
Domain-Independent
Multi-threaded

Software Model Checking

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

25 Sept 2018, Moscow

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 1 / 18



Software Verification
C Program

int main() {
int a = foo();
int b = bar(a);

assert(a == b);
}

Verification
Tool

TRUE
i.e., specification
is satisfied

FALSE
i.e., bug found

General method:
Create an overapproximation
of the program states /
compute program invariants

Overapproximation

Reachable
States Error

States

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 18



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 18



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 18



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 18



Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 18



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 18



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 18



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain

X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 18



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

plain analysis

time
A

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 18



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
+ Nearly independent analyses for blocks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 18



Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
+ Nearly independent analyses for blocks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

plain analysis

time
A

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A

BAM

time
A A A A A

B C D E

F

E

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 18



Parallel Block-Abstraction Memoization

Our contribution: Parallel BAM [Proc. ASE 2018]
I Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

I Lazy application of computed block abstractions
I Simple scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 18



Parallel Block-Abstraction Memoization

Our contribution: Parallel BAM [Proc. ASE 2018]
I Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

I Lazy application of computed block abstractions
I Simple scheduler

Combines benefits of existing approaches

Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 18



Parallel Block-Abstraction Memoization

Our contribution: Parallel BAM [Proc. ASE 2018]
I Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

I Lazy application of computed block abstractions
I Simple scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A

BAM

time
A A A A A

B C D E

F

E

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 18



Schematic Example of an Analysis

1

2

5

8

11

12

13

17

18

19

20

21

22

3

4

14

6

7

15

9

10

16

A

B

C

D

E

F

plain analysis

time
A

BAM

time
A A A A A

B C D E

F

E

parallel BAM

time
A A A

B
C

D
E

F
E

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 18



Evaluation

I Configuration
I CPAchecker r28809
I Explicit Value Domain

I Environment
I Intel Xeon E3-1230 v5 CPU with 4 physical cores
I 5400 tasks from SV-COMP benchmark set

I Limitations
I 15 GB RAM
I 15 minutes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 10 / 18



Evaluation

0 1 000 2 000 3 0001

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
) 1 (number of threads)

2
4
8

2 600 2 800 3 000

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
) 1 (number of threads)
2
4
8

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 18



Evaluation

0 1 000 2 000 3 0001

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
) 1 (number of threads)

2
4
8

2 600 2 800 3 000

10

100

1 000

n-th fastest result

wa
ll
tim

e
(s
) 1 (number of threads)
2
4
8

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 18



Conclusion

I Small overhead for synchronization in parallel analysis
I Elegant integration into the framework CPAchecker
I No changes necessary to existing analyses and concepts

I Small refactoring on implementation if necessary
I CEGAR, proof and counterexample witnesses

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 12 / 18



Hints for developers

CPA operators are applied in parallel
(on different reached sets and waitlists)

I CPA operators should be stateless
I Caches should allow shared access or

only be used in one instance of an operator

Abstract states should be immutable after construction
I Guarantee for the developer: no side effects

Statistics are data!
I Often shared across several components
I Allow concurrent access!

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 18



Hints for developers

CPA operators are applied in parallel
(on different reached sets and waitlists)

I CPA operators should be stateless
I Caches should allow shared access or

only be used in one instance of an operator

Abstract states should be immutable after construction
I Guarantee for the developer: no side effects

Statistics are data!
I Often shared across several components
I Allow concurrent access!

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 18



Hints for developers

CPA operators are applied in parallel
(on different reached sets and waitlists)

I CPA operators should be stateless
I Caches should allow shared access or

only be used in one instance of an operator

Abstract states should be immutable after construction
I Guarantee for the developer: no side effects

Statistics are data!
I Often shared across several components
I Allow concurrent access!

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 18



Future work

I Scheduling/iteration order:
I Prefer parts deeper in the program
I Depending on machine load?

I Processes instead of threads
I Cluster instead multi-core machine
I Easier handling of external libraries

I Support more domains
I Mostly simple refactoring, only a few hard changes
I Dependencies, e.g., on external libraries like SMT solvers

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 14 / 18



Questions? Discussion?



CPAchecker Framework

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 16 / 18



BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

wait for
nested analysis

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 17 / 18



Parallel BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

Parallel BAM
Algorithm

CPA
Algorithm

Parallel BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Value
CPA

enqueue missing
block abstraction

N instances

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 18 / 18


