Cooperative Verification:
The Art of Combining
Verification Tools

Dirk Beyer
LMU Munich, Germany

Talk at fortiss, Munich, 2018-07-27

CI A/ Software Systems

Many Verification Tools Available

HipTNT+

VERIABS
('PA_ S E CONSEQUENCE
CPA-xIND Q MU-CSeQ

UTAIPAN ESBMC-KIND

BtﬁzéjAKUAUTOMIZER CEAGLE

ESBMC-INCR baz-Coro-As - DpprHK

APROVE ESBMC INTEREIEBCMI%FSASII(ER

CIVL 2LS YoGAR-CBMC CPA-BAM-SLICING

S
PrREDATORHP UIIiICNSI;Q SMACK SYAég%?IEI%TIC

VIAP CPA-BAM-BNB
LAzy-CSEQ BM C MAP2CHECK

FORESTER

Dirk Beyer LMU Munich, Germany 2 /58

| have a dream ...

... that one day, all tools for formal methods work together
to solve hard verification problems and make our world
safer and more secure.

... that one day, model checkers and theorem provers can
be integrated into the software-development process as
seamless as unit testing today.

... that one day, model checkers, theorem provers, SMT
solvers, and testers use common interfaces for interaction
and composition.

Dream is not utopian, will illustrate a few approaches ...

Approach 1: Conditional Model Checking | |
Approach 2: Verification Witnesses [,]
Approach 3: Tests from Witnesses |]

https://www.sosy-lab.org/research/pub/2012-FSE.Conditional_Model_Checking.pdf
https://www.sosy-lab.org/research/pub/2015-FSE15.Witness_Validation_and_Stepwise_Testification_across_Software_Verifiers.pdf
https://www.sosy-lab.org/research/pub/2016-FSE.Correctness_Witnesses_Exchanging_Verification_Results_between_Verifiers.pdf
https://www.sosy-lab.org/research/pub/2018-TAP.Tests_from_Witnesses_Execution-Based_Validation_of_Verification_Results.pdf

Approach 1:
Cooperative Verification by

Conditional Model Checking and
Reducers

Facing Hard Verification Tasks

Given: Program PE 7

?

Program Paths Pl= 1
UNKNOWN

?

Nerr 8 PF ¢
UNKNOWN

Dirk Beyer LMU Munich, Germany 6 /58

Facing Hard Verification Tasks

Given: Program P 7

?

Program Paths Pl= 1
UNKNOWN

?

Vefer 8] PF ¢
UNKNOWN
| VeerE] Q P

e.g., conditional model checking

Dirk Beyer LMU Munich, Germany 6 /58

Conditional Model Checking

[Beyer/Henzinger/Keremoglu/Wendler FSE'12, DOI Link, Preprint Link]]

Conditional

AN :
Program P Verifier A

P E o?

Condition 9 FALSE
TRUE under condition

Dirk Beyer LMU Munich, Germany 7 /58

https://doi.org/10.1145/2393596.2393664
https://www.sosy-lab.org/research/pub/2012-FSE.Conditional_Model_Checking.pdf

Reducer-Based Conditional Verifier Construction

Dirk Beyer LMU Munich, Germany 8 /58

Reducer-Based Conditional Verifier Construction

Condition

Input Program |},

Dirk Beyer LMU Munich, Germany 8 /58

5
. ‘ Conditional Verifier B

T Our Solution)/
- /

-~ ’

Condition &

\ .
/:I Reducer Residual Program Verifier B

Input Program g

Reducer (preprocessor)
Builds standard input (C program)
Representing a subset of paths

Contains at least all non-verified paths

5
. ‘ Conditional Verifier B

- Our Solution ’

- ’
-~ ’

-~ ’

Condition &

\ .
/:I Reducer Residual Program Verifier B

Input Program g

Reducer (preprocessor)
Builds standard input (C program)
Representing a subset of paths

