Practical Issues of
Software Verification

Dirk Beyer

l\"/ UNIVERSITAT
““&4(| PASSAU

State of the Art

* Much progress in MC theory & algorithms

* Practical issues in industrial applications

* Problems:
- Large size of individual verification tasks
- Large number of verification tasks

|deas

e Combine verification tools

* Reuse partial and intermediate results

e Withesses for results validation

 Tests from Verification

Classic Verification

C program

int main()
int a
int b

assert(a == b);

}

Verification
Tool

Specification

SAFE

‘ l.e., assertions

cannot be violated

‘ UNSAFE

Stateful Verification

C program

int main()
int a
int b

assert(a == b);

}

Verification
Tool

|

Specification

State

SAFE

‘ l.e., assertions

cannot be violated

” UNSAFE

Applications of Stateful
Verification

* Better performance by remembering
successful (intermediate) results

* Regression Verification

* Certify results (verification withesses)

LMU
Verification Center

FSE 2012

Conditional Model Checking:
A Technique to Pass Information between Verifiers

Dirk Beyer
University of Passau
Germany

Thomas A. Henzinger
IST Austria
Austria

ABSTRACT

Software model checlking, as an undecidable problem, has
three possible outcomes: (1) the program satisfies the spec-
ification, (2) the program does not satisfy the specification,
and (3) the model checker fails. The third outcome usually
manifests itself in a space-out, time-out, or one component
of the verification tool giving up; in all of these failing cases,
significant computation is performed by the verification tool
before the failure, but no result is reported. We propose to
reformulate the model-checking problem as follows, in or-
der to have the verification tool report a summary of the
performed work even in case of failure: given a program
and a specification, the model checker returns a condition ¥
—usually a state predicate— such that the program satisfies
the specification under the condition ¥ —that is, as long as
the program does not leave the states in which W is satisfied.
In our experiments, we investigated as one major application
of conditional model checking the sequential combination of
model checkers with information passing. We give the con-

A s Al et s el sl Al sl s] i e s A R s i]

Philipp Wendler
University of Passau
Germany

M. Erkan Keremoglu
Simon Fraser University
Canada

1. INTRODUCTION

Model checking is an automatic search-based procedure
that exhaustively verifies whether a given model (e.g., la-
beled transition system) satisfies a given specification (e.g.,
temporal-logic formula) [E Since model checking of
software 1s an undecidable problem, there are three possible
outcomes of the analysis process: (1) the program satisfies
the specification, (2) the program does not satisfy the spec-
ification, and (3) the model checker fails. The first outcome
can be obtained by the model checker if the abstract model
that was computed for the program is sufficient to prove
the program correct under the given specification. This out-
come can be accompanied by a proof certificate . The
second outcome can be obtained by the model checker if an
abstract counterexample path is found and can be proven
feasible, i.e., a bug that can actually oceur in the program.
This outcome is usually accompanied by the violating pro-
gram part in the form of program source code, and some-
times test input to reproduce the error at run-time m The
third ovteorme 1m=1allsy oectrs 1F the model checdoer rans ot

Software Verification

C program

int main()
int a
int b

assert(a == b);

}

Verification
Tool

Specification

SAFE

‘ l.e., assertions

cannot be violated

‘ UNSAFE

I N

o 0 N O O

10
11
12
13
14

Problem:
Single Analysis not Effective

void main () <
if (nondet_int ()) {
int 1;
for (i = nondet_int ();
/7S ..

}
assert (i >= 1000000);

} else {
int x
int vy
int r X Y,
assert (r >= x);

5;
6 ;
X

i < 1000000;

i++) A

10

Model Checking

System + Property

4

Model
Checker

" 4)

SAFE UNSAFE

11

Classic Model Checking

System + Property

4

Model
Checker

" 4)

SAFE UNSAFE

FAILURE

12

Classic Model Checking

System + Property

4

Unsound Model Incomplete
(overflows) Checker (non-linear operations)
— False negatives — False positives
(missed bugs = disaster) l s (false alarms = noise)
SAFE UNSAFE
FAILURE

13

Classic Model Checking

System + Property

4

Model
Checker
* Timeout
* Out of memory
* Crash of component
. rand ex lon
EAILURE Operand exceptio

Enormous amounts of resources wasted!
14

Conditional Model Checking

FSE 2012, joint work with Tom Henzinger,
Erkan Keremoglu, Philipp Wendler

15

Conditional Model Checking

System + Property

4

Model
Checker

4

L 4
(“SAFE under Condition ¥”)

