Configurable Software Model Checking

Part 2: A Unifying View on SMT-Based Software Verification

Dirk Beyer

LMU Munich, Germany

Dirk Beyer

Based on: Dirk Beyer, Matthias Dangl, Philipp Wendler: A Unifying View on SMT-Based Software Verification

Journal of Automated Reasoning, Volume 60, Issue 3, 2018

SMT-based Software Model Checking

Predicate Abstraction

(Blast, CPAchecker, Slam, ...)

- ► IMPACT (CPACHECKER, IMPACT, WOLVERINE, ...)
- ► Bounded Model Checking (CBMC, CPACHECKER, ESBMC, ...)
- k-Induction

(CPACHECKER, ESBMC, 2LS, ...)

Motivation

Theoretical comparison difficult:

- different conceptual optimizations (e.g., large-block encoding)
- different presentation

 \rightarrow What are their core concepts and key differences?

Motivation

Theoretical comparison difficult:

- different conceptual optimizations
 - (e.g., large-block encoding)
- different presentation
- \rightarrow What are their core concepts and key differences?
- Experimental comparison difficult:
 - implemented in different tools
 - different technical optimizations (e.g., data structures)
 - different front-end and utility code
 - different SMT solver
 - \rightarrow Where do performance differences actually come from?

Goals

- Provide a unifying framework for SMT-based algorithms
- Understand differences and key concepts of algorithms
- Determine potential of extensions and combinations
- Provide solid platform for experimental research

Approach

- Understand, and, if necessary, re-formulate the algorithms
- Design a configurable framework for SMT-based algorithms (based upon the CPA framework)
- Use flexibility of adjustable-block encoding (ABE)
- Express existing algorithms using the common framework
- Implement framework (in CPACHECKER)

Base: Adjustable-Block Encoding

Originally for predicate abstraction:

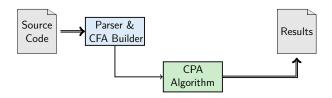
- Abstraction computation is expensive
- Abstraction is not necessary after every transition
- Track precise path formula between abstraction states
- Reset path formula and compute abstraction formula at abstraction states
- Large-Block Encoding: abstraction only at loop heads (hard-coded)
- Adjustable-Block Encoding: introduce block operator "blk" to make it configurable

Base: Configurable Program Analysis

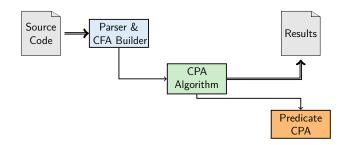
Configurable Program Analysis (CPA):

- Beyer, Henzinger, Théoduloz: [CAV'07]
- One single unifying algorithm for all algorithms based on state-space exploration
- Configurable components: abstract domain, abstract-successor computation, path sensitivity, ...

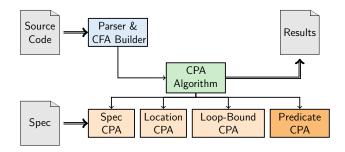
 CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains



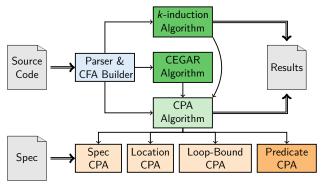
- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain



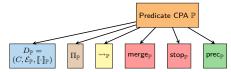
- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs



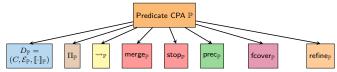
- CPA Algorithm is a configurable reachability analysis for arbitrary abstract domains
- Provide Predicate CPA for our predicate-based abstract domain
- Reuse other CPAs
- Built further algorithms on top that make use of reachability analysis



Predicate CPA



Predicate CPA



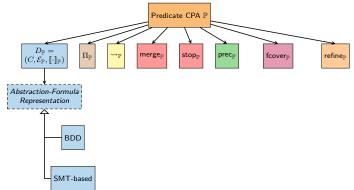
Predicate CPA: Abstract Domain

- Abstract state: (ψ, φ)
 - tuple of abstraction formula ψ and path formula φ (for ABE)
 - conjunctions represents state space
 - abstraction formula can be a BDD or an SMT formula
 - path formula is always SMT formula and concrete

Predicate CPA: Abstract Domain

- Abstract state: (ψ, φ)
 - tuple of abstraction formula ψ and path formula φ (for ABE)
 - conjunctions represents state space
 - abstraction formula can be a BDD or an SMT formula
 - path formula is always SMT formula and concrete
- Precision: set of predicates (per program location)

Predicate CPA



- Transfer relation:
 - computes strongest post
 - changes only path formula, new abstract state is (ψ, φ')
 - purely syntactic, cheap
 - variety of encodings using different SMT theories possible (different approximations