Contains at least all non-verified paths
+ Verifier-unspecific approach

+ Many conditional verifiers possible

o

w N

Program

: if (notThursday)

discount=day#%7;
else
discount=5;

: assert (0<=discount<7);

notThursda;

y —notThursday

Yo

discount=dayZ7; AN discount=5;

assert (0<=discount<7);

E—&)

Program

I
0: if (notThursday) .
1: discount=dayi7; (o)

notThursday ~ —notThursday
else 4

2 : discount=5 5 discount=day’7; ’/ discount=5;
3: assert(0<=discount<7); @
4: assert (0<=discount<7); |

Y

©

Verifier A only proofs else branch

Program

|
0: if (notThursday) .
1: discount=day’7; @
e I se notThursday N ;*notThursday
2 : discount=5 5 discount=day’7; ’/ discount=5;
3: assert(0<=discount<7); @
4: assert (0<=discount<7);
Y
Condition i
Verifier A only proofs else branch notThursday JnotThursday

®
&)

discount=day’7;

®

Reducer: Residual Program Construction

Program

notThursday —notThursday

Residual Program

discount=day%7; discount=5;

© ~
~
assert (0<=discount<7); ‘e
~
~ - .
XA
Condition % 4
.®
notThursday —notThursday

discount=day%7;

Dirk Beyer LMU M) Germany 10 / 58

Reducer: Residual Program Construction

Program
notThursday —notThursday
discount=day%7; discount=5;

Condition

discount=day%7;

Dirk Beyer LMU M

, Germany

Residual Program

(1o, qo0)

10 / 58

Program

Residual Program

(1o, q0)

—notThursday

(l2,qy)

Program

Residual Program

(1o, q0)

—notThursday

(l2,qy)

Program

notThursday —notThursday

Residual Program

discount=dayi7; discount=5;
~
i . l
assert (0<=discount<7); ~Q~ (0, qo)
h IS notThursday —notThursday
& N
<)
A S (l,q1) (L2, qp)
Condition 5 48
R -
.
Py .
notThursday —notThursday

@

discount=day7;

Program

notThursday —notThursday

Residual Program

discount=dayi7; discount=5;

(1o, q0)

notThursday —notThursday

(i, q1) (l2,q5)

discount=day7;

(I3, g2)

Condition

discount=dayi7;

Program

notThursday —notThursday

Residual Program

discount=dayi7; discount=5; l
assert (0<=discount<7); 0) qO
notThursday l —notThursday
(l,q1) (L2, qp)
Condition discount=day7; l
l37 QQ
l assert (0<=discount<7);
notThursday (14’ qr)

Residual Program

-~

(10, q0)

notThursday

(l,q1) (l2,q5)

discount=day%7;

(13, q2)

assert (0<=discount<7);

(147 QT)

—notThursday

+— +— 4——

Dirk Beyer LMU Munich, Germany

Reducer: C Transformation

Residual Program

0, g if (notThursday)
notThursday l —notThursday {
1,¢ (l2,q5) discount=day%7;
dlscou.nt—day/7 l assert (0<=discount<7);
l37 QQ ¥
l assert (0<=discount<7);

(l4= QT)

Dirk Beyer LMU Munich, Germany 11 / 58

Reducer: Soundness

Residual Condition

Program Paths

Dirk Beyer LMU Munich, Germany 12 / 58

Reducer: Soundness

Residual Condition

Program Paths

Theorem
Presented reducer fulfills residual condition.