Examples: -W =true: previous SAFE
- Y =false: previous UNSAFE
- general: condition for safety

Conditional Model Checking

System + Property Condition W_

‘ l Directs the analysis

to parts to analyze

Model
Checker

4

L 4
(“SAFE under Condition ¥”)

Examples: -W =true: previous SAFE
- Y =false: previous UNSAFE

- general: condition for safety 17

Applications of
Conditional Model Checking

18

O 00 N 6 g k&= W N o=

e = T O
O = W N = O

Back to Our Example

void main () <
if (nondet_int ()) {
int 1;
for (i = nondet_int ();
/S ...
}
assert (i >= 1000000);
} else {
int x = b;
int y = 6;
int r = x * y;
assert (r >= x);
}
}

i < 1000000;

i++) A

19

Back to Our Example

To show:
M =&

In this case:
b=0p, &P,
with @, = “loop Is correct”
and @, = “multiplication is correct”

20

ldea: Decompose!

« Verify @, (“loop Is correct”)
— use predicate analysis

« Verify @, (“multiplication is correct”)
— use explicit-state analysis

 Final result;: ® verified

21

Using CMC with Input Conditions

 Tell model ¢
* |n our exam

~0r coNeC

necker what to verify

nle:
itional mode

~0r cong

—ull verif

itional mode
ication possi

checker 1: verify @,
checker 2: verify @,

nle

22

More General:

State space to verify

23

More General:

State space to verify

Verified by
model checker 1

24

More General:

State space to verify

Verified by
model checker 2

Verified by
model checker 1

25

Further Input Conditions

e Limit resources
- Time
- Memory

— Model Checker will not crash, but terminate itself and
give useful result

* Restrict the search
— Loop bounds (a.k.a. “bounded model checking”)
- Path length
— Time spent on path

26

Output Conditions

* Dump partial result if analysis didn't finish
— Output cond. summarizes what could be verified

* Explicitly state assumptions used by MC
- Example: “variable x does not overflow”

* Purpose:
— Give information to the user

— Verify condition with other methods
(testing, manual proofs, ...)

— Comparison of checkers
(weaker output condition is better)
27

Sequential Composition

In our example,
we told the model checkers what to verify

Now let them find out automatically!

Conditional model checker 1 verifies
what it can verify

Conditional model checker 2 verifies
remaining parts

28

Sequential Composition

* Use Input condition to limit resource usage
of first analysis

* Use output condition
as Input condition for next model checker

* |terate until finished (or run out of tools)

29

Sequential Composition

State space to verify

30

Sequential Composition

State space
partially verified

31

Sequential Composition

State space
partially verified

32

Sequential Composition

State space
fully verified

W

\3

33

Experiment:

Sequential Composition
* Implemented Conditional Model Checking
iIn CPAchecker

* 85 C programs based on “hard” programs
of Software Verification Competition 2012

* 15 min time, 15 GB RAM

34

Experiment:
Sequential Composition

. Explicit-value analysis
. Predicate analysis
. Conditional model checking

— First: explicit-value analysis
with input condition: time limit = 100s
— Second: predicate analysis

with output condition of first analysis
as input condition

35

Timeins

Experiment:
Sequential Composition

1000 ¢
100 5|
LOiE b
: EXPlIEIL — % E
Predicate

CondkmnPIModeIChecHng ——f—— 1

10 20 30 40 50 60 70

n-th fastest result

> Sequential composition
solves more problems and is faster

80

36

Experiment:
Sequential Composition

. Explicit-value analysis ; predicate analysis
. Explicit-value analysis ; predicate analysis

— Input condition for first analysis:
time limit = 100s

. Conditional model checking

— First: explicit-value analysis
with input condition: time limit = 100s
— Second: predicate analysis

with output condition of first analysis
as input condition

37

Timeins

Experiment:

Sequential Composition

1000 ¢
100 2 il
i
108 = |
; Expl.&Pred. —+— f
Expl. (100s)&Pred. —x— |

Condition‘al Model Checking +

10 20 30 40 50 60

n-th fastest result

> Using conditional model checking
for sequential composition is better

70

80

38

Summary Part 1

Conditional Model Checking:

— Terminates with useful results
(no crashes)

— Enables partial / compositional verification

— Effective sequential composition
(solve harder problems)

— Unified view on existing approaches

39

Stateful Verification

C program

int main()
int a
int b

assert(a == b);

}

Verification
Tool

|

Specification

State

SAFE

‘ l.e., assertions

cannot be violated

” UNSAFE

40

Towards Reusing Information

e Context: CEGAR-based verification

* Abstract model has to be constructed
every time a verification task Is started
— Refinements of Precision
— Reconstruction and Pruning of ARG

41

Precision Reuse
for Efficient
Regression Verification

(Published in Proc. ESEC/FSE 2013, ACM.)

