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Software Verification
C Program

int main() {
int a = foo();
int b = bar(a);

assert(a == b);
}

Verification
Tool

TRUE
i.e., specification
is satisfied

FALSE
i.e., bug found

General method:
Create an overapproximation
of the program states /
compute program invariants

Overapproximation

Reachable
States Error

States
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Basic Challenges with Software Verification

more domains

bigger hardwarelarger tasks
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bigger hardwarelarger tasks

configurable program analysis

abstraction

block summaries

caching

portfolio

parallel analysis?

scheduling? synchronization?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 18



Configurable Program Analysis (CPA)
[Beyer/Henzinger/Théoduloz, 2007]

I CPA algorithm computes a fixed-point
based on two sets of abstract states

I reached: already analyzed abstract states
I waitlist: frontier states to be analyzed

I Operators defined for specific domain:
I transfer: successor computation
I merge: combination of two abstract states
I stop: coverage of abstract states

Independent of used domain
X Operators strictly sequential (per analysis!)
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Schematic Example of an Analysis
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Block Summarization

I Block-abstraction memoization (BAM) defined as CPA
[Wonisch/Wehrheim, 2012]

I Split large verification task into smaller problems
and solve them separately

I Use CPA algorithm for a domain-specific analysis
I Cache intermediate analysis results

Independent of domain-specific analysis
+ Nearly independent analyses for blocks
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Parallel Block-Abstraction Memoization

Our contribution: Parallel BAM [Proc. ASE 2018]
I Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

I Lazy application of computed block abstractions
I Simple scheduler

Combines benefits of existing approaches
Small synchronization overhead (depends on block size)
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Evaluation

I Configuration
I CPAchecker r28809
I Explicit Value Domain

I Environment
I Intel Xeon E3-1230 v5 CPU with 4 physical cores
I 5400 tasks from SV-COMP benchmark set

I Limitations
I 15 GB RAM
I 15 minutes
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Conclusion

I Small overhead for synchronization in parallel analysis
I Elegant integration into the framework CPAchecker
I No changes necessary to existing analyses and concepts

I Small refactoring on implementation if necessary
I CEGAR, proof and counterexample witnesses
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Hints for developers

CPA operators are applied in parallel
(on different reached sets and waitlists)

I CPA operators should be stateless
I Caches should allow shared access or

only be used in one instance of an operator

Abstract states should be immutable after construction
I Guarantee for the developer: no side effects

Statistics are data!
I Often shared across several components
I Allow concurrent access!
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Future work

I Scheduling/iteration order:
I Prefer parts deeper in the program
I Depending on machine load?

I Processes instead of threads
I Cluster instead multi-core machine
I Easier handling of external libraries

I Support more domains
I Mostly simple refactoring, only a few hard changes
I Dependencies, e.g., on external libraries like SMT solvers
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Questions? Discussion?



CPAchecker Framework

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA
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BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

wait for
nested analysis
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Parallel BAM in CPAchecker

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

Parallel BAM
Algorithm

CPA
Algorithm

Parallel BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Value
CPA

enqueue missing
block abstraction

N instances
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