Configurable Software Verification based
on Slicing Abstractions

Martin SpieBI

CI A/ Software Systems

Martin SpieBI LMU Munich 1/28

Outline

> Basic ldea

» Example Program
> Splitting via Interpolants (Kojak)
» Slicing Abstractions (SLAB)
» Fitting Kojak into the CPAcueEckER Framework

» CPA Algorithm
» CEGAR Algorithm
> Adjustable-Block Encoding

» Fitting SLAB into the CPAcuEckER Framework
» Flexible-Block Encoding

> Evaluation

» Summary

Martin SpieBI LMU Munich

Slicing Abstractions ldea

Martin SpieBI LMU Munich 3/28

Slicing Abstractions Idea

Martin SpieBl

LMU Munich

>

>

Split abstraction state
into two states

Disjunction of the
splitted states represent
the same concrete states
as in the original state =
soundness

Incoming & outgoing
edges have to be copied

Slicing Abstractions Idea

Martin SpieBl

LMU Munich

Split abstraction state
into two states

Disjunction of the
splitted states represent
the same concrete states
as in the original state =
soundness

Incoming & outgoing
edges have to be copied
Slice by removing
infeasible edges

disconnected subgraphs
can be removed

Slicing Abstractions in Software Model Checking
(2007) Slicing Abstractions

» program counter (if present) tracked symbolically
» motivated by predicate abstraction
» Implementation: SLAB

(2012) Splitting via Interpolants

» makes use of control-flow graph
= symbolic program counter not needed

» motivated by SLAB
> uses Large-Block Encoding
» Implementation: Ultimate Kojak

Martin SpieBI LMU Munich

Example Program

example.c

int i =0;
do {
assert i == 0;

if (%)
i =1;
}

} while (true);

(o) NG, INE NV I O R i)

Martin SpieBI LMU Munich

Splitting via Interpolants (Kojak)

Basic Steps:

» Split: Split states along the error path using interpolants
> Slice: Remove infeasible edges

Termination

» when finding a real counterexample: return false

> when all error states are disconnected: return true

Martin SpieBl LMU Munich 6 /28

Splitting via Interpolants (Kojak)

Initial Abstract Model

Martin SpieBI LMU Munich

Splitting via Interpolants (Kojak)

Initial Abstract Model

Martin SpieBI LMU Munich

Splitting via Interpolants (Kojak)

Split

Martin SpieBl LMU Munich

Slice

/ 28

Slicing Abstractions (SLAB)

Basic Steps:

» Similar to Kojak, but treat program counter symbolically

» Special initial abstract model with predicates init and
error

Termination

» when finding a feasible counterexample: return false

» when no states with predicate error are left: return true

Martin SpieBl LMU Munich

Slicing Abstractions (SLAB)

CFA

start

°‘~ ip

Martin SpieBl

init pc=20

error [pc=1AN1#0

start | pc=0Apd =1A7" =0
skip | pc=1Apd =1

enter | pc=1Apd =2

inc pc=2Apd =1N7 =1

LMU Munich

Slicing Abstractions (SLAB)

ng: init A —error

ny: ~init A —error

ny: init N error

il -
! ny: —init A error

Martin SpieBI

LMU Munich

10 / 28

Slicing Abstractions (SLAB)

linc

A

ny: ~init A error

Martin SpieBI LMU Munich 10 / 28

Slicing Abstractions (SLAB)

ny: init A —error A pe=1 D{skip.emer)

{ skip.enter} { skip,enter}

ns: ~init A —error N ~fpe=1) D{skip,emer}

linc

Y

ny: ~init N error

Martin SpieBI LMU Munich

10 /

28

Implementation of Kojak in CPACHECKER

» Entirely new CPA is NOT needed, instead we reuse the
CPA of predicate abstraction with adjustable-block
encoding (CPA4BE)

Path formulas need to be constructed separately
Special choice of CPA- and CEGAR algorithm inputs

Refinement procedure that implements splitting and slicing

vvyyy

Refinement operates on abstract reachability graph (ARG)
= lots of graph manipulation, esp. for ABE