Dirk Stefan Evgeny Andreas Philipp

Beyer Lowe Novikov ~ Stahlbauer \endier
(7" -#_;r-; | P

=

¥

UNIVERSITAT UNIVERSITAT

’i’%& PASSAU ’F% PASSAU

LinuX Driver Verification

Revision Commit Message Safe?

3
4

3}
6
7
8
9

10
11
12

Example

Implement button detection support

Free MICDET IRQ on error during
probe

fix typos in extcon-arizona

Use bypass mode for MICVDD
Merge tag 'driver-core-3.6’ of ...
unlock mutex on error path in ...
remove use of devexit

remove use of devinit

remove use of devexit p

Merge tag 'pull req 20121122’ of ...

X

N X X X \ X X X X

44

High Resource Consumption!

Software Verification Is expensive

Verifying all safety properties for all revisions
of a software ...

500 drivers

* 60 properties

* 2 before/after
60 000 verification tasks

* 10 seconds/verification task
600 000 seconds

=~ 7 days

... Is really expensive 45

LMU
Verification Center

Reuse of Verification Results

Drawbacks of existing approaches
— Too large: space on disk, time for loading
- Too sensitive to changes between revisions

— Too complex: modification of the verification
algorithm

= Reuse the “precision”

47

Precision TT

Defines the within an
abstract domain:

that an abstraction-based analysis
has to prove a property.

48

Examples for Precision

* Predicate Analysis

Set of predicates used to compute boolean
abstractions

* Explicit-Value Analysis

Set of variables for which the explicit value has
to be tracked

* Shape Analysis
Set of pointer variables to track

49

Explicit-Value {b, a}
Predicate {b==7,a==1}

50

Advantages
of Reusing Precisions

No modification of the verification algorithnr
Easy to extract from model checkers

Small memory footprint
&'

INn the Input programs

Low sensitivity to changes
ol

CEGAR

Program
—

v

Model Checking

Path to error
(counterexample)

Check feasibility

Counterexample infeasible

52

CEGAR + Reuse

Program
—

Model Checking

Path to error
(counterexample)

Check feasibility

Counterexample infeasible

53

Advantages
of Reusing Precisions

No modification of the verification algorithnr
Easy to extract from model checkers

Small memory footprint
a.

INn the Input programs

Low sensitivity to changes
24

Implementation

http://cpachecker.sosy-lab.org

* Implemented in CPAchecker c A\/
- Predicate Analysis
- Explicit-State Analysis

 Common to both analyses:

— Lazy abstraction
- CEGAR
— Construct an abstract reachability graph

55

Workflow

Revision N

Erecision N-1

56

Stateful Verification

C program

int main()
int a
int b

assert(a == b);

}

Verification
Tool

|

Specification

State

SAFE

‘ l.e., assertions

cannot be violated

” UNSAFE

57

Storing Precisions

Explicit-State Analysis Predicate Analysis

(declare-fun |lock|() Real)
(declare-fun |x]|() Real)
(define-fun ti() Bool (= |lock]| 0))
(define-fun t2() Bool (<= [x]| 1))

*

(assert t1)

main f:
(assert t2)

Really simple!

58

Benchmark Suite

* Derived from industrial code (Linux kernel)
— 4193 verification problems
— 62 Linux device drivers

- 1119 revisions
spanning more than 5 years of development

* Publicly available

ﬂhttp://sosy-lab.org/~dbeyer/cpa-reuse/}

59

Benchmark Setup

* Processor: Intel 17 3.4 GHz Quad Core
* Time limit: 15 minutes
* Memory limit: 15 GB

= Setup of the Intl. Competition on Software Verification

60

Analysis CPU Time with Reuse —

500

50

0.1

C,DU :
me jp Secq
nds

ithout Reuse

better

Analysis CPU Time with Reuse —

500

50

10

0.5

0.1

R eS U ItS for Predicate Analysis

K s
| I

0.1

Analysis CPU Time with Reuse —

500

R eS U ItS for Predicate Analysis

Tasks

Analysis
CPU Time

without Reuse

Analysis
CPU Time
with Reuse

Speedup

Solved

4193

83 000

23 000

4048 + 30

Summary — Part 2

Precision reuse has a
significant positive effect!