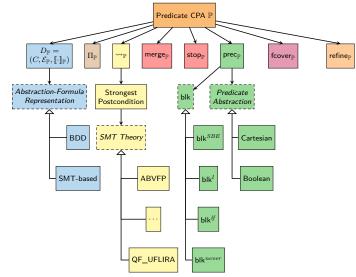
for arithmetic and heap operations)

- Transfer relation:
 - computes strongest post
 - changes only path formula, new abstract state is (ψ, φ')
 - purely syntactic, cheap
 - variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
 - standard for ABE: create disjunctions inside block

- Transfer relation:
 - computes strongest post
 - changes only path formula, new abstract state is (ψ, φ')
 - purely syntactic, cheap
 - variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
 - standard for ABE: create disjunctions inside block
- Stop operator:
 - standard for ABE: check coverage only at block ends

- Transfer relation:
 - computes strongest post
 - changes only path formula, new abstract state is (ψ, φ')
 - purely syntactic, cheap
 - variety of encodings using different SMT theories possible (different approximations for arithmetic and heap operations)
- Merge operator:
 - standard for ABE: create disjunctions inside block
- Stop operator:
 - standard for ABE: check coverage only at block ends
- Precision-adjustment operator:
 - only active at block ends (as determined by blk)
 - computes abstraction of current abstract state
 - new abstract state is $(\psi', true)$

Predicate CPA



Predicate CPA: Refinement

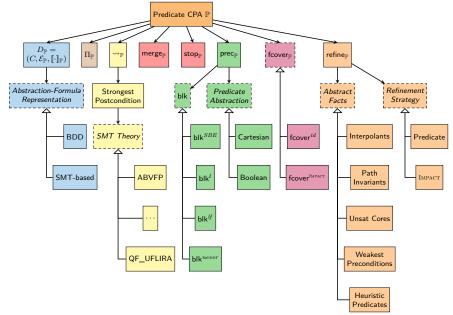
Four steps:

- 1. Reconstruct ARG path to abstract error state
- 2. Check feasibility of path
- 3. Discover abstract facts, e.g.,
 - interpolants
 - weakest precondition
 - heuristics
- 4. Refine abstract model
 - add predicates to precision, cut ARG

or

 conjoin interpolants to abstract states, recheck coverage relation

Predicate CPA



Predicate Abstraction

- Predicate Abstraction
 - ▶ [CAV'97, POPL'02, J. ACM'03, POPL'04]
 - Abstract-interpretation technique
 - \blacktriangleright Abstract domain constructed from a set of predicates π
 - Use CEGAR to add predicates to π (refinement)
 - Derive new predicates using Craig interpolation
 - Abstraction formula as BDD

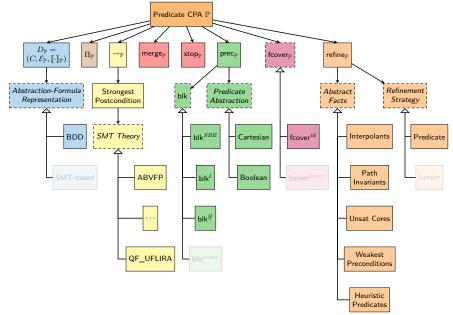
Expressing Predicate Abstraction

- Abstraction Formulas: BDDs
- ▶ Block Size (blk): e.g. blk^{SBE} or blk^l or blk^{lf}
- Refinement Strategy: add predicates to precision, cut ARG

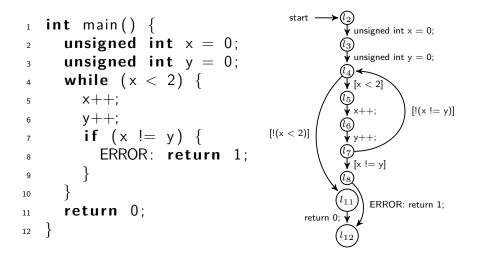
Use CEGAR Algorithm:

- 1: while true do
- 2: run CPA Algorithm
- 3: if target state found then
- 4: call refine
- 5: **if** target state reachable **then**
- 6: **return** false
- 7: **else**
- 8: return *true*