Dirk Beyer LMU Munich, Germany

12 /58

Evaluation Setup

SV-COMP .
Condition

Dirk Beyer LMU Munich, Germany 13 / 58

PREDICATE PREDICATE

CPA-SEQ | UAUTOMIZER | +REDUCER | +REDUCER
+CPA-SEQ | +UAUTOMIZER
Task RIS t(s)|S t(s) | S t(s) | S t(s)
P15101 T X 910 | X 900 | v/ 120 | v/ 130
flood4 T X 910 | X 910 | v/ 450 | X 1100
newt3_6 F || X 950 | X 490 | X 910 | v 260
P07138 T X 950 | X 910 | X 1100 | v 470

Effectiveness on Hard Tasks

CPU time (s)

1000 F T T T T T T T L=
100 | E
10 CPA-seq —f+— 7
SMACK ——
Ultimate Automizer

Predicate + CPA-seq —l—
Predicate + SMACK —&—
Prfadicate +I UItimatelAutomizc?r +.

0 100

200

Dirk Beyer

300 400 500 600 700 800

n-th fastest correct result

LMU Munich, Germany

15/

58

More Information:
Reducer-Based Construction of
Conditional Verifiers

[Proc. ICSE 2018, pages 1182-1193, ACM. DOI Link, Preprint Link]

Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and
Heike Wehrheim

LMU Munich, Germany and Paderborn University, Germany

https://doi.org/10.1145/3180155.3180259
https://www.sosy-lab.org/research/pub/2018-ICSE.Reducer-Based_Construction_of_Conditional_Verifiers.pdf

Conclusion — Approach 1

» Template-based conditional verifier construction

Condition

Input Program |5

Dirk Beyer LMU Munich, Germany 17 / 58

Template-based conditional verifier construction

Condition g
\ .-
J— :| Reducer Residual Program Verifier B
Input Program %

One Reducer
Proven sound
Used in many conditional verifiers

Template-based conditional verifier construction

Condition g
\ .-
J— :| Reducer Residual Program Verifier B
Input Program %

One Reducer
Proven sound
Used in many conditional verifiers

Effective on hard tasks for verifiers and test tools

Template-based conditional verifier construction

Condition %

\ .
J— :| Reducer Residual Program Verifier B

Input Program %

One Reducer

Proven sound
Used in many conditional verifiers

Effective on hard tasks for verifiers and test tools

Future Work

More reducers
Using conditions from other tools

Approach 2:
Cooperative Verification by
Verification Witnesses

Dirk Beyer 18 / 58

Result (True/False)

Software Verification with Witnesses

Program Program

Specification

Result (True/False

Dirk Beyer 20 / 58

Program Bl

Result (True/False)

Specification BI |
Result (True/FaIse)Bl Validator
' Witness

Validate untrusted results

Easier than full verification

Stepwise Refinement

Program Program

Specification

Result (True/False)

Specification

Result (True/False

Witness
Testifier

Dirk Beyer 22 /58

Violation Witness

Violation Witness

i

Abstract
Counterex.

Test
Case

FSE'15

Violation Witness

Abstract
Counterex.

Test
Case

’
v
~
S~

Dirk Beyer 24 / 58

’
v
~
S~

Dirk Beyer 24 /58

Dirk Beyer

Search-Space Reduction
for Stepwise Witness Refinement

Entry

% |
g‘“r.ﬁ

Error

24 / 58

Search-Space Reduction
for Stepwise Witness Refinement

Entry

—— Stepwise Testification 4——

Dirk Beyer 24 /58

Search-Space Reduction
for Stepwise Witness Refinement

Entry

—— Stepwise Testification 4——

Dirk Beyer 24 /58

Correctness: State of the Art

1. Rarely any additional information

Dirk Beyer 25 /58

Rarely any additional information

Not human readable

Rarely any additional information
Not human readable

Not easily exchangeable across tools

Standardized way to document verification results
to enhance engineering processes required

Standardized way to document verification results
to enhance engineering processes required

Difficult to establish trust in results from an
untrusted verifier

Standardized way to document verification results
to enhance engineering processes required

Difficult to establish trust in results from an
untrusted verifier

Potential for synergies between tools and techniques is
left unused

FSE'15

Violation Witness

AbStraCt ---------------------- TeSt
Counterex. Case

FSE'15

Witness

i

Violation Witness

Abstract
Counterex.