* Drastically Improves performance
— Reduces the number of refinements

* More problems can be solved
* Low sensitivity to changes in the program code

Reusing Withesses

* Learn from previous proofs
* |f you know a previous error path,
— check this first, try to “re-play”
* If you know a previous proof,
- try to “re-validate”, watch for changes

65

Correctness Witnesses:
Exchanging Verification Results
between Verifiers

Dirk Beyer, Matthias Dangl,
Daniel Dietsch, and Matthias Heizmann

UNIVERSITAT
//f((PASSAU-

Beyer, Dangl, Dietsch,

Program

Heizmann

_ U
s

PASSAU

Result (True/False)

NIVERSITAT

a4

A LBERT-LUDWIGS-
UNIVERSITAT FREIBURG

N

Software Verification with Witnesses

Program

@ALBER’F—LU DWIGS-

UNIVERSITAT FREIBURG 2/ 14

UNIVERSITAT .
Beyer, Dangl, Dietsch, Heizmann //;:]PASSAU LM

Witness Validation

Program

Result (True/False)

» Validate untrusted results

» Easier than full verification

‘X “* ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG 2 // 14

L |UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann //;:;‘PASSAU

Stepwise Testification

Program Program

Witness
Testifier

@ALBER’F—LU DWIGS-

UNIVERSITAT FREIBURG 2/ 14

UNIVERSITAT .
Beyer, Dangl, Dietsch, Heizmann //;:]PASSAU LM

Beyer, Dangl, Dietsch, Heizmann

Violation Witnesses

Violation Witness

BB ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

L > |UNIVERSITAT
//DE‘ PASSAU

/ 14

Beyer, Dangl, Dietsch, Heizmann

Violation Witness

i

Abstract
Counterex.

Test
Case

) UNIVERSITAT
”m PASSAU

BERT-LUDWIGS-

LI
UNIVERSITAT FREIBURG

Beyer, Dangl, Dietsch, Heizmann

FSE'15

Violation Witness

Abstract
Counterex.

) UNIVERSITAT
”m PASSAU

Test
Case

LBERT-LUDWIGS-
UNIVERSITAT FREIBURG

Search-Space Reduction
for Stepwise Testification

JK—';%ALBERT—LU DWIGS-

UNIVERS ITAT FREIBURG

__[UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann //DJII‘PASSAU

.
v
~
~e.