Martin SpieBl LMU Munich 11 / 28

CPA* Algorithm Setup for Kojak

1: while waitlist # @ do

2: choose e from waitlist

3: waitlist := waitlist \ {e}

4: for all ¢’ with e~~¢’ do

5: for all ¢ € reached do

6: // combine with existing abstract state
7: €new = merge(e, €”)

8: if €, # €” then

9: waitlist := (waitlist U {€new }) \ {€”}

10: reached := (reached U {€,e0 }) \ {€”}
11: if —stop(e’, reached) then

12: if abort(e’) then

13: return (reached, waitlist)

14: waitlist := waitlist U {€'}

15: reached := reached U {¢'}

16: return (reached, waitlist)

* original algorithm also contains precision, removed here for brevity

Martin SpieBI LMU Munich

CPA* Algorithm Setup for Kojak

1: while waitlist # @ do

2: choose e from waitlist > merge operator:
3: waitlist := waitlist \ {e} Merge states at
4: for all ¢’ with e~~¢’ do . .

5 forall ¢ ¢ reached do same location in the
6: // combine with existing abstract state ARG until parent
7 Enew ‘= merge(e,¢”)

N if e % then sets are equal

9: waitlist := (waitlist U {€new }) \ {€”}

10: reached := (reached U {€,e0 }) \ {€”}

11: if —stop(e’, reached) then

12: if abort(e’) then

13: return (reached, waitlist)

14: waitlist := waitlist U {¢’}

15: reached := reached U {¢'}

16: return (reached, waitlist)

* original algorithm also contains precision, removed here for brevity

Martin SpieBl LMU Munich 12

CPA* Algorithm Setup for Kojak

1: while waitlist # @ do

2: choose e from waitlist

3: waitlist := waitlist \ {e}

4: for all ¢’ with e~~¢’ do

5: for all ¢” € reached do

6: // combine with existing abstract state
7: Enew ‘= merge(e,¢”)

8: if €, # €” then

9: waitlist := (waitlist U {€new }) \ {€”}

10: reached := (reached U {€,e0 }) \ {€”}
11: if —stop(e’, reached) then

12: if abort(e’) then

13: return (reached, waitlist)

14: waitlist := waitlist U {¢’}

15: reached := reached U {¢'}

16: return (reached, waitlist)

>

>

merge operator:
Merge states at
same location in the
ARG until parent
sets are equal

stopsep is sufficient,
since all states have
abstraction formula
-

* original algorithm also contains precision, removed here for brevity

Martin SpieBl LMU Munich

CPA* Algorithm Setup for Kojak

1: while waitlist # @ do

2: choose e from waitlist

3: waitlist := waitlist \ {e}

4: for all ¢’ with e~~¢’ do

5: for all ¢” € reached do

6: // combine with existing abstract state
7: Enew ‘= merge(e,¢”)

8: if €, # €” then

9: waitlist := (waitlist U {€new }) \ {€”}

10: reached := (reached U {€,e0 }) \ {€”}
11: if —stop(e’, reached) then

12: if abort(e’) then

13: return (reached, waitlist)

14: waitlist := waitlist U {¢’}

15: reached := reached U {¢'}

16: return (reached, waitlist)

>

>

merge operator:
Merge states at
same location in the
ARG until parent
sets are equal

stopsep is sufficient,
since all states have
abstraction formula
-

Global Refinement:
abort (¢/) always
returns L

* original algorithm also contains precision, removed here for brevity

Martin SpieBl LMU Munich

Slicing Abstractions as CEGAR Refinement
Strategy

Input: a CPA D = (D, ~», merge, stop),

NPT RN

an initial abstract state ¢ € E,
a function refine : P(E) x P(E) — P(E) x P(E),
a function abort : £ — B
a function isTargetState : £ — B
loop
(reached, waitlist) := CPA*(D, reached, waitlist, abort)
if 3¢ € reached : isTargetState(e) then
(reached, waitlist) := refine(reached, waitlist)
if Je € reached : isTargetState(e) then
return false
else
return true