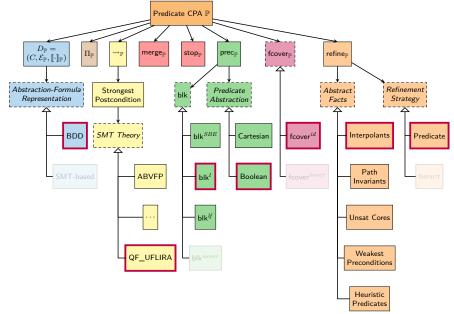
Predicate CPA

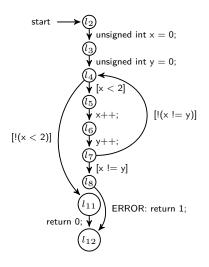


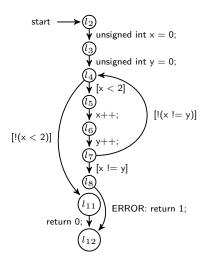
Example Program

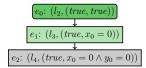


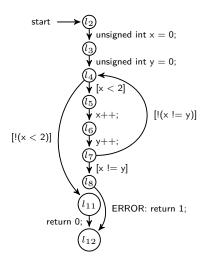
Predicate CPA

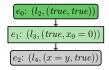


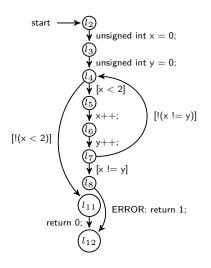


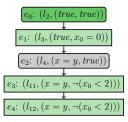


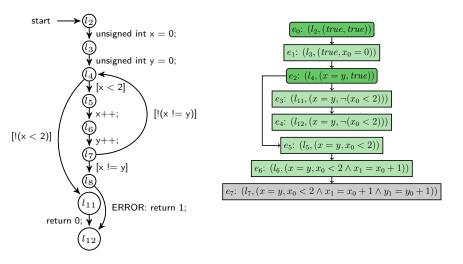


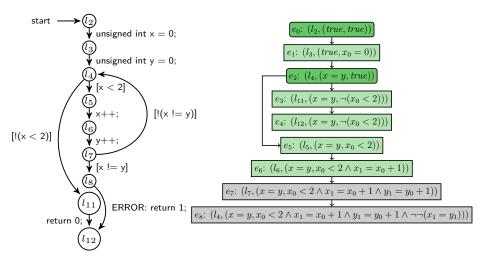


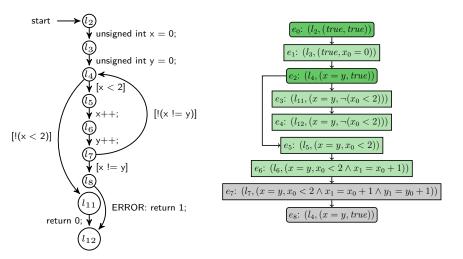


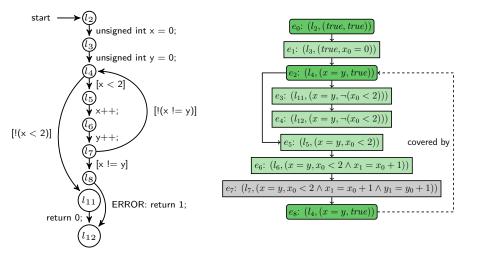


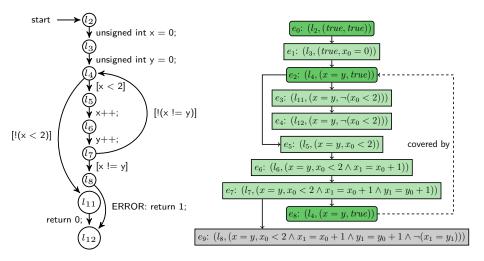


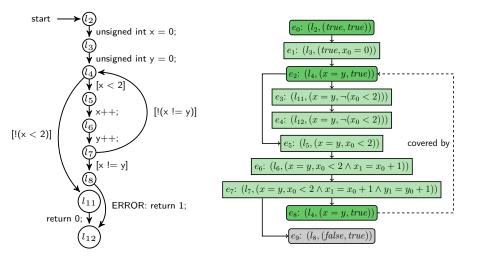


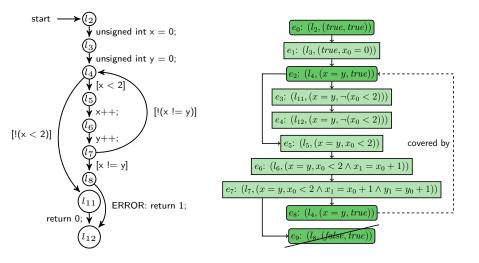












IMPACT

► Impact

- "Lazy Abstraction with Interpolants" [CAV'06]
- Abstraction is derived dynamically/lazily
- Solution to avoiding expensive abstraction computations
- Compute fixed point over three operations
 - Expand
 - Refine
 - Cover
- Abstraction formula as SMT formula
- Optimization: forced covering