Beyer, Dangl, Dietsch, Heizmann

UNIVERSITAT

~“Z&4(| PASSAU

BERT-LUDWIGS-

LI
UNIVERST

'TAT FREIBURG

Beyer, Dan

~~~~~

T~ - -0
-————

gl, Dietsch, Heizmann

Search-Space Reduction
for Stepwise Testification

Entry

%@M &‘@

Error

a5 UNI\/ERS\TAT . @ ALBERT-LUDWIGS.

/14



Beyer, Dan

Search-Space Reduction
for Stepwise Testification

Entry

Error
——— Stepwise Testification +——

L %ALBER:F—LU DWIGS-
UNIVERSITAT FREIBURG

~ UNIVERSITAT
gl, Dietsch, Heizmann //;};‘PASSAU

/14



Search-Space Reduction
for Stepwise Testification

Entry

Error
——— Stepwise Testification +——

L ¥ |UNIVERSITAT {%‘Am
Beyer, Dangl, Dietsch, Heizmann //;:;‘PASSAU UNIVERSITAT FREIBURG

/14



Correctness: State of the Art

1. Rarely any additional information

@ALBER’I?LUD\V[GS-

UNIVERSITAT FREIBURG 5/ 14

> UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann //;:;‘PASSAU




Correctness: State of the Art

1. Rarely any additional information

2. Not human readable

JK%ALB]:RI LUDWIGS-

UNIVERSITAT FREIBURG

UN\\/ERS\TAT
Beyer, Dangl, Dietsch, Heizmann /;:]

/ 14



Beyer, Dangl, Dietsch, Heizmann

Rarely any additional information
Not human readable

Not easily exchangeable across tools

BERT-LUDWIGS-

M/‘H\\\ ERSITAT
\U

e (U

L -
UNIVERSITAT FREIBURG

o



Standardized way to document verification results
to enhance engineering processes required

a0

A LBERT-LUDWIGS-
UNIVERSITAT FREIBURG

_ UNIVERSITA
Beyer, Dangl, Dietsch, Heizmann /’m PASSAU



Standardized way to document verification results
to enhance engineering processes required

Difficult to establish trust in results from an
untrusted verifier

- r UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann ({! PASSAU

LBERT-LUDWIGS-
UNIVERSITAT FREIBURG




Standardized way to document verification results
to enhance engineering processes required

Difficult to establish trust in results from an
untrusted verifier

Potential for synergies between tools and techniques is
left unused

BERT-LUDWIGS-
SITAT FREIBURG

V| UNIVERSITA




FSE'15

Violation Witness

Abstract
Counterex.

Test
Case

/,’H/‘U\\\\. ERSITAT
Beyer, Dangl, Dietsch, Heizmann @L(|PASSAU

BERT-LUDWIGS-

LI
UNIVERST

'TAT FREIBURG



Witness

i

FSE'15

Violation Witness Correctness Witness
-- —.-I-r —_— - -
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Abstract |1 1 11110 | Test
Counterex. Case
_ o UNIVERSITAT LBERT-LUDWIGS-

Beyer, Dangl, Dietsch, Heizmann (! PASSAU UNIVERSITAT FREIBURG



Witness

i

FSE'15
Violation Witness Correctness Witness
Abstract Test scC PCC
Counterex. Case

Taleghani & Atlee, ASE'10 Necula, POPL'97

“ALBERT-LUDWIGS-
J] ERSITAT FREIBURG



Witness

i

FSE'15

Violation Witness Correctness Witness

Abstract Test
Counterex. Case

SCC PCC

Taleghani & Atlee, ASE'10 Necula, POPL'97

“ALBERT-LUDWIGS-
J] ERSITAT FREIBURG



Full proofs seem nice, but in practice become too large
Witnesses support, but do not enforce full proofs

Instead, correctness witnesses may also represent
proof sketches

BERT-LUDWIGS-
SITAT FREIBURG




Correctness Witnesses

[P]+[¥]

@ALBERT—LUDWGS-

UNIVERSITAT FREIBURG 9/ 14

UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann //;(Hz‘PASSAU



Correctness Witnesses

-

@ALBERT—LUDWIGS-

UNIVERSITAT FREIBURG 9/ 14

UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann //;(H;‘PASSAU



Beyer, Dangl, Dietsch, Heizmann

Correctness Witness

LBERT-LUDWIGS-

. UNIVERSITAT
/’m PASSAU UNIVERSITAT FREIBURG



Verifier

Beyer, Dangl, Dietsch, Heizmann

T (P|E|®
|

Correctness Witness

UNIVERSITAT

“Z&L(|PASSAU

AN
B ALBERT-LUDWIGS-
LM UNIVERSITAT FREIBURG




( T (P|E|®
Verifier | < |

Correctness Witness

Validator

4
) UNIVERSITAT \§ LBERT-LUDWIGS-
Beyer, Dangl, Dietsch, Heizmann /’m PASSAU UNIVERSITAT FREIBURG



( T (P|E|®
Verifier | < |

Correctness Witness

Validator

A
S8 ALBERT-LUDWIGS-
[VERSITAT FREIBURG 9 14

/,’H/‘U\\\. ERSITAT
Beyer, Dangl, Dietsch, Heizmann @L(|PASSAU




( T (P|E|®
Verifier | < |

Correctness Witness

]
P |E|®

Validator

SR ALBERT-LUDWIGS-
ERSITAT FREIBURG