Martin SpieBI LMU Munich

28

Slicing Abstractions as CEGAR Refinement
Strategy

Input: a CPA D = (D, ~», merge, stop),

an initial abstract state ey € E, » Formulate spllttlng and

a function refine : P(E) x P(E) — P(E) x P(E), slicing as CEGAR

a function abort : £ — B .

a function isTargetState : £ — B refinement strategy (Ca”ed
loop in refine)

(reached, waitlist) := CPA*(ID, reached, waitlist, abort)
if 3¢ € reached : isTargetState(e) then
(reached, waitlist) := refine(reached, waitlist)
if Je € reached : isTargetState(e) then
return false
else
return true

NPT RN

Martin SpieBl LMU Munich 13 / 28

Slicing Abstractions as CEGAR Refinement
Strategy

Input: a CPA D = (D, ~», merge, stop),

NPT RN

an initial abstract state ey € E,

a function refine : P(E) x P(E) — P(E) x P(E),

a function abort : £ — B
a function isTargetState : £ — B
loop

>

(reached, waitlist) := CPA*(ID, reached, waitlist, abort)

if 3¢ € reached : isTargetState(e) then >
(reached, waitlist) := refine(reached, waitlist)
if Je € reached : isTargetState(e) then

return false
else
return true

Martin SpieBl

LMU Munich

Formulate splitting and
slicing as CEGAR
refinement strategy (called
in refine)

Strategy repeats splitting
and slicing until feasible
counterexample is found or
all error states have been
removed

Slicing Abstractions as CEGAR Refinement

Strategy

Input: a CPA D = (D, ~», merge, stop),
an initial abstract state ey € E,

a function refine : P(E) x P(E) — P(E) x P(E),

a function abort : £ — B
a function isTargetState : £ — B
loop

return false
else
return true

NPT RN

Martin SpieBl

LMU Munich

| 4

(reached, waitlist) := CPA*(ID, reached, waitlist, abort)

if e € reached : isTargetState(e) then >
(reached, waitlist) := refine(reached, waitlist)
if Je € reached : isTargetState(e) then

Formulate splitting and
slicing as CEGAR
refinement strategy (called
in refine)

Strategy repeats splitting
and slicing until feasible
counterexample is found or
all error states have been
removed

= CPA* and refine will

only be called once in this
setup

Adjustable-Block Encoding

» ABE as flexible replacement for LBE (used by Kojak)
» PredicateCPA is already used to store abstraction formulas
= ABE from PredicateCPA can be reused

» However: block formulas from PredicateCPA cannot be
used because the abstraction states in the ARG do not
form a tree (previous abstraction state will be ambigious)
= dynamically recalculate them

» Loss of tree shape in ARG causes other problems

» Non-abstraction states have to be copied when splitting
states (example on next slide)

u

- T

ine 0:
IT GLOBAL VARS

1ox1s

fnes 10
nsigned int mp_adkd(,

ot main):

unction sar dumms; cdge

20311
e 13
ip_sdd()

sen
mp_ad entey
fnes 03

uncion st dumm edze
signed char 1 = 0;

Line. by
i<l 1< 1 s
PR ———-
7@Ns [Lio: 5@Ne
mp_add mp_add .
Line 5. ine 7 15
Rt etum 0.
nen 96 N0
mp_add p_sdd exit
ne 13 -
tur g from map_add 10 i mp_add().
e
main L
ine 15 S anon
Heny
ine 16
abel: ERROR

Martin SpieBI LMU Munich

15

/ 28

In Refinement after Spliting In Refinement after slicing.

=
e —

.

s

L
-

Martin SpieBI LMU Munich 16 / 28

Adjustments for SLAB

> We need a custom transfer relation in the PredicateCPA
= Generates successors: init A error,—init A error,. ..