Test

Case

Correctness Witness

Witness

i

FSE'15
Violation Witness Correctness Witness
Abstract P | Test
...................... SCC PCC
Counterex. Case

Taleghani & Atlee, ASE'10 Necula, POPL'97

Witness

i

FSE'15
Violation Witness Correctness Witness
Abstract Pi | Test P
...................... SCC PCC
Counterex. Case

Taleghani & Atlee, ASE'10 Necula, POPL'97

Full proofs seem nice, but in practice become too large
Witnesses support, but do not enforce full proofs

Instead, correctness witnesses may also represent
proof sketches

Correctness Witnesses

[P]-[¥]

Dirk Beyer 29 / 58

Correctness Witnesses

- E

Dirk Beyer 29 / 58

T | P

|

Correctness Witness

(TP |E[®
Verifier | < ||

Correctness Witness

Dirk Beyer

(TP |E[®

Verifier | < ||

Correctness Witness

Validator

(TP |E[®

Verifier | < ||

Correctness Witness

Validator

Verifier | <

Validator {

.
[|

P

Correctness Witness

/

.

1

P

Verifier | <

Testifier <

T | P

|

Correctness Witness

1

' P

|

Correctness Witness 2

Express witness as automaton

Express witness as automaton

Witness Validation matches the witness to the program

Express witness as automaton
Witness Validation matches the witness to the program

Decoupled from specific verification techniques and
implementations

Express witness as automaton
Witness Validation matches the witness to the program

Decoupled from specific verification techniques and
implementations

One common exchange format for violation witnesses
and correctness witnesses

1
2
3
4
5
6
7
8
9

10

1 ¥

int main() {

unsigned int x = nondet ();
unsigned int y = x;
while (x < 1024) {

X = x + 1;

y =y + 1
}
// Safety property
assert(x == y);

return O;

int main() A
unsigned int x
unsigned int y

while (x < 1024)

+ 1;
y =y + 1
¥

nondet () ;
X

{

// Safety property

1
2
3
4
5 X = X
6
7
8
9

assert(x == y);
10 return O;

1 ¥

!

true

1
2
3
4
5
6
7
8
9

10

1 ¥

int main() {

unsigned int x = nondet ();
unsigned int y = x;
while (x < 1024) {

X = x + 1;

y =y + 1
}
// Safety property
assert(x == y);

return O;

o/w
true

3,enterLoopHead:

1
2
3
4
5
6
7
8
9

10

1 ¥

int main() {

unsigned int x = nondet ();
unsigned int y = x;
while (x < 1024) {
X = x + 1;
y =y + 1
X

// Safety property
assert (x y);

return O;

o/w
true

3,enterLoopHead:

1 int main() { true

2 unsigned int x = nondet (); 3,enterLoopHead:
3 unsigned int y = x;

. while (x < 1024) { p— G

5 X = x + 1;

6 y =y +1; 4,then:

7}

s // Safety property P O/W

9 assert(x == y);

10 return O;

1 ¥

6,enterLoopHead:

1 int main() {

> unsigned int x = nondet ();
3 unsigned int y = x;

4+ while (x < 1024) {

5 X = x + 1;

6 y =y + 1

7}

s // Safety property

9 assert(x == y);

10 return O;

1 ¥

Table 8: Confirmation rate of witnesses

Result TrRUE FALSE

Total Confirmed Unconfirmed Total Confirmed Unconfirmed
UAUTOMIZER 3558 3481 77 1173 1121 52
SMACK 2047 2695 252 1929 1768 161
CPA-SEqQ 3357 3078 279 2342 2315 27

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
TRUE or FALSE: each answer must be accompanied by a verification witness. For
correctness witnesses, an unconfirmed answer TRUE was still accepted, but was

assigned only 1 point instead of 2 (cf. Tablc.