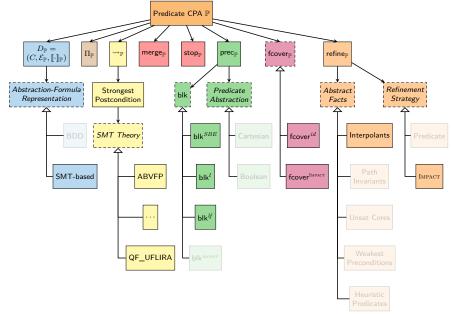
Expressing IMPACT

- Abstraction Formulas: SMT-based
- Block Size (blk): blk^{SBE} or other (new!)
- Refinement Strategy: conjoin interpolants to abstract states, recheck coverage relation

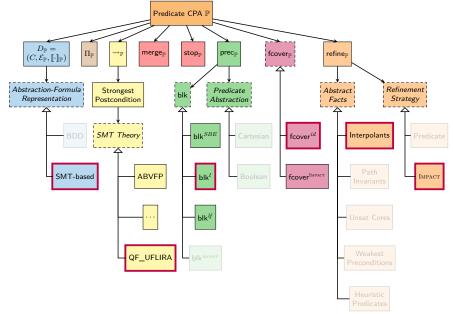
Furthermore:

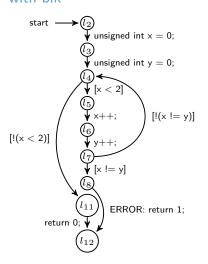
- Use CEGAR Algorithm
- Precision stays empty
 - \rightarrow predicate abstraction never computed

