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Software Verification

Overapproximation

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

int main() {
  int a = foo();
  int b = bar(a);
  
  assert(a == b);
}

C program

Verification
Tool

SAFE
 i.e. assertions
cannot be violated

UNSAFE

Reachable
states

Reachable
states Error

states

General method:
Create an 
overapproximation of the 
program states



Software Verification by 
Model Checking

[Clarke/Emerson, Sifakis 1981]
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Iterative fixpoint (forward) post computation



Software Verification by 
Data-Flow Analysis

Fixpoint computation on the CFG



Software Model Checking

Reached, Frontier := { e0  }

while Frontier   do

remove e from Frontier

for each e’  post( e ) do

if  stop(e’, Reached )  add e’ to Reached, Frontier

return Reached  
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Software Model Checking

Reached, Frontier := { e0  }

while Frontier   do

remove e from Frontier

for each e’  post( e ) do

if  stop(e’, Reached )  add e’ to Reached, Frontier

return Reached  



Configurable Program Analysis
 [CAV 2007] 

Reached, Frontier := { e0  }

while Frontier   do

remove e from Frontier

for each e’  post( e ) do

for each e’’  Reached do   

e’’new := merge( e’, e’’ ) 

if e’’new  e’’ then

replace e’’ in Reached, Frontier by e’’new  

if  stop(e’, Reached )  add e’ to Reached, Frontier

return Reached  



Configurable Program Analysis

- Better combination of abstractions
 Configurable Program Analysis [CAV07]

Unified framework that enables intermediate algorithms

Imprecise
Scalable

Precise
Expensive

Data-flow 
analysis

Model 
Checking

CPA



Example Domain:

Predicate Analysis
with Late Abstraction



Control-Flow Automaton

if (p1) {
  x = 1;

}
if (p2) {

  x = 2;
}

...
if (pN) {

  x = N;
}
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[p1] [¬ p1]

 x = 1

[p2] [¬ p2]

 x = 2
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CFA

Precision = Predicate list:
p1, ¬ p1, x=1, p2, ...



  

x = 2

¬ p2p2

x = 1

¬ p1p1
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1 (True)

2 (p1) 3 (¬ p1)

4 (p1 ∧ x=1) 4 (¬ p1)

5 (p1 ∧ x=1
∧ p2)

6 (p1 ∧ 
x=1 ∧ p2)

5 6

7 7 7 7

CFA ART

Precision = Predicate list:
p1, ¬ p1, x=1, p2, ...



Abstract Successors
Abstract state:   ( Φ, ψ )

   Φ: Strongest Post      ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: ( true, x > 0 )

CFA edge:  x := 1

Successor abstract state: ( x = 1, x > 0 )

After predicate abstraction: ( true, x > 0 )



Symbolic Approach  FMCAD'10
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p1 ¬ p1

 x = 1

p2 ¬ p2

 x = 2
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p1 ¬ p1

p1 ∧  x = 1

((p1 ∧  x = 1) ∨ ¬ p1) 
 ∧ p2

¬ p1

Take 
disjunction at 
merge point

(p1 ∧  x = 1) ∨ ¬ p1

((p1 ∧  x = 1) ∨ ¬ p1) 
 ∧ ¬ p2

((p1 ∧  x = 1) ∨ ¬ p1) 
 ∧ p2 ∧ x = 2

((p1 ∧  x = 1) ∨ ¬ p1) 
 ∧ ¬ p2

Take 
disjunction at 
merge point 
again



Abstract Successors
Abstract state:   ( Φ, ψ )

   Φ: Strongest Post      ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: ( true, x > 0 )

CFA edge:  x := 1

Successor abstract state: ( x = 1, x > 0 )

After predicate abstraction: ( true, x > 0 )



  