. All verifiers in categories that

required witness validation support the common exchange format for violation
and correctness witnesses. We used the two independently developed witness
validators that are integrated in CPAcHECKER and UAUTOMIZER IﬂE}

Dirk Beyer

w
N

o1

Stepwise Refinement: Classification

e
< e

Dirk Beyer 33 /58

Unknown

Verification
Condition

Unknown

Verification
Condition

Y

o) €s

Output Conditional
condition MC

Violation Witness |

Unknown

Verification
Condition

o)

v

€s

Output
condition

Conditional
MC

Violation
Refinement

Output Verification
witness Condition

\

v
False @
Rejected No Yes

Output

Output

"Unknown" condition

Conditional
MC

—>| Violation Witnessl |Verification | | Correctness Witness

@¢ False

Yes No Unknown
Violation Output Verification
Refinement || witness Condition

\ Y

False Rejected No Yes

Output Output Conditional
"Unknown" condition MC

—>| Violation Witnessl |Verification | | Correctness Witness |<—

Violation Output Verification|| | Output || Correctness
Refinement || witness Condition witness Refinement

\ Y ¢

<R

o) es Rejected

False Rejected

Output Output Conditional Output
"Unknown" condition MC "Unknown"

Dirk Beyer

More Information:
Correctness Witnesses:
Exchanging Verification Results
between Verifiers

[Proc. FSE 2016, pages 326-337, ACM. DOI Link, Preprint Link]

Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias
Heizmann

34 /58

https://doi.org/10.1145/2950290.2950351
https://www.sosy-lab.org/research/pub/2016-FSE.Correctness_Witnesses_Exchanging_Verification_Results_between_Verifiers.pdf

are easy to implement for verifiers that already support
violation witnesses

are easy to implement for verifiers that already support
violation witnesses

enable information exchange across different software
verifiers

are easy to implement for verifiers that already support
violation witnesses

enable information exchange across different software
verifiers

efficiently increase confidence in results by validation

Approach 3:

Cooperative Verification by
Tests from Witnesses

Dirk Beyer 36 / 58

Software contains bugs.

37 / 58

Software contains bugs.
= Automatic verification.

37 / 58

Software contains bugs.
= Automatic verification.

But software contains bugs.

37 / 58

Software contains bugs.
= Automatic verification.

But software contains bugs.
= Automatic validation of results.

37 / 58

Software contains bugs.
= Automatic verification.

But software contains bugs.
= Automatic validation of results.

But software contains bugs.

37 / 58

Software contains bugs.
= Automatic verification.

But software contains bugs.
= Automatic validation of results.

But software contains bugs.
= Execution as proof.

37 / 58

“Generating Tests from Counterexamples”
D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, R. Majumdar
ICSE 2004

“Test-Input Generation with Java PathFinder”
W. Visser, C. S. P3s3reanu, S. Khurshid
ISSTA 2004

Influencial papers, but:

Problem: No exchange format; proprietary technology,
proprietary format for test vector

38 / 58

https://doi.org/10.1109/ICSE.2004.1317455
https://www.sosy-lab.org/research/pub/2004-ICSE.Generating_Tests_from_Counterexamples.pdf
https://doi.org/10.1145/1007512.1007526

Problem: Confidence in verifiers
Approach: Witness validation

rogom ™
Program
()

Program

Specification
Result (True/FaIse)

ﬁ Witness

L

Program
F— AN

Specification Witness &

_Result (True/False) ™ Validator) —> |Result (True/False)

‘ﬁWitness

[Beyer/Dangl/Dietsch/Heizmann /Stahlbauer FSE'15]

39 / 58

:j: Vi |
i| Program |, Violation

: : Fals Witness

E Specificatioi: True N
! _ ! Proof 7 Correctness
. Verification : Oung Witness

| Task |

ULTIMATE
AUTOMIZER

40 / 58

Automaton
Describes set of error paths

State-space + source-code guards

1 extern void _ VERIFIER error (void);
2 extern unsigned char _ VERIFIER_nondet_uchar (void) ;
3int main(void) {