/]m/“\,‘\\\.\\i')\ AT .
3eyer, Dangl, Dietsch, Heizmann @4 PASSAU L



Verifier | <

Testifier <

T (P|E|®
|

Correctness Witness

]
P |E|®
|

Correctness Witness 2

SR ALBERT-LUDWIGS-
ERSITAT FREIBURG



Witness Automata

» Express witness as automaton

= UNIVERSITAT “ “ALBER’I'-LUD\V[GS-
Beyer, Dangl, Dietsch, Heizmann //;:;‘PASSAU UNIVERSITAT FREIBURG 10/ 14




Express witness as automaton

Witness Validation matches the witness to the program

LBERT-LUDWIGS-
UNIVERSITAT FREIBURG

/’m NIVERSITAT
Beyer, Dangl, Dietsch, Heizmann @L(|PASSAU

10



Express witness as automaton
Witness Validation matches the witness to the program

Decoupled from specific verification techniques and
implementations

LN

BERT-LUDWIGS-
UNIVERSITAT FREIBURG



Express witness as automaton
Witness Validation matches the witness to the program

Decoupled from specific verification techniques and
implementations

One common exchange format for violation witnesses
and correctness witnesses

BERT-LUDWIGS-
UNIVERSITAT FREIBURG



1
2
3
4
5
6
7
8
9

10

un r

m NIVERSITAT
Beyer, Dangl, Dietsch, Heizmann II& PASSAU

int main() {

unsigned int x nondet () ;

unsigned int y = x;
while (x < 1024) {
Xx = x + 1;
y =y + 1;
}
// Safety property
assert(x == y);

return O;

"ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG 11




J
int main() { a

1
2
3
4
5
6
7
8
9

10

un r

//HT UNIVERS!
Beyer, Dangl, Dietsch, Heizmann @4(| PASSAU

unsigned int x nondet () ;

unsigned int y = x;
while (x < 1024) {
Xx = x + 1;
y =y + 1;
}
// Safety property
assert(x == y);

return O;

"ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG




o/w
1 int main() {
2 unsigned int x = nondet (); 3,enterLoopHead:
3 unsigned int y = x;
+ while (x < 1024) {
5 x = x + 1;
6 y =y + 1;
7}
s // Safety property
9 assert(x == y);
10 return O;

un r

“ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG 11

//HT UNIVERS!
Beyer, Dangl, Dietsch, Heizmann @4(| PASSAU



1
2
3
4
5
6
7
8
9

10

un r

int main() {

unsigned int x
unsigned int y = x;
while (x < 1024) {

x = x + 1;

y =y + 1
}
// Safety property
assert(x == y);

return O;

//HT UNIVERS!
Beyer, Dangl, Dietsch, Heizmann @4(| PASSAU

nondet () ;

= ()

4.then:

true ‘

"ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

o/w

3,enterLoopHead:



J
int main() { a

1

2 unsigned int x = nondet (); 3,enterLoopHead:
3 unsigned int y = x; o/w

s+  while (x < 1024) { oy

5 Xx = x + 1;

6 y =y +1; 4 then:

7

s // Safety property m a

9 assert(x == y);

10 return O;

u } 6,enterLoopHead:

#ALBERT-LUDWIGS-

_ UNIVERSITA
Beyer, Dangl, Dietsch, Heizmann /’m PASSAU UNIVERSITAT FREIBURG 11



J
int main() { a

1

2 unsigned int x = nondet (); 3,enterLoopHead:
3 unsigned int y = x;

+ while (x < 1024) {

5 x = x + 1;

6 y =y + 1;

A

s // Safety property

9 assert(x == y);

10 return O;

un r

LBERT-LUDWIGS-

_ UNIVERSITA A
> = ALBER .
Beyer, Dangl, Dietsch, Heizmann ’D]P/\SS,—\M UNIVERSITAT FREIBURG 11 / 14



Benchmark set: Competition on Software Verification 2016
(SV-COMP'16)

CPU time: 15 min

Memory: 15 GB

CPACHECKER Wwith k-induction

ULTIMATEAUTOMIZER With automata-based trace
abstraction

/JT“ UNIVERSITAT ALBERT-LUDWIGS-
g \ PASSAU ERSITAT FREIBURG

Beyer, Dangl, Dietsch, Heizmann



Table 8: Confirmation rate of witnesses

Result TRUE FaLse

Total Confirmed Unconfirmed Total Confirmed Unconfirmed

UAUTOMIZER 3558 3481 77 1173 1121 52
SMACK 29047 2695 252 1929 1768 161
CPA-SEQ 3357 3078 279 2342 2315 27

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
TRUE or FALSE: each answer must be accompanied by a verification witness. For
correctness witnesses, an unconfirmed answer TRUE was still accepted, but was
assigned only 1 point instead of 2 (cf. Table . All verifiers in categories that
required witness validation support the common exchange format for violation
and correctness witnesses. We used the two independently developed witness
validators that are integrated in CPAcHEckER and UAUTOMIZER .

T

S8 ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG 13