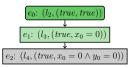
Predicate CPA

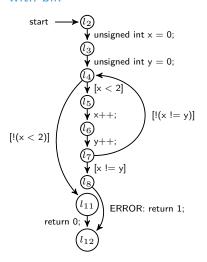


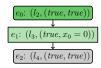
Predicate CPA

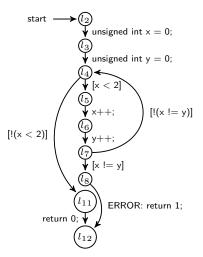


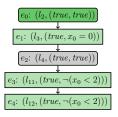


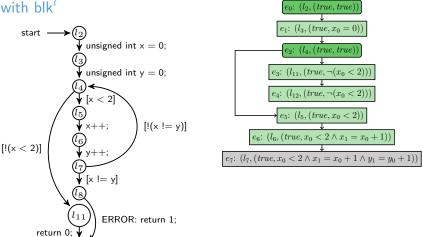




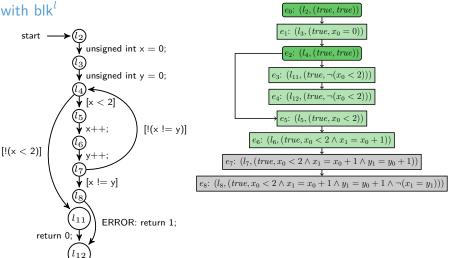


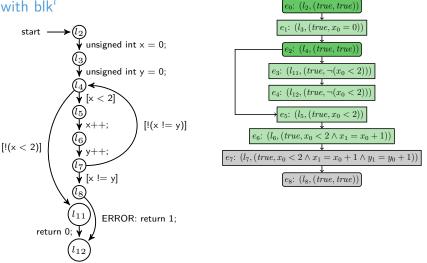


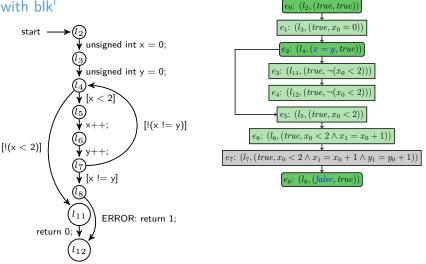


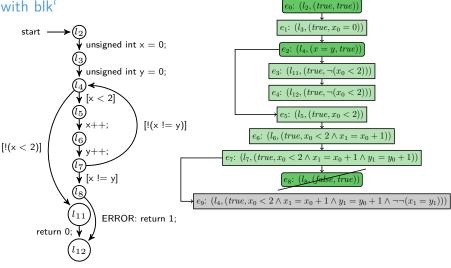


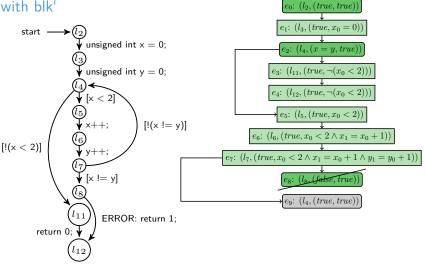
 l_{12}

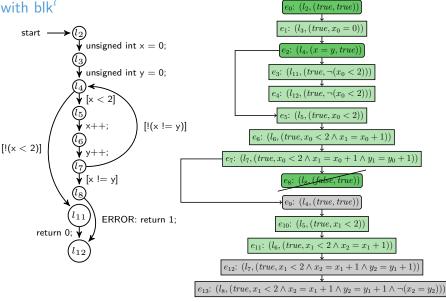


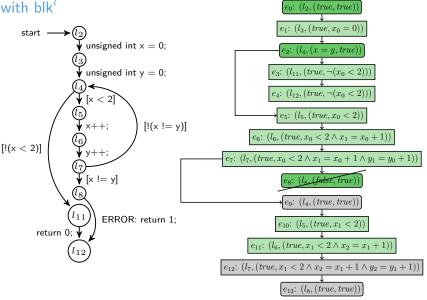




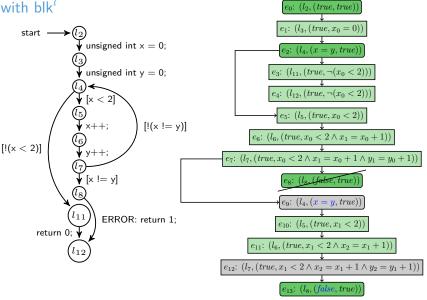








LMU Munich, Germany



LMU Munich, Germany

IMPACT: Example with blk^l e_0 : $(l_2, (true, true))$ $e_1: (l_3, (true, x_0 = 0))$ start ---unsigned int x = 0; e_2 : $(l_4, (x = y, true))$ $e_3: (l_{11}, (true, \neg(x_0 < 2)))$ unsigned int y = 0; e_4 : $(l_{12}, (true, \neg(x_0 < 2)))$ ¥ [× < 2] $e_5: (l_5, (true, x_0 < 2))$ covered by x++; [!(x != y)] e_6 : $(l_6, (true, x_0 < 2 \land x_1 = x_0 + 1))$ [!(x < 2)]y++; e_7 : $(l_7, (true, x_0 < 2 \land x_1 = x_0 + 1 \land y_1 = y_0 + 1))$ [x != y] $l_8, (false, true)$ l_8 $e_9: (l_4, (x = y, true))$ l_{11} ERROR: return 1; e_{10} : $(l_5, (true, x_1 < 2))$ return 0; e_{11} : $(l_6, (true, x_1 < 2 \land x_2 = x_1 + 1))$ l_{12} e_{12} : $(l_7, (true, x_1 < 2 \land x_2 = x_1 + 1 \land y_2 = y_1 + 1))$ e_{13} : $(l_8, (false, true)$

LMU Munich, Germany

Bounded Model Checking

Bounded Model Checking:

- Biere, Cimatti, Clarke, Zhu: [TACAS'99]
- No abstraction
- Unroll loops up to a loop bound k
- Check that P holds in the first k iterations:

$$\bigwedge_{i=1}^{k} P(i)$$

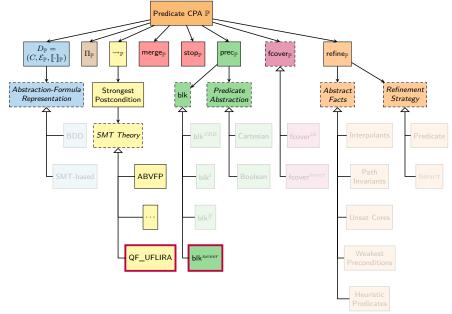
Expressing BMC

Block Size (blk): blk^{never}

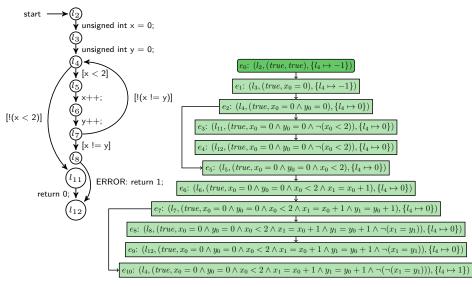
Furthermore:

- Add CPA for bounding state space (e.g., loop bounds)
- Choices for abstraction formulas and refinement irrelevant because block end never encountered
- Use Algorithm for iterative BMC:
 - 1: k = 1
 - 2: while !finished do
 - 3: run CPA Algorithm
 - 4: check feasibility of each abstract error state
 - 5: *k*++

Predicate CPA



Bounded Model Checking: Example with k = 1



1-Induction

- 1-Induction:
 - Base case: Check that the safety property holds in the first loop iteration:

P(1)

 \rightarrow Equivalent to BMC with loop bound 1

► Step case: Check that the safety property is 1-inductive:

$$\forall n : (P(n) \Rightarrow P(n+1))$$

k-Induction

k-Induction generalizes the induction principle:

- No abstraction
- ▶ Base case: Check that P holds in the first k iterations: → Equivalent to BMC with loop bound k
- ▶ Step case: Check that the safety property is *k*-inductive:

$$\forall n: \left(\left(\bigwedge_{i=1}^k P(n+i-1) \right) \Rightarrow P(n+k) \right)$$

- Stronger hypothesis is more likely to succeed
- Add auxiliary invariants
- ► Kahsai, Tinelli: [PDMC'11]

k-Induction with Auxiliary Invariants

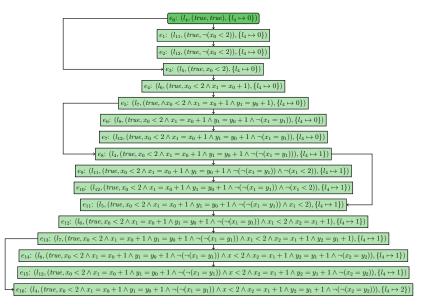
Induction:

- 1: k = 1
- 2: while !finished do
- 3: BMC(k)
- 4: Induction(k, invariants)
- 5: k + +

Invariant generation:

- 1: $prec = \langle weak \rangle$
- 2: invariants = \emptyset
- 3: while !finished do
- 4: invariants = GenInv(prec)
- 5: prec = RefinePrec(prec)

k-Induction: Example



Insights

 BMC naturally follows by increasing block size to whole (bounded) program

Insights

- BMC naturally follows by increasing block size to whole (bounded) program
- ► Difference between predicate abstraction and IMPACT:
 - BDDs vs. SMT-based formulas: costly abstractions vs. costly coverage checks
 - Recompute ARG vs. rechecking coverage
 - We know that only these differences are relevant!
 - Predicate abstraction pays for creating more general abstract model
 - ▶ IMPACT is lazier but this can lead to many refinements
 - \rightarrow forced covering or large blocks help

Evaluation: Usefulness of Framework

- 4 existing approaches successfully integrated
- Ongoing projects for integration of further approaches
- Interesting insights learned about these approaches
- High configurability allows new combinations and hybrid approaches
- Already used as base for other successful research projects

Evaluation: Usefulness of Implementation

Used in other research projects

- Used as part of many SV-COMP submissions, 48 medals
- Also competitive stand-alone

 Awarded Gödel medal by Kurt Gödel Society

Comparison with SV-COMP'17 Verifiers

- 5 594 verification tasks from SV-COMP'17 (only reachability, without recursion and concurrency)
- 15 min time limit per task (CPU time)
- 15 GB memory limit
- Measured with BENCHEXEC
- Comparison of
 - ► 4 configurations of CPACHECKER with Predicate CPA: BMC, *k*-induction, IMPACT, predicate abstraction
 - 16 participants of SV-COMP'17

Comparison with SV-COMP'17 Verifiers: Results

Number of correctly solved tasks:

- Each configuration of Predicate CPA beats other tools with same approach
- Only 3 tools beat Predicate CPA with k-induction:
 - ► SMACK: guesses results
 - CPA-BAM-BNB, CPA-SEQ: based on Predicate CPA as well

Comparison with SV-COMP'17 Verifiers: Results

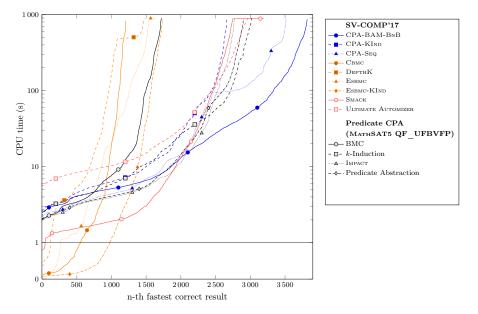
Number of correctly solved tasks:

- Each configuration of Predicate CPA beats other tools with same approach
- Only 3 tools beat Predicate CPA with k-induction:
 - ► SMACK: guesses results
 - CPA-BAM-BNB, CPA-SEQ: based on Predicate CPA as well

Number of wrong results:

- Comparable with other tools
- No wrong proofs (sound)

Comparison with SV-COMP'17 Verifiers



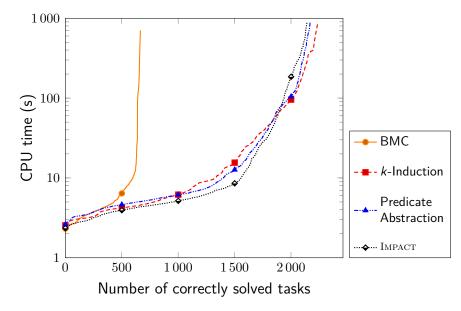
Evaluation: Enabling Experimental Studies

- Comparison of algorithms across different program categories [VSTTE'16, JAR]
- SMT solvers for various theories and algorithms

