
CPA-SymExec:
Efficient Symbolic Execution in CPAchecker

Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

Thomas Lemberger LMU Munich, Germany 1 / 10



Why you should listen
Interested in symbolic execution?

(formal verification, test-case generation, program repair, equivalence checking, . . . )
Analyze C programs, implemented in CPAchecker.

Thomas Lemberger LMU Munich, Germany 2 / 10



But...
Symbolic Execution can provide:

I Exhaustive (formal) verification
I Automatic test-case generation
I Symbolic and concrete program traces

But: It is not efficient (path explosion, SMT solving)
Existing tools:

I Crest/ ConTest (dynamic)
I Klee (heuristics)
I Symbiotic (static slicing)
I . . .

Our new tool:
I CPA-SymExec: Abstraction with CEGAR (+ heuristics)

Thomas Lemberger LMU Munich, Germany 3 / 10



Optimizations in CPA-SymExec

CPA-SymExec uses common optimizations:
I SMT result caching (+ subset caching)
I Model re-use
I Minimal SAT checks

And includes new optimizations:
I Computation of definite assignments
I Simplification of symbolic identifiers
I Counterexample-guided Abstraction Refinement (CEGAR)

Thomas Lemberger LMU Munich, Germany 4 / 10



Symbolic Execution
I Replace concrete test-values with generic symbolic values
I Symbolic Memory: Stores (symbolic) value assignments.
I Path Constraints: Constrain symbolic values.

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c == b)
7 error ();

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?; b =?; c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

I Necessary to track (thanks CEGAR!):
I Symbolic memory of b and c.
I Constraint c 6= b

Thomas Lemberger LMU Munich, Germany 5 / 10



Symbolic Execution
I Replace concrete test-values with generic symbolic values
I Symbolic Memory: Stores (symbolic) value assignments.
I Path Constraints: Constrain symbolic values.

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c == b)
7 error ();

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?; b =?; c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

I Necessary to track (thanks CEGAR!):
I Symbolic memory of b and c.
I Constraint c 6= b

Thomas Lemberger LMU Munich, Germany 5 / 10



Symbolic Execution
I Replace concrete test-values with generic symbolic values
I Symbolic Memory: Stores (symbolic) value assignments.
I Path Constraints: Constrain symbolic values.

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c == b)
7 error ();

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?; b =?; c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

I Necessary to track (thanks CEGAR!):
I Symbolic memory of b and c.
I Constraint c 6= b

Thomas Lemberger LMU Munich, Germany 5 / 10



Symbolic Execution
I Replace concrete test-values with generic symbolic values
I Symbolic Memory: Stores (symbolic) value assignments.
I Path Constraints: Constrain symbolic values.

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c == b)
7 error ();

{}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{}

{b = s1, c = s1 + 1}
{s1 + 1 6= s1}

a =?; b =?; c = b + 1

[a < 100]

a + +

[a ≥ 100]

[c 6= b]

I Necessary to track (thanks CEGAR!):
I Symbolic memory of b and c.
I Constraint c 6= b

Thomas Lemberger LMU Munich, Germany 5 / 10



Counterexample-guided Abstraction Refinement

initial
abstraction

Verify
program

Check
counterexample

Program safe

Program unsafe

Refine
abstraction

Abstraction→ memory and path constraints
Check→ SymEx with all information
Refinement→ Craig interpolation

no counterexample
found

counterexample
found

counterexample
feasible

counterexample
spurious

restart

Thomas Lemberger LMU Munich, Germany 6 / 10



Counterexample-guided Abstraction Refinement

initial
abstraction

Verify
program

Check
counterexample

Program safe

Program unsafe

Refine
abstraction

Abstraction→ memory and path constraints
Check→ SymEx with all information
Refinement→ Craig interpolation

no counterexample
found

counterexample
found

counterexample
feasible

counterexample
spurious

restart

Thomas Lemberger LMU Munich, Germany 6 / 10



CPA-SymExec Output

CPA-SymExec can create:
I Concrete and symbolic target paths
I Executable test cases (condition coverage)
I Interactive, visual reports

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c <= b)
7 error ();

true

a = s1 ∧ b = s2 ∧ c = s2 + 1

s1 ≥ 100

s2 + 1 ≤ s2

a =?; b =?; c = b + 1

[a ≥ 100]

[c ≤ b]

error()

Symbolic target path

true

a = 100 ∧ b = 255 ∧ c = 0

a =?; b =?; c = b + 1

[a ≥ 100];
[c ≤ b];
error()

Concrete target path

Thomas Lemberger LMU Munich, Germany 7 / 10



Experimental Comparison

I Find target path to function
call/show none exists

I 5590 sequential programs from
SV-COMP

Thomas Lemberger LMU Munich, Germany 8 / 10



Demo

Thomas Lemberger LMU Munich, Germany 9 / 10



More Information

I Video: https://youtu.be/qoBHtvPKtnw
I Artifact (tool and data):

https://zenodo.org/record/1321181

I Technical Session: Tomorrow, Joffre CD, 13:30–15:00

Thomas Lemberger LMU Munich, Germany 10 / 10

https://youtu.be/qoBHtvPKtnw
https://zenodo.org/record/1321181


Traditional Symbolic Execution Example

1 unsigned char a = ?;
2 unsigned char b = ?;
3 unsigned char c = b + 1;
4 while (a < 100)
5 a++;
6 if (c == b)
7 error ();

{}
{}

{a = s1, b = s2, c = s2 + 1}
{}

{a = s1, b = s2, c = s2 + 1}
{s1 < 100}

{b = s2, c = s2 + 1}
{s1 ≥ 100}

{a = s1 + 1, b = s2, c = s2 + 1}
{s1 < 100}

{a = s1, b = s2, c = s2 + 1}
{s2 + 1 6= s2}

a =?; b =?; c = b + 1

[a < 100] [a ≥ 100]

a + + [c 6= b]

[a < 100] [a ≥ 100]

Thomas Lemberger LMU Munich, Germany 11 / 10



Thomas Lemberger LMU Munich, Germany 12 / 10


	Appendix