4 unsigned char a = __VERIFIER_nondet_uchar();
5 unsigned char b = _ VERIFIER nondet_uchar();
6 unsigned char sum = a + b;

7 unsigned char mean = sum / 2;

8 if (mean < a / 2) {

9 __VERIFIER_error();

10 }

11 return O;

Problem 1: Abstract witnesses

| extern void __ VERIFIER_ error (void);

2extern unsigned char _ VERIFIER_nondet_uchar (void);

3int main(void) {

4 unsigned char a __VERIFIER_nondet_uchar
unsigned char b __VERIFIER_nondet_uchar

0
5 O
6 unsigned char sum = a + b;

7

8

unsigned char mean = sum / 2;
if (mean < a / 2) {

9 __VERIFIER_error();
0} 8,else: 8,then:

11 return 0;
- @

42 / 58

Problem 1: Abstract witnesses

Solution: Witness refinement

I

Witness —> Rgfined
Witness

Program

[r=m]

Specificatio

Verification

43 / 58

Problem 1: Abstract witnesses
Solution: Witness refinement

8,else:

__VERIFIER_error() unreachabl Bl ‘@’

(void);
IER_nondet_uch

1 extern void __VE
2extern unsigned char
3int main(void) {
4 unsigned char
s unsigned char
¢ unsigned char

unsigned char
if

}
I return 0;

44 / 58

Existing validators are model checkers
Problem 2: Confidence in validators
Problem 3: Found errors difficult to debug

Solution: Executable counterexamples

45 / 58

Execution-based Witness Validation

Dirk Beyer 46 / 58

C

| ificati False .

: ‘ Witness 0@ Test
| Bug found

 Verification | 72 Zr

| | OS

Harness

roof found Executabla
o \0\)%

%0‘“\6 Bug found

Witness Spurious Witness Confirmed

47 / 58

Build executable counterexample from witness
State-space guards — input variables/functions

8,else:
| #include <stdlib.h>

2void _ VERIFIER error() { exit (107); }
junsigned char _ VERIFIER_nondet_uchar () {

4 static unsigned int test_vector_index = 0;
unsigned char retval;

switch (test_vector_index) {

__VERIFIER error() unreachable case 0: rotval - 2U; break;

case 1: retval = 254U; break;

1

}

10 ++test_vector_index;

| extern void _ VERIFIER_ error (void); 1 return retval;
2extern unsigned char ___VERIFIER nondet_uchar (void); 12}
3int main(void) { -
4 unsigned char a = __VERIFIER nondet_uchar();

5 unsigned char b = _ VERIFIER_nondet_uchar();

6 unsigned char sum = a + b;

7 unsigned char mean = sum / 2;

8 if (mean < a / 2) {

9 __VERIFIER_error();

10

1l return 0;

2} 48 / 58

/

Confirmed /
Unconfirmed

(Refined -

Wit nevsev -

Unit Tests

(a) Witness construction (b) Optional witness refinement (c) Witness validation

49 / 58

Experimental Results

Dirk Beyer 50 / 58

Implementations: CPA-w2T and FSHELL-w2T
Witness Refiner: CPACHECKER

Benchmark set:

18965 witnesses
From 21 verifiers
From 5692 verification tasks (1490 false tasks)

51 / 58

18 965 witnesses in total

Not only increase of confidence,
but also increase of overall effectivity

TABLE III: Validation results of static/dynamic validators

Static Dynamic Union
Confirmed results 12671 8702 14434
Incorrectly confirmed results 21 6 27

