
Configurable
Software Model Checking
— A Unifying View —
Part 1: CPAchecker

Dirk Beyer

Dirk Beyer 1 / 26



Software Verification
C Program

int main() {
int a = foo();
int b = bar(a);

assert(a == b);
}

Verification
Tool

TRUE
i.e., specification
is satisfied

FALSE
i.e., bug found

General method:
Create an overapproximation
of the program states /
compute program invariants

Overapproximation

Reachable
States Error

States

Dirk Beyer 2 / 26



CPAchecker History

I 2002: BLAST with lazy abstraction refinement
I 2003: Multi-threading support
I 2004: Test-case generation, interpolation, spec. lang.
I 2005: Memory safety, predicated lattices
I 2006: Lazy shape analysis
I Maintenance and extensions became extremely difficult

because of design choices that were not easy to revert
I 2007: Configurable program analysis,

CPAchecker was started
as complete reimplementation from scratch

Dirk Beyer 3 / 26



CPAchecker History (2)

I 2009: Large-block encoding
I 2010: Adjustable-block encoding
I 2012: Conditional model checking, PredAbs vs. Impact
I 2013: Explicit-state MC, BDDs, precision reuse
I ...

Dirk Beyer 4 / 26



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint (forward) post computation

R

R2

R1

R0

. . .

Dirk Beyer 5 / 26



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint (forward) post computation

R

R2

R1

R0

. . .

Dirk Beyer 5 / 26



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint (forward) post computation

R

R2

R1

R0

. . .

Dirk Beyer 5 / 26



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint (forward) post computation

R

R2

R1

R0

. . .

Dirk Beyer 5 / 26



Software Model Checking

Reached, Frontier := {e0}
while Frontier 6= ∅ do
remove e from Frontier
for all e’ ∈ post(e) do

for all e” ∈ Reached do
e”new := merge(e’, e”)
if e”new 6= e” then
replace e” in Reached, Frontier by e”new

if ¬stop(e’, Reached) then
add e’ to Reached, Frontier

return Reached

Dirk Beyer 6 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Verification by Data-Flow Analysis

Fixpoint computation on the CFG

Dirk Beyer 7 / 26



Software Model Checking

Reached, Frontier := {e0}
while Frontier 6= ∅ do
remove e from Frontier
for all e’ ∈ post(e) do

for all e” ∈ Reached do
e”new := merge(e’, e”)
if e”new 6= e” then
replace e” in Reached, Frontier by e”new

if ¬stop(e’, Reached) then
add e’ to Reached, Frontier

return Reached

Dirk Beyer 8 / 26



Configurable Program Analysis

Reached, Frontier := {e0}
while Frontier 6= ∅ do
remove e from Frontier
for all e’ ∈ post(e) do
for all e” ∈ Reached do
e”new := merge(e’, e”)
if e”new 6= e” then
replace e” in Reached, Frontier by e”new

if ¬stop(e’, Reached) then
add e’ to Reached, Frontier

return Reached

Dirk Beyer 9 / 26



Configurable Program Analysis

I Better combination of abstractions
→ Configurable Program Analysis [Beyer/Henzinger/Theoduloz CAV’07]

CPAData-flow analysis Model Checking

Imprecise
Scalable

Precise
Expensive

Unified framework that enables intermediate algorithms

Dirk Beyer 10 / 26



Dynamic Precision Adjustment

Lazy abstraction refinement: [Henzinger/Jhala/Majumdar/Sutre POPL’02]

I Different predicates per location and per path
I Incremental analysis instead of restart from scratch after

refinement

Dirk Beyer 11 / 26



Dynamic Precision Adjustment

Better fine tuning of the precision
of abstractions
→ Adjustable Precision

[Beyer/Henzinger/Theoduloz ASE’08]

Unified framework enables:
I switch on and off different

analysis, and can
I adjust each analysis separately

• Not only refine, also abstract!