. UNIVERSITA
Beyer, Dangl, Dietsch, Heizmann //m PASSAU



Stepwise Testification: Classification

e
< Resui>

UNIVERSITAT .
Beyer, Dangl, Dietsch, Heizmann //;(H;‘PASSAU

ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG 13 / 14

=



Beyer, Dangl, Dietsch, Heizmann

< Resul>>

Unknown

sy

Verification
Condition

UNIVERSITAT
PASSAU

B
# ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG




Beyer, Dangl, Dietsch

Heizmann

Unknown

Verification
Condition

Output
condition

Conditional
MC

) \“L‘”JH\‘ RSI

PASSAU

AT

LBERT-LUDWIGS-
UNIVERSITAT FREIBURG



Violation Witness |

Unknown

Verification
Condition

)

o) €s

Output Conditional
condition MC

“Mw RSITAT ALBERT-LUDWIGS

ERSITAT FREIBURG



Violation Output Verification
Testification | [ witness Condition

\

False Rejected No Yes
Output Output Conditional
“Unknown" condition MC

;A\LISI:KT'LL DWIGS-
/ERSITAT FREIBURG



—>{ Violation Witness | [ Verification | | Correctness Witness

Violation Output Verification
Testification | [ witness Condition

\ Y

False Rejected No Yes
Output Output Conditional
“Unknown" condition MC

“ALBERT-LUDWIGS-
/ERSITAT FREIBURG



—>| Violation Witnessl |Verification | | Correctness Witness |<—

w¢ False rue @\

Yes No No Yes
Violation Output Verification|| | Output || Correctness
Testification | | witness Condition witness || Testification

\ Y ¢

True

Fal : .
aise Rejected 0 es Rejected
Output Output Conditional Output
“Unknown" condition MC “Unknown"

e

& ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG



are easy to implement for verifiers that already support
violation witnesses

LBERT-LUDWIGS-
UNIVERSITAT FREIBURG

_ UNIVERSITAT
Beyer, Dangl, Dietsch, Heizmann /’m PASSAU



are easy to implement for verifiers that already support
violation witnesses

enable information exchange across different software
verifiers

TV uNiversiTAT LBERT-LUDWIGS-
UNIVERSITAT FREIBURG 14

Beyer, Dangl, Dietsch, Heizmann ({! PASSAU



are easy to implement for verifiers that already support
violation witnesses

enable information exchange across different software
verifiers

efficiently increase confidence in results by validation

BERT-LUDWIGS-
UNIVERSITAT FREIBURG




Work In Progress:
Execution-Based
Withess-Validation

Dirk Beyer

ol



__________

Practical Impact:

Get Tests from

Verification Tools

Program

1
1
1
1
1
:
| Specification
1
1
1
1
1
1
1

GraphML
Witness

| Program Correct

| CPA-WITNESS2TEST

| FSHELL-WITNESS2TEST

C
Test
Harness

Exe-
cutable

Witness Confirmed
Bug Found

No Bug Found

Witness Spurious



Search-Space Reduction
for Stepwise Testification

-




Produce Withesses

=/

Program

ERCEE

|

|

|

|

|

|

|

: Specification
|

|

|

|

: Witnesses
|

|
|
|
|
|\
|
ULTIMATE
AUTOMIZER




Search-Space Reduction
for Stepwise Testification

Entry




Refine Withesses

__—»(_ CPACHECKER
— ULTIMATE
AUTOMIZER

[\

Witnesses Refined Witnesses



Search-Space Reduction
for Stepwise Testification

Entry

> Stepwise Testification <




Produce Unit Tests
From Withesses

[ @i —

\

/

Witnesses Unit Tests




Search-Space Reduction
for Stepwise Testification

Entry

{" Search space / A

____________ \
4 : . _

A 1 LA

g : :\ |
: A % \{‘
g f « NN \
S .

Error

» Stepwise Testification <



Conclusion

- Turn outcome of verification tools into
objects that the developers can deal with

- Imagine a tool-independent format for
test cases

- Complement test suites with test cases
from verification tools



Summary — Part 3
 Test from Verification



Conclusion

Combine different verification tools
— Conditional Model Checking

Store intermediate results
— Regression Verification, e.g., Precision Reuse

Store witnesses of the verification result
- Withess-Based Results-Validation

Use test cases as interface
— Pass Tests from Verifiers to Development

Reuse: save data, collect data, share data
— Stateful Verification



LMU
Verification Center




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 1
	Slide 2
	Slide 3

