
Configurable
Software-Verification

Dirk Beyer

Software Verification

Overapproximation

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

int main() {
 int a = foo();
 int b = bar(a);

 assert(a == b);
}

C program

Verification
Tool

SAFE
 i.e. assertions
cannot be violated

UNSAFE

Reachable
states

Reachable
states Error

states

General method:
Create an
overapproximation of the
program states

Software Verification by
Model Checking

[Clarke/Emerson, Sifakis 1981]

R

…R2

R1

R0

Iterative fixpoint (forward) post computation

Software Verification by
Data-Flow Analysis

Fixpoint computation on the CFG

Software Model Checking

Reached, Frontier := { e0 }

while Frontier   do

remove e from Frontier

for each e’  post(e) do

if  stop(e’, Reached) add e’ to Reached, Frontier

return Reached

Software Verification by
Model Checking

[Clarke/Emerson, Sifakis 1981]

R

…R2

R1

R0

Iterative fixpoint (forward) post computation

Software Verification by
Data-flow Analysis

Fixpoint computation on the CFG

Software Model Checking

Reached, Frontier := { e0 }

while Frontier   do

remove e from Frontier

for each e’  post(e) do

if  stop(e’, Reached) add e’ to Reached, Frontier

return Reached

Configurable Program Analysis
 [CAV 2007]

Reached, Frontier := { e0 }

while Frontier   do

remove e from Frontier

for each e’  post(e) do

for each e’’  Reached do

e’’new := merge(e’, e’’)

if e’’new  e’’ then

replace e’’ in Reached, Frontier by e’’new

if  stop(e’, Reached) add e’ to Reached, Frontier

return Reached

Configurable Program Analysis

- Better combination of abstractions
 Configurable Program Analysis [CAV07]

Unified framework that enables intermediate algorithms

Imprecise
Scalable

Precise
Expensive

Data-flow
analysis

Model
Checking

CPA

Example Domain:

Predicate Analysis
with Late Abstraction

Control-Flow Automaton

if (p1) {
 x = 1;

}
if (p2) {

 x = 2;
}

...
if (pN) {

 x = N;
}

1

2 3

4

5 6

7

[p1] [¬ p1]

 x = 1

[p2] [¬ p2]

 x = 2

x = 2

¬ p2p2

x = 1

¬ p1p1

1

2 3

4

5 6

7

CFA

x = 2

¬ p2p2

x = 1

¬ p1p1

1

2 3

4

5 6

7

CFA

Precision = Predicate list:
p1, ¬ p1, x=1, p2, ...

x = 2

¬ p2p2

x = 1

¬ p1p1

1

2 3

4

5 6

7

1 (True)

2 (p1) 3 (¬ p1)

4 (p1 ∧ x=1) 4 (¬ p1)

5 (p1 ∧ x=1
∧ p2)

6 (p1 ∧
x=1 ∧ p2)

5 6

7 7 7 7

CFA ART

Precision = Predicate list:
p1, ¬ p1, x=1, p2, ...

Abstract Successors
Abstract state: (Φ, ψ)

 Φ: Strongest Post ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: (true, x > 0)

CFA edge: x := 1

Successor abstract state: (x = 1, x > 0)

After predicate abstraction: (true, x > 0)

Symbolic Approach FMCAD'10
1

2 3

4

5 6

7

p1 ¬ p1

 x = 1

p2 ¬ p2

 x = 2

1

2 3

4

5 6

7

p1 ¬ p1

p1 ∧ x = 1

((p1 ∧ x = 1) ∨ ¬ p1)
 ∧ p2

¬ p1

Take
disjunction at
merge point

(p1 ∧ x = 1) ∨ ¬ p1

((p1 ∧ x = 1) ∨ ¬ p1)
 ∧ ¬ p2

((p1 ∧ x = 1) ∨ ¬ p1)
 ∧ p2 ∧ x = 2

((p1 ∧ x = 1) ∨ ¬ p1)
 ∧ ¬ p2

Take
disjunction at
merge point
again

Abstract Successors
Abstract state: (Φ, ψ)

 Φ: Strongest Post ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: (true, x > 0)

CFA edge: x := 1

Successor abstract state: (x = 1, x > 0)

After predicate abstraction: (true, x > 0)

From a Different Viewpoint
These are purely syntactical operations in
a number of steps linear in n.