From a Different Viewpoint
These are purely syntactical operations in 
a number of steps linear in n.
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p1 ¬ p1

 x = 1

p2 ¬ p2

 x = 2

This becomes a big formula 1

((p1 ∧  x = 1) ∨ 
¬ p1 ∧ p2 ∧ x = 2 ) ∨
((p1 ∧  x = 1) ∨ 
¬ p1 ∧ ¬ p2) ∨
…

7



Adjustable-Block Encoding

• We can use more power of SMT

• Disjunctions not handled explicitly
ART not forced to grow exponentially

• Precise boolean abstraction

• Reduced number of abstractions

• Reduced number of refinements



Adjustable Block Size

SBE

   Whole 
Program

Block size

LBE



Configurable Program Analysis

- Better combination of abstractions
 Configurable Program Analysis
     [B/Henzinger/Theoduloz CAV'07]

Unified framework that enables intermediate algorithms

Imprecise
Scalable

Precise
Expensive

Data-flow 
analysis

Model 
Checking

CPA



Dynamic Precision Adjustment
Imprecise

Scalable

   Precise
Expensive

CPA

Better fine tuning of the 
precision of abstractions
 Adjustable Precision
[B/Henzinger/Theoduloz ASE'08]

Unified framework enables: 
- switch on and off different
  analyses, and can 
- adjust each analysis
  separately

• Not only refine, also abstract!



Adjustable Block Size

SBE

   Whole 
Program

Block size

LBE



CPAchecker

CPA



  

CPA – Intermediate Summary

• Unification of several approaches
→  reduced to their essential properties

• Allow experimentation with new 
configurations that we would never think of

• Flexible implementation CPAchecker
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CPAchecker

● Framework for Software Verification
● Written in Java
● Open Source: Apache 2.0 License
● ~40 contributors so far

from 7 universities/institutions
● 335.000 lines of code

(205.000 without blank lines and comments)
● Started 2007

http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org/
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CPAchecker: Features

● Input language C (experimental: Java)
● Web frontend available: 

http://cpachecker.appspot.com
● Error path output with graphs
● Benchmarking infrastructure available

(with large cluster of machines)
● Cross-platform: Linux, Mac, Windows, 

AppEngine, (Android)

http://cpachecker.appspot.com/
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CPAchecker

● Included Concepts:
● CEGAR
● Interpolation
● Adjustable-block encoding

● Further available analyses:
● IMPACT algorithm
● Bounded model checking
● k-Induction
● Conditional Model Checking
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CPAchecker: Concepts

● Completely modular,
and thus flexible and easily extensible

● Every abstract domain is implemented as a
“Configurable Program Analysis” (CPA)

● E.g. predicate abstraction, explicit-value analysis,
intervals, octagon, BDDs, and more

● Algorithms are central and implemented only once
● Separation of concerns
● Combined with Composite pattern
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CPAchecker: Algorithms

● CPAAlgorithm is the core algorithm for
reachability analysis / fixpoint iteration

● Other algorithms can be added if desired,
e.g.,

● CEGAR
● Double-checking counterexamples
● Sequential combination of analyses
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CPAchecker

Source 
Code

Spec

Results
Parser & 

CFA Builder

k-induction 
Algorithm

CEGAR 
Algorithm

CPA 
Algorithm

Spec 
CPA

Location 
CPA

Callstack 
CPA

Predicate 
CPA
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Specification

● Model Checkers check only what you specified
● CPAchecker's default:

● Label ERROR
● Calling function __assert_fail() 
● assert(pred) needs to be pre-processed

● SV-COMP:
● Calling function __VERIFIER_error()
● -spec sv-comp-reachability



CPAchecker for Developers

Want to implement your own analysis?

• Easy, just write a CPA in Java

• Implementations for 10 interfaces needed

• But for 8, we have default implementations
➔ Minimal configuration:

abstract state and
abstract post operator



CPAchecker for Developers

The CPA framework is flexible:

• Many components are provided as CPAs:
– Location / program counter tracking
– Callstack tracking
– Type information
– Specification input (the automata)

• CPAs can be combined, so your analysis 
doesn't need to care about these things
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