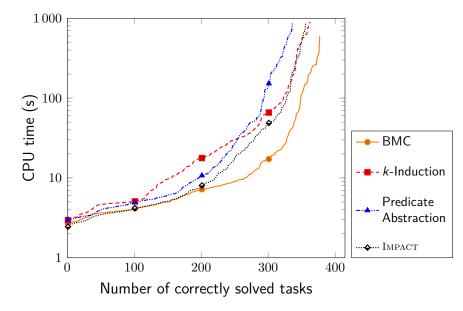
Experimental Comparison of Algorithms

- ▶ 5 287 verification tasks from SV-COMP'17
- 15 min time limit per task (CPU time)
- 15 GB memory limit
- Measured with BENCHEXEC

All 3913 bug-free tasks



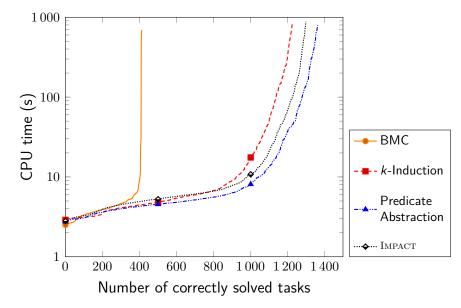
All 1374 tasks with known bugs



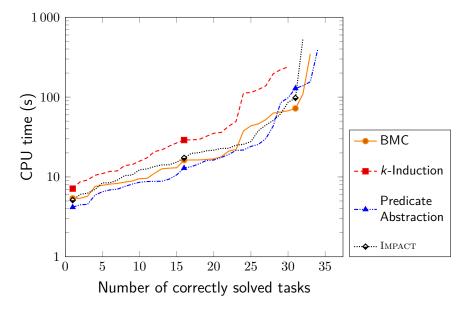
Category Device Drivers

- Several thousands LOC per task
- Complex structures
- Pointer arithmetics

Category *Device Drivers*: 2440 bug-free tasks



Category Device Drivers: 355 tasks with known bugs



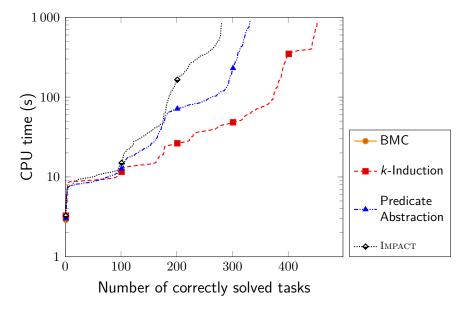
Category Event Condition Action Systems (ECA)

- Several thousand LOC per task
- Auto-generated
- Only integer variables
- Linear and non-linear arithmetics
- Complex and dense control structure

Category Event Condition Action Systems (ECA)

- Several thousand LOC per task
- Auto-generated
- Only integer variables
- Linear and non-linear arithmetics
- Complex and dense control structure

Category ECA: 738 bug-free tasks



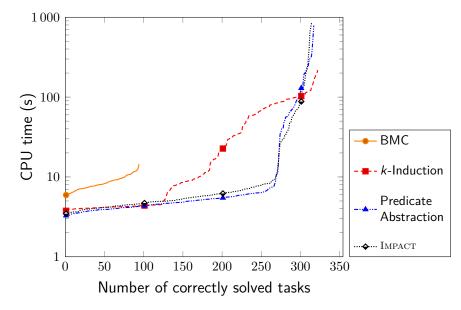
Category ECA: 411 tasks with known bugs

- Only BMC and k-Induction solve 1 task (the same one for both)
- IMPACT and Predicate Abstraction solve none

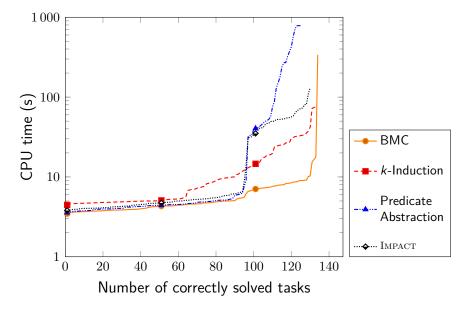
Category Product Lines

- Several hundred LOC
- Mostly integer variables, some structs
- Mostly simple linear arithmetics
- Lots of property-independent code

Category Product Lines: 332 bug-free tasks



Category Product Lines: 265 tasks with known bugs



Experimental Comparison of Algorithms: Summary

We reconfirm that

- BMC is a good bug hunter
- k-Induction is a heavy-weight proof technique: effective, but costly
- CEGAR makes abstraction techniques (Predicate Abstraction, IMPACT) scalable
- IMPACT is lazy: explores the state space and finds bugs quicker
- Predicate Abstraction is eager: prunes irrelevant parts and finds proofs quicker

SMT Study: Motivation

Now, which do you think is better, i.e., solves more tasks?

k-Induction

Predicate Abstraction

SMT Study: Motivation

Now, which do you think is better, i.e., solves more tasks?