1

2 3

4

5 6

7

p1 ¬ p1

 x = 1

p2 ¬ p2

 x = 2

This becomes a big formula 1

((p1 ∧ x = 1) ∨
¬ p1 ∧ p2 ∧ x = 2) ∨
((p1 ∧ x = 1) ∨
¬ p1 ∧ ¬ p2) ∨
…

7

Adjustable-Block Encoding

• We can use more power of SMT

• Disjunctions not handled explicitly
ART not forced to grow exponentially

• Precise boolean abstraction

• Reduced number of abstractions

• Reduced number of refinements

Adjustable Block Size

SBE

 Whole
Program

Block size

LBE

Configurable Program Analysis

- Better combination of abstractions
 Configurable Program Analysis
 [B/Henzinger/Theoduloz CAV'07]

Unified framework that enables intermediate algorithms

Imprecise
Scalable

Precise
Expensive

Data-flow
analysis

Model
Checking

CPA

Dynamic Precision Adjustment
Imprecise

Scalable

 Precise
Expensive

CPA

Better fine tuning of the
precision of abstractions
 Adjustable Precision
[B/Henzinger/Theoduloz ASE'08]

Unified framework enables:
- switch on and off different
 analyses, and can
- adjust each analysis
 separately

• Not only refine, also abstract!

Adjustable Block Size

SBE

 Whole
Program

Block size

LBE

CPAchecker

CPA

CPA – Intermediate Summary

• Unification of several approaches
→ reduced to their essential properties

• Allow experimentation with new
configurations that we would never think of

• Flexible implementation CPAchecker

27

CPAchecker

● Framework for Software Verification
● Written in Java
● Open Source: Apache 2.0 License
● ~40 contributors so far

from 7 universities/institutions
● 335.000 lines of code

(205.000 without blank lines and comments)
● Started 2007

http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org/

28

CPAchecker: Features

● Input language C (experimental: Java)
● Web frontend available:

http://cpachecker.appspot.com
● Error path output with graphs
● Benchmarking infrastructure available

(with large cluster of machines)
● Cross-platform: Linux, Mac, Windows,

AppEngine, (Android)

http://cpachecker.appspot.com/

30

CPAchecker

● Included Concepts:
● CEGAR
● Interpolation
● Adjustable-block encoding

● Further available analyses:
● IMPACT algorithm
● Bounded model checking
● k-Induction
● Conditional Model Checking

31

CPAchecker: Concepts

● Completely modular,
and thus flexible and easily extensible

● Every abstract domain is implemented as a
“Configurable Program Analysis” (CPA)

● E.g. predicate abstraction, explicit-value analysis,
intervals, octagon, BDDs, and more

● Algorithms are central and implemented only once
● Separation of concerns
● Combined with Composite pattern

32

CPAchecker: Algorithms

● CPAAlgorithm is the core algorithm for
reachability analysis / fixpoint iteration

● Other algorithms can be added if desired,
e.g.,

● CEGAR
● Double-checking counterexamples
● Sequential combination of analyses

33

CPAchecker

Source
Code

Spec

Results
Parser &

CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

34

Specification

● Model Checkers check only what you specified
● CPAchecker's default:

● Label ERROR
● Calling function __assert_fail()
● assert(pred) needs to be pre-processed

● SV-COMP:
● Calling function __VERIFIER_error()
● -spec sv-comp-reachability

CPAchecker for Developers

Want to implement your own analysis?

• Easy, just write a CPA in Java

• Implementations for 10 interfaces needed

• But for 8, we have default implementations
➔ Minimal configuration:

abstract state and
abstract post operator

CPAchecker for Developers

The CPA framework is flexible:

• Many components are provided as CPAs:
– Location / program counter tracking
– Callstack tracking
– Type information
– Specification input (the automata)

• CPAs can be combined, so your analysis
doesn't need to care about these things

	Slide 1
	Slide 2
	Software Verification by Model Checking [Clarke/Emerson, Sifakis 1981]
	Software Verification by Data-flow Analysis
	Software Model Checking
	Slide 6
	Slide 7
	Software Model Checking
	Configurable Program Analysis [CAV 2007]
	Configurable Program Analysis
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