» Adapt path-formula creation to generate formulas for
program counter

» We need a way to store multiple CFA edges for the
transition between two ARG states
= refinement refineg;; 45 Needs to be aware of this
> Presence of LocationCPA is sometimes assumed in
CPACHECKER
= add right handling for when this is not the case

» Apart from that, we can use the same procedure as for
Kojak

Flexible-Block Encoding

Problem:

» How can we add ABE to SLAB?

» We cannot form blocks in the initial abstract model

Solution: Flexible-Block Encoding (FBE)

» Use a blk operator similar to that of ABE

» Convert abstraction states after each refinement step
» Fixed-point iteration: apply blk, slice, repeat ...

» FBE can also be used for Kojak

Martin SpieBl LMU Munich 18 / 28

Add CallstackCPA that tracks the call stack

effectively results in function inlining in the initial abstract
model
= sound and precise, but potentially inefficient

obviously fails for recursive procedures
(UrrimaTe KoJak suppports recursion via nested word
automata)

Simply adding a CallstackCPA would lead to an infinite
initial abstract model

Fix: CallstackCPA would need to be aware of whether a
function can be called from the current context

This is then similar to a recursive CFG as used by
ULTIMATE KOJAK
= potentially extendable for recursion

2942 tasks from the reach-safety category of the 2018
Competition on Software Verification (SVCOMP18)

10 subcategories

Hosts: Intel Xeon E3-1230 v5 CPU, 8 processing units, 33
GB of memory, Ubuntu 16.04 / Linux kernel 4.4.0-128

Limits: 900s, 15 GB, 8 processing units

BeNcHEXEC is used for run isolation, resource
measurement and limitation

Comparision using Single-Block Encoding

1000 : : :
[|—e— CPAKOJAK-SBE e
[|—— CPAPREDABS-SBE Y
||- = CPAIMPACT-SBE e
||—+— CPASLIABS-SBE /y’
~m- CPASLAB-SBE /

100

CPU time (s)

10

Il Il Il Il Il Il
0 100 200 300 400 500 600
n-th fastest result

Martin SpieBI LMU Munich

|
700

22/

28

Replacing the refiner of ImpacT by our refineg; 45 does
not change the results significantly (apart from minor
overhead of splitting/slicing)

CPAKOJAK-ABEL is faster than CPAPREDABs-SBE, but
solves less tasks (differences are mostly due to
product-lines category)

CPASLAB-SBE takes too many solver calls to discover the
control flow

ULTIMATE Ko0JAK is not shown since there is no option to
disable LBE

ULTIMATE KOoJAK vs. CPAKOJAK-ABEL

1000
B
fas]
3
£ 100
(e}
=
<
ol
O
8
[
£
2 10
o

Martin SpieBl

100

CPU time for ULtivate KoJax (s)
LMU Munich

Comparison using Adjustable-Block Encoding

T T T T T

—eo— CPAKOJAK-ABEL /
—+— CPAPREDABS-ABEL [‘
-m- CPAIMPACT-ABEL |
t|—+— CPASLIABS-ABEL |
—=— CPASLAB-FBE
[|-e- CPAKOJAK-FBE f
)
-~ ULTIMATE KOJAK

1000

100

CPU time (s)

10

Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600
n-th fastest result

Martin SpieBI LMU Munich

25/

28

Comparision using Adjustable-Block Encoding

Quantile-Plot Insights

» CPAKoJAK-ABEL outperforms ULTiMATE KOJAK
(however: not in all subcategories)

» CPAKoJAk-ABEL outperformed by CPAPREDABs-ABEL and
CPAIMPACT-ABEL

» CPASLAB-FBE is better than CPASLAB-sBE but has still
same problem (too many solver calls for control flow)

