checking

― First: explicit-value analysis
with input condition: time limit = 100s

― Second: predicate analysis
with output condition of first analysis
as input condition

36

Experiment:
Sequential Composition

➔ Sequential composition
solves more problems and is faster

37

Experiment:
Sequential Composition

● A: Explicit-value analysis ; predicate analysis
● B: Explicit-value analysis ; predicate analysis

― Input condition for first analysis:
time limit = 100s

● C: Conditional model checking
― First: explicit-value analysis

with input condition: time limit = 100s
― Second: predicate analysis

with output condition of first analysis
as input condition

38

Experiment:
Sequential Composition

➔ Using conditional model checking
for sequential composition is better

39

Summary Part 1

Conditional Model Checking:
― Terminates with useful results

(no crashes)
― Enables partial / compositional verification
― Effective sequential composition

(solve harder problems)
― Unified view on existing approaches

40

Stateful Verification

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State

41

Towards Reusing Information

● Context: CEGAR-based verification
● Abstract model has to be constructed

every time a verification task is started
→ Refinements of Precision
→ Reconstruction and Pruning of ARG

Precision Reuse
for Efficient

Regression Verification
Dirk

Beyer
Evgeny
Novikov

Andreas
Stahlbauer

Philipp
Wendler

Stefan
Löwe

(Published in Proc. ESEC/FSE 2013, ACM.)

Driver VerificationLinux

44

Revision Commit Message Safe?

3 Implement button detection support ✘
4 Free MICDET IRQ on error during

probe
✘

5 fix typos in extcon-arizona ✘
6 Use bypass mode for MICVDD ✘
7 Merge tag ’driver-core-3.6’ of ... ✘
8 unlock mutex on error path in ... ✔
9 remove use of devexit ✘

10 remove use of devinit ✘
11 remove use of devexit p ✘
12 Merge tag ’pull req 20121122’ of ... ✔

Example

45

High Resource Consumption!
Software Verification is expensive

Verifying all safety properties for all revisions
of a software ...

… is really expensive

 ≈ 7 days

 500 drivers
 * 60 properties
 * 2 before/after
 = 60 000 verification tasks
 * 10 seconds/verification task
 = 600 000 seconds

46

LMU
Verification Center

47

Reuse of Verification Results

Drawbacks of existing approaches
― Too large: space on disk, time for loading
― Too sensitive to changes between revisions
― Too complex: modification of the verification

algorithm

➡ Reuse the “precision”

48

Precision π
Defines the level of abstraction within an
abstract domain:

Information that an abstraction-based analysis
has to track to prove a property.

49

Examples for Precision

● Predicate Analysis
Set of predicates used to compute boolean
abstractions

● Explicit-Value Analysis
Set of variables for which the explicit value has
to be tracked

● Shape Analysis
Set of pointer variables to track

π = {a > 0, k == 1 e == 0}∧

π = {a, k, e}

π = {p1, p2}

50

Example

ERROR
d := 2

c := 5 a := 0

a := 1

[a == 1]

[a != 1]

[b == 7]

[b != 7]

b := 0

Analysis Precision π

Explicit-Value {b, a}

Predicate {b == 7, a == 1}

51

Advantages
of Reusing Precisions

✔ No modification of the verification algorithm
✔ Easy to extract from model checkers
✔ Small memory footprint
✔ Low sensitivity to changes

in the input programs

π

52

CEGAR

Counterexample infeasible

Check feasibility

π
0
 = {}

π
i+1

 = π
i

 Interpolants∪
i+1

Model Checking

Path to error
(counterexample)

Safe

Unsafe

Refine precision

Program

53

CEGAR + Reuse

Counterexample infeasible

Check feasibility

π
0
 = {b=7, x=5}

π
i+1

 = π
i

 Interpolants∪
i+1

Model Checking

Path to error
(counterexample)

Safe

Unsafe

Refine precision

Program

54

Advantages
of Reusing Precisions

✔ No modification of the verification algorithm
✔ Easy to extract from model checkers
✔ Small memory footprint
✔ Low sensitivity to changes

in the input programs

π

55

Implementation

● Implemented in CPAchecker
― Predicate Analysis
― Explicit-State Analysis

● Common to both analyses:
― Lazy abstraction
― CEGAR
― Construct an abstract reachability graph

http://cpachecker.sosy-lab.org

56

Workflow

Revision N

Precision N-1

 ✘ ✔

Precision N

Input Output

57

Stateful Verification

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
i.e., assertions
cannot be violated

UNSAFE

Specification

State

58

Storing Precisions

(declare-fun |lock|() Real)
(declare-fun |x|() Real)
(define-fun t1() Bool (= |lock| 0))
(define-fun t2() Bool (<= |x| 1))

*:
(assert t1)

main f:
(assert t2)

*:
lock

main f:
x

Explicit-State Analysis Predicate Analysis

Really simple! Dump the precision

59

Benchmark Suite

● Derived from industrial code (Linux kernel)
― 4193 verification problems
― 62 Linux device drivers
― 1119 revisions

spanning more than 5 years of development
● Publicly available

http://sosy-lab.org/~dbeyer/cpa-reuse/

60

Benchmark Setup

● Processor: Intel i7 3.4 GHz Quad Core
● Time limit: 15 minutes
● Memory limit: 15 GB

= Setup of the Intl. Competition on Software Verification

better

worse
With Reuse

Without Reusex

CPU time in seconds

better

worse
Results for Predicate Analysis

Results for Predicate Analysis

better

worse # Tasks 4 193

Analysis
CPU Time

without Reuse
83 000

Analysis
CPU Time

with Reuse
23 000

Speedup 4.3

Solved 4 048 + 30

Summary – Part 2

● Drastically improves performance
→ Reduces the number of refinements

● More problems can be solved
● Low sensitivity to changes in the program code

Precision reuse has a
significant positive effect!

65

Reusing Witnesses

● Learn from previous proofs
● If you know a previous error path,

→ check this first, try to “re-play”
● If you know a previous proof,

→ try to “re-validate”, watch for changes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

