Domain-Independent

Multi-threaded
Software Model Checking

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

25 Sept 2018, Moscow

' CPAV”

Dirk Beyer and Karlheinz Friedberger LMU Munich, German y 1/18

C Program
int main() { TRUE

!nt a = foo(); : @ i.e., specification
int b = bar(a); = Verification is satisfied
Tool %
assert(a == b); FALSE
} i.e., bug found

General method: Overapproximation

Create an overapproximation
of the program states /
compute program invariants

Reachable
States

Basic Challenges with Software Verification

more domains

larger tasks bigger hardware

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3/18

Basic Challenges with Software Verification

configurable program analysis v~

more domains

larger tasks bigger hardware

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

318

Basic Challenges with Software Verification

configurable program analysis v~

more domains

abstraction v~

larger tasks bigger hardware

—
caching v~

block summaries v~

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

/ 18

Basic Challenges with Software Verification

configurable program analysis v~

more domains

abstraction v~ portfolio v~

larger tasks bigger hardware

)

parallel analysis?

RN

scheduling? synchronization?

—
caching v~

block summaries v~

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

/ 18

CPA algorithm computes a fixed-point

based on two sets of abstract states
reached: already analyzed abstract states
waitlist: frontier states to be analyzed

CPA algorithm computes a fixed-point
based on two sets of abstract states
reached: already analyzed abstract states
waitlist: frontier states to be analyzed
Operators defined for specific domain:
transfer: successor computation
merge: combination of two abstract states
stop: coverage of abstract states

CPA algorithm computes a fixed-point
based on two sets of abstract states

reached: already analyzed abstract states
waitlist: frontier states to be analyzed

Operators defined for specific domain:

transfer: successor computation
merge: combination of two abstract states
stop: coverage of abstract states

v Independent of used domain

CPA algorithm computes a fixed-point
based on two sets of abstract states

reached: already analyzed abstract states
waitlist: frontier states to be analyzed

Operators defined for specific domain:

transfer: successor computation
merge: combination of two abstract states
stop: coverage of abstract states

v Independent of used domain
X Operators strictly sequential (per analysis!)

Schematic Example of an Analysis

3
®
%

5]

Dirk Beyer and Karlheinz Friedberger LMU Munich, German y

plain analysis

(

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

—
time

Block-abstraction memoization (BAM) defined as CPA
[Wonisch /Wehrheim, 2012]

Split large verification task into smaller problems
and solve them separately

Use CPA algorithm for a domain-specific analysis

Cache intermediate analysis results

Block-abstraction memoization (BAM) defined as CPA
[Wonisch /Wehrheim, 2012]

Split large verification task into smaller problems
and solve them separately

Use CPA algorithm for a domain-specific analysis

Cache intermediate analysis results

v Independent of domain-specific analysis

+ Nearly independent analyses for blocks

plain analysis

(

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

—
time

plain analysis
(A).

—
time

irk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 8

irk Beyer and Karlheinz Fri

edberger

plain analysis

(R).
BAM
[
8) (<) b)
oA 5 N % A % A

LMU Munich, Germany

Our contribution: Parallel BAM [Proc. ASE 2018]

Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

Lazy application of computed block abstractions

Simple scheduler

Our contribution: Parallel BAM [Proc. ASE 2018]

Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

Lazy application of computed block abstractions

Simple scheduler

v~ Combines benefits of existing approaches

Our contribution: Parallel BAM [Proc. ASE 2018]

Continue with CPA algorithm (non-empty waitlist!)
while asynchronously computing block abstractions

Lazy application of computed block abstractions

Simple scheduler

v~ Combines benefits of existing approaches

v Small synchronization overhead (depends on block size)

plain analysis

(A).
BAM
[
(B) () 5)
oS N N %

plain analysis

BAM
[
(B) ¢) (Db)
parallel BAM
7\31
o)
CJc)
C A e A (@,

Configuration
CPAchecker r28809
Explicit Value Domain
Environment
Intel Xeon E3-1230 v5 CPU with 4 physical cores
5400 tasks from SV-COMP benchmark set
Limitations

15 GB RAM
15 minutes

Evaluation

1000 ‘
) —=—1 (number of threads)
s 1000 2
g
= w0l T i
= .8 -
s L Laas ‘ ‘
0 1000 2000 3000

n-th fastest result

11 /18

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

Evaluation

1000 ‘
) —#-1 (number of threads)
o 100 . D
£
2 1w 7 |
= .8]
=R ‘ ‘
0 1000 2000 3000
n-th fastest result
1000 ‘
<) - —=—1 (number of threads)
g 100 2 :
g - —e—4]
3z w0 8 | o
2600 2800 3000

n-th fastest result

11 /18

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

Small overhead for synchronization in parallel analysis
Elegant integration into the framework CPAcHECKER

No changes necessary to existing analyses and concepts

Small refactoring on implementation if necessary
CEGAR, proof and counterexample witnesses

CPA operators are applied in parallel
(on different reached sets and waitlists)

CPA operators should be stateless

Caches should allow shared access or
only be used in one instance of an operator

CPA operators are applied in parallel
(on different reached sets and waitlists)

CPA operators should be stateless

Caches should allow shared access or
only be used in one instance of an operator

Abstract states should be immutable after construction

Guarantee for the developer: no side effects

CPA operators are applied in parallel
(on different reached sets and waitlists)

CPA operators should be stateless

Caches should allow shared access or
only be used in one instance of an operator

Abstract states should be immutable after construction

Guarantee for the developer: no side effects

Statistics are data!
Often shared across several components

Allow concurrent access!

Scheduling/iteration order:

Prefer parts deeper in the program
Depending on machine load?

Processes instead of threads

Cluster instead multi-core machine
Easier handling of external libraries

Support more domains

Mostly simple refactoring, only a few hard changes
Dependencies, e.g., on external libraries like SMT solvers

Questions? Discussion?

Source Parser & CEGAR
Code CFA Builder| | Algorithm 7| Results
. CPA ||
1 Algorithm
¥ 2 I 2 ¥
Spec Location | | Callstack | |Predicate
Spec 7 cpa CPA CPA CPA

Source
Code

Spec %

—

Parser & CEGAR
CFA Builder| | Algorithm 7 Results
1
. CPA ||
1 Algorithm
l -wait for
‘ nested analysis
BAM
CPA
¥ 2 | 2 ¥
Spec Location | | Callstack | |Predicate
CPA CPA CPA CPA

Source
Code

N instances

Spec

Parser & CEGAR
CFA Builder| | Algorithm [Results
1
[Parallel BAM ;“‘
1 Algorithm
TITIILL:
CPA Eenqueuernsgng
Algorithm | : block abstraction
1
Parallel BAM
CPA
¥ ¥ | ¥ 3
\| Spec Location | | Callstack Value
7| CPA CPA CPA CPA