(A)

k-Induction solves 29 % more tasks

(B)

 $\begin{array}{l} \mbox{Predicate Abstraction} \\ \mbox{solves 3\,\% more tasks} \end{array}$

SMT Study: Motivation

Now, which do you think is better, i.e., solves more tasks?

(A)

k-Induction solves 29 % more tasks

Z3 with bitprecise arithmetic (B)

Predicate Abstraction solves 3% more tasks

MATHSAT5 with linear arithmetic

Depending on configuration, either (A) or (B) can be true!

Technical details (e.g., choice of SMT theory) influence evaluation of algorithms

Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?

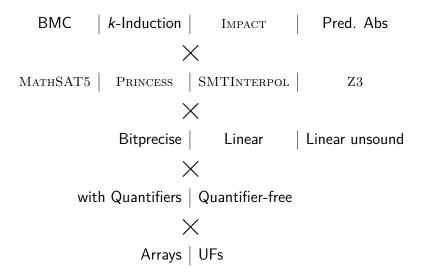
Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?
- Large study made possible by our framework
- Produced some interesting insights
- Resulted in change of default configuration of CPACHECKER

Comparison of SMT Solvers and Theories

- Which SMT solver should we use in a verifier?
- Which formula encoding?
- Which of these should we use for benchmarks in papers?
- Large study made possible by our framework
- Produced some interesting insights
- Resulted in change of default configuration of CPACHECKER
- Comparison using CPACHECKER and Predicate CPA
- ► 5 594 verification tasks from SV-COMP'17
- ▶ 15 min time limit (CPU time), 15 GB memory limit
- Measured with BENCHEXEC

SMT Study: 120 Configurations



Point of View: SMT Solvers

- Princess is never competitive
- Interpolation in Z3 is unmaintained since 2015
- Bitvector interpolation in Z3 produces up to 24 % crashes
- MATHSAT5 has known interpolation problem for bitvectors, but problem occurs rarely

Unsound linear encoding always the easiest (as expected)

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected:
 - $\mathsf{BV} > \mathsf{sound}\ \mathsf{LIRA} > \mathsf{unsound}\ \mathsf{LIRA}$

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected:
 BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected:
 BV < sound LIRA < unsound LIRA

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected:
 BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- ► Effectivity for MATHSAT5: sound LIRA < BV ≈ unsound LIRA (but BV needs more CPU time)

\Rightarrow MATHSAT5 is really good with bitvectors.

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected:
 BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- ► Effectivity for MATHSAT5: sound LIRA < BV ≈ unsound LIRA (but BV needs more CPU time)
- \Rightarrow MATHSAT5 is really good with bitvectors.

- Unsound linear encoding always the easiest (as expected)
- Correctness as expected:
 BV > sound LIRA > unsound LIRA
- Effectivity for Z3 as expected: BV < sound LIRA < unsound LIRA
- ► Effectivity for MATHSAT5: sound LIRA < BV ≈ unsound LIRA (but BV needs more CPU time)
- \Rightarrow MATHSAT5 is really good with bitvectors.
- \Rightarrow Sound LIRA encoding rarely makes sense.

Point of View: Algorithms

- ► Mostly, the best configurations of MATHSAT5, SMTINTERPOL, and Z3 are close for each algorithm
 - Gives confidence for valid comparison of algorithm
 - But outlier exists:
 - $\operatorname{Z3}$ is worse than others for predicate abstraction

Point of View: Algorithms

- ► Mostly, the best configurations of MATHSAT5, SMTINTERPOL, and Z3 are close for each algorithm
 - Gives confidence for valid comparison of algorithm
 - But outlier exists:

Z3 is worse than others for predicate abstraction

 Predicate abstraction and IMPACT suffer most from disjunctions of sound LIRA encoding.

Point of View: Arrays and Quantifiers

- Little difference with/without arrays/quantifiers
- ⇒ Arrays don't hurt (though this might change once more complex array predicates are used)

Point of View: Arrays and Quantifiers

- Little difference with/without arrays/quantifiers
- ⇒ Arrays don't hurt (though this might change once more complex array predicates are used)
 - But quantifiers restrict solver choice (PRINCESS and Z3)

SMT Study: Final Conclusions

- Choice of theories, solver, and encoding details affects comparisons of algorithms!
- ► For now:
 - use MATHSAT5 with bitvectors and arrays if possible
 - Possible problems for users: license, native binary
 - Next-best choice:
 - SMTINTERPOL with unsound linear arithmetic
 - No improvement of situation in sight