CPA

Imprecise
Scalable

Precise
Expensive

Dirk Beyer 12 / 26



Adjustable Block-Encoding
I Handle loop-free blocks of statements at once
I Abstract only between blocks
(less abstractions, less refinements)
[Beyer/Cimatti/Griggio/Keremoglu/Sebastiani FMCAD’09]

[Beyer/Keremoglu/Wendler FMCAD’10]

Block size

SBE

Whole ProgramDirk Beyer 13 / 26



CPAchecker
[Beyer/Keremoglu CAV’11]

CPA

Dirk Beyer 14 / 26



CPA – Summary

I Unification of several approaches
→ reduced to their essential properties

I Allow experimentation with new configurations
that we could never think of

I Flexible implementation CPAchecker

Dirk Beyer 15 / 26



CPAchecker

I Framework for Software Verification — current status
I Written in Java
I Open Source: Apache 2.0 License
I ~80 contributors so far from 15 universities/institutions
I 430.000 lines of code
(275.000 without blank lines and comments)

I Started 2007

https://cpachecker.sosy-lab.org

Dirk Beyer 16 / 26

https://cpachecker.sosy-lab.org


CPAchecker: Features

I Input language C (experimental: Java)
I Web frontend available:

https://cpachecker.appspot.com
I Counterexample output with graphs
I Benchmarking infrastructure available
(with large cluster of machines)

I Cross-platform: Linux, Mac, Windows

Dirk Beyer 17 / 26

https://cpachecker.appspot.com


CPAchecker: Achievements

I Among world’s best software verifiers:
https://sv-comp.sosy-lab.org/2018/results/

I Continuous success in competition since 2012
(52 medals: 16x gold, 18x silver, 18x bronze)

I Awarded Gödel medal
by Kurt Gödel Society

I Used for Linux driver verification
with dozens of real bugs found and fixed in Linux

Dirk Beyer 18 / 26

https://sv-comp.sosy-lab.org/2018/results/


CPAchecker: Concepts

I Included Concepts:
I CEGAR
I Interpolation
I Adjustable-block encoding
I Conditional model checking
I Verification witnesses

I Further available analyses:
I Impact algorithm
I Bounded model checking
I k-Induction
I Property-directed reachability

Dirk Beyer 19 / 26



CPAchecker: Concepts

I Completely modular, and thus flexible and easily extensible
I Every abstract domain is implemented as a

"Configurable Program Analysis" (CPA)
I E.g., predicate abstraction, explicit-value analysis, intervals,

octagon, BDDs, memory graphs, and more
I Algorithms are central and implemented only once
I Separation of concerns
I Combined with Composite pattern

Dirk Beyer 20 / 26



CPAchecker: Algorithms

I CPAAlgorithm is the core algorithm
for reachability analysis / fixpoint iteration

I Other algorithms can be added if desired, e.g.,
I CEGAR
I Double-checking counterexamples
I Sequential combination of analyses

Dirk Beyer 21 / 26



CPAchecker: Architecture

Source
Code

Spec

ResultsParser &
CFA Builder

k-induction
Algorithm

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

Dirk Beyer 22 / 26



Try CPAchecker

I Online at Google AppEngine:
https://cpachecker.appspot.com/

I Download for Linux/Windows:
https://cpachecker.sosy-lab.org

I Run scripts/cpa.sh | scripts\cpa.bat
I -predicateAnalysis <FILE>
I Windows/Mac need to disable bitprecise analysis:

-predicateAnalysis-linear
-setprop solver.solver=smtinterpol
-setprop analysis.checkCounterexamples=false

I Look at output/CPALog.txt for problems
I Open .dot files with dotty / xdot (www.graphviz.org/)
I Open graphical report in browser: output/*.html

Dirk Beyer 23 / 26

https://cpachecker.appspot.com/
https://cpachecker.sosy-lab.org
www.graphviz.org/


CPAchecker: Specification

I Model Checkers check only what you specified
I CPAchecker’s default:

I Label ERROR
I Calling function _assert_fail()
I assert(pred) needs to be pre-processed

I SV-COMP:
I Calling function _VERIFIER_error()
I -spec sv-comp-reachability

Dirk Beyer 24 / 26



CPAchecker for Developers

Want to implement your own analysis?
I Easy, just write a CPA in Java
I Implementations for 10 interfaces needed
I But for 8, we have default implementations
→ Minimal configuration:

abstract state and
abstract post operator

Dirk Beyer 25 / 26



CPAchecker for Developers

The CPA framework is flexible:
I Many components are provided as CPAs:

I Location / program counter tracking
I Callstack tracking
I Specification input (as automata)
I Pointer-aliasing information

I CPAs can be combined,
so your analysis doesn’t need to care about these things

Dirk Beyer 26 / 26