» CPAKOJAK-FBE iS no improvement compared to
CPAKOJAK-ABEL

Martin SpieBl LMU Munich 26 / 28

Solver Calls for Slicing

80

60

40

20

0 2 3 4 5 6

log, of # of solver calls for slicing in CPASLAB-sBE

200

150

100

50

0

1 2 3 4 5 6
log, of # of solver calls for slicing in CPAKoJAK-sBE

Martin SpieBl

80

60

40

20

0 2 3 4 5 6

log, of # of solver calls for slicing in CPASLAB-FBE

200

150

100

50

0

0 1 2 3 4
log,, of # of solver calls for slicing in CPAKOJAK-ABEL

LMU Munich

27 / 28

Summary

>

>

CPAcHECKER can now do analyses comparable to Kojak
and SLAB

Our implementation of Kojak is not worse than UrriMaTE
KoJjak

Cost of slicing edges becomes dominant with increasing
block size

Direct usage of control-flow information is important when
dealing with programs

Still a lot of open questions for future work, e. g. recursion,
function handling for SLAB, increasing slicing performance,
concurrency, witness generation /validation, . ..

BACKUP

z 2
o 2w
ﬁ = = @ @ g = ﬁ a E =
3| 3| 2| 2| E| | % & g 3| % g &
=2l o#| 2| 2| B B = %] & 8| % &
@ = = = = b b a gl <| <« @)
g 3 3| 3 3 & 21 2| 3| 3| 2| =
s X M| oM X K=l - Al Al ;| al «»al «a
g < <| < < <| < <| <| < <| <| <
= [a9 a9 [a9 a9 [2} [aY [aY a9 a9
=] O O O O O O O O O O O O
arrays (167 tasks)
correct results 10 11 4 3 5 4 3 6 6 3 3 7 5
bitvectors (50 tasks)
correct results 19 19 36 | 27 33 34| 30 39| 28| 31| 30| 17| 19
control flow (94 tasks)
correct results 31 68 50 | 44 52 55| 24 62| 34| 39| 23 4 8
ECA (1149 tasks)
correct results 328 | 235 | 200 6| 201 | 450 3| 417 41241 3 1 3
floats (172 tasks)
correct results 33 53 34 6 34 28 6 91| 11| 27 5 2 2
heap (181 tasks)
correct results 100 | 117 | 108 | 94| 103 | 110 | 94| 114 | 94| 100 | 94| 54 | 77
loops (163 tasks)
correct results 96 | 103 76| 73 74 74| 71 82| 69| 71| 68| 64| 63
product lines (597 tasks)
correct results 205 | 462 | 463|327 | 463 | 578 | 309 | 551 | 406 | 203 | 304 0| 78
recursive (96 tasks)
correct results 45 0 0 0 0 0 0 0 0 0 0 0 0
sequentialized (273 tasks)
correct results 17| 155 | 131 | 12| 131 | 127 | 22| 116 | 14 |109 | 23 1 2
total (2942)
correct results 974 | 1223 | 1111 | 592 | 1096 | 1460 | 562 | 1538 | 666 | 824 | 553 | 150 | 257
correct true 664 | 680 | 623|368 | 623 | 785|291 | 915|369 | 391 | 281 | 88 | 179
correct false 310 | 543 | 488|224 | 473 | 675|271 | 623|297 | 433|272 | 62| 78
incorrect results 0| 226 1 1 1 1 2 2 1 1 2| 31 29

Expand: Unwind the CFA until error state is discovered

Refine: Use interpolation to remove infeasible states from
abstraction
Cover: Calculate coverage relation to reach fixed point

when finding a feasible counterexample: return false

when fixed point is reached / all states explored: return
true

Lazy Abstraction with Interpolants (IMPACT)

Martin SpieBI LMU Munich 32 /28

Lazy Abstraction with Interpolants (IMPACT)

Martin SpieBI

LMU Munich

33 /28

Lazy Abstraction with Interpolants (IMPACT)

Refine Cover

Martin SpieBI LMU Munich 34 /28

Lazy Abstraction with Interpolants (IMPACT)

Expand

Martin SpieBI LMU Munich 35 /28

Lazy Abstraction with Interpolants (IMPACT)

Expand Refine

Martin SpieBI LMU Munich 36 /28

Lazy Abstraction with Interpolants (IMPACT)

Refine Cover

Martin SpieBI LMU Munich 37 /28

Lazy Abstraction with Interpolants (IMPACT)

Cover

Martin SpieBI LMU Munich 38 /28

