
Domain-Independent
Multi-threaded

Software Model Checking

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

ASE 2018, Montpellier

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 1 / 22



Software Verification
C Program

int main() {
int a = foo();
int b = bar(a);

assert(a == b);
}

Verification
Tool

TRUE
i.e., specification
is satisfied

FALSE
i.e., bug found

General method:
Create an overapproximation
of the program states /
compute program invariants

Overapproximation

Reachable
States Error

States

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 22



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint successor computation

R

R2

R1

R0

. . .

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 22



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint successor computation

R

R2

R1

R0

. . .

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 22



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint successor computation

R

R2

R1

R0

. . .

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 22



Software Verification by Model Checking
[Clarke/Emerson, Sifakis 1981]

Iterative fixpoint successor computation

R

R2

R1

R0

. . .

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 22



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 22



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 22



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain

X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 22



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

plain analysis

time
A1

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 22



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
x Dependencies between block abstractions

Configurable block size

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 22



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis

x Dependencies between block abstractions
Configurable block size

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 22



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
x Dependencies between block abstractions

Configurable block size

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 22



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
x Dependencies between block abstractions

Configurable block size

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

plain analysis

time
A1

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A1

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A1

BAM

time
A A A A A

B C D E

F

E

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 10 / 22



Parallel Block-Abstraction Memoization
Challenges with an efficient parallel algorithm:
X CPA operators strictly sequential (per analysis!)
x Dependencies between block abstractions

Our contribution: Parallel BAM
I Parallel computation of block abstractions
(asynchronously)

I Lazy application of computed block abstractions
I Simple dynamic scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 22



Parallel Block-Abstraction Memoization
Challenges with an efficient parallel algorithm:
X CPA operators strictly sequential (per analysis!)
x Dependencies between block abstractions

Our contribution: Parallel BAM
I Parallel computation of block abstractions
(asynchronously)

I Lazy application of computed block abstractions
I Simple dynamic scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 22



Parallel Block-Abstraction Memoization
Challenges with an efficient parallel algorithm:
X CPA operators strictly sequential (per analysis!)
x Dependencies between block abstractions

Our contribution: Parallel BAM
I Parallel computation of block abstractions
(asynchronously)

I Lazy application of computed block abstractions
I Simple dynamic scheduler

Combines benefits of existing approaches

Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 22



Parallel Block-Abstraction Memoization
Challenges with an efficient parallel algorithm:
X CPA operators strictly sequential (per analysis!)
x Dependencies between block abstractions

Our contribution: Parallel BAM
I Parallel computation of block abstractions
(asynchronously)

I Lazy application of computed block abstractions
I Simple dynamic scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A1

BAM

time
A A A A A

B C D E

F

E

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 12 / 22



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A1

BAM

time
A A A A A

B C D E

F

E

parallel BAM

time
A1 A2 A3

B1
C1

D1
E1

F1
E2

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 12 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 22



Evaluation

I Configuration
I CPAchecker r28809
I Explicit Value Domain

I Environment
I Intel Xeon E3-1230 v5 CPU with 4 physical cores
I 5400 tasks from SV-COMP benchmark set

I Limitations
I 15 GB RAM
I 15 minutes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 14 / 22



Evaluation

0 1 000 2 000 3 0001

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
)

1 (number of threads)
2
4
8

2 600 2 800 3 000

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 22



Evaluation

0 1 000 2 000 3 0001

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
)

1 (number of threads)
2
4
8

2 600 2 800 3 000

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 22



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis

scheduling synchronization

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 16 / 22



Conclusion

I Configurable program analysis
I Configurable block size
I Small overhead for synchronization in parallel analysis
I Elegant integration into the framework CPAchecker
I No changes necessary to existing analyses and components

I CEGAR, proof and counterexample witnesses

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 17 / 22



Future work

I Scheduling: Prefer parts deeper in the program?
I Processes instead of threads

I Cluster instead multi-core machine

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 18 / 22



Questions?



CPAchecker Framework

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 20 / 22



BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

wait for
nested analysis

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 21 / 22



Parallel BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

Parallel BAM
Algorithm

CPA
Algorithm

Parallel BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Value
CPA

enqueue missing
block abstraction

N instances

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 22 / 22