52 / 58

Time comparison over 2680 witnesses that all validators
confirmed

90 T T T T T
—+— CPAchecker
80 - Ultimate Automizer
—0O— CPA-witness2test
70 - —x— FShell-witness2test /
—~ 60 _
w u|
[} — -
|2 50
S 40t .
o
© 30t .
20
/]
10 B
e ——— A
0 500 1000 1500 2000 2500

n-th fastest confirmed witness

53 / 58

More Information:
Tests from Witnesses:

Execution-Based Validation of
Verification Results

[Proc. TAP 2018, pages 3-23, Springer. DOI Link, Preprint Link]

Dirk Beyer, Matthias Dangl, Thomas Lemberger, and
Michael Tautschnig
LMU Munich, Germany and Queen Mary University of London, UK

Dirk Beyer 54 / 58

https://doi.org/10.1007/978-3-319-92994-1_1
https://www.sosy-lab.org/research/pub/2018-TAP.Tests_from_Witnesses_Execution-Based_Validation_of_Verification_Results.pdf

Validate more witnesses
Validate witnesses faster
Provide debuggable counterexamples
Provide executable tests

Increase confidence in results

55 / 58

Verification Approach

i

|

Basic Combination
Black Box White Box
Portfolio Selection Cooperative Conceptual Integration

56 / 58

Dream can become reality!

Conditional Model Checking
makes sure to inform other verifier about progress

Verification Witnesses
increase trust in results, first-class object to save

Verification results validated by Testing
makes sure developers can use debuggers to explore bug

57 / 58

Additional Material

Dirk Beyer 58 / 58

Parser & CPA .
CFA Builder Algorithm %
4 Results
CPA
[}
Automaton || Location || Callstack | | Composite
CPA CPA CPA CPA
[J
Witness
1ness Observer Protocol
Automaton || Automaton
A

1/5

Witness

FSHELL-WITNESS2TEST

—>|

Parse
Program

Syntactic
Matching

Test Vectorl'j

'

Test Script
Generator

Test Hames%’—»

Test
Execution

Result

2/5

Machines:

Intel Xeon E3-1230 v5 CPU, 8 units, 3.4 GHz

33GB RAM

Ubuntu 16.04
Limits verifiers:

4 processing units

7GB RAM

15 min CPU time
Limits validators:

2 processing units

4GB RAM

1.5min CPU time

3/5

TABLE 1I: Subject verification tasks
BENCHMARKS repository

from the SV-

Sub-category

Number of

verification tasks

ReachSafety-Arrays 135
ReachSafety-BitVectors 50
ReachSafety-ControlFlow 94
ReachSafety-ECA 1149
ReachSafety-Floats 172
ReachSafety-Heap 173
ReachSafety-Loops 156
ReachSafety-ProductLines 597
ReachSafety-Recursive 98
ReachSafety-Sequentialized 273
Systems_DeviceDriversLinux64_ReachSafety 2795
Total 5692

4 /5

TABLE II: Number of violation witnesses produced by
verifiers from the subject verification tasks

Verifier Ref. Produced Refined Total
witnesses witnesses witnesses

2Ls 992 384 1376
BLAST 778 202 980
CBMC 831 467 1298
CEAGLE 619 426 1045
CPA-BAM-BNB 851 175 1026
CPA-KIND 263 193 456
CPA-SEQ 883 767 1650
DEPTHK| 1159 305 1464
EsBMC 653 148 801
ESBMC-FALSI 981 395 1376
ESBMC-INCR! 970 392 1362
ESBMC-KIND, 847 352 1199
FORESTER 51 0 51
PREDATORHP! 86 61 147
SKINK 30 25 55
SMACK 871 632 1503
SYMBIOTIC, 927 411 1338
SYMDIVINE 247 223 470
ULTIMATE AUTOMIZER 514 70 584
UKOJAK 309 67 376
UTAIPAN 338 70 408

Total 13200 5765 18 965

	Introduction
	Our Reducer
	Evaluation
	Conclusion
	Overview Witness Validation
	Execution-based Witness Validation
	Experimental Results
	Appendix

