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Slicing Abstractions Idea

I Split abstraction state
into two states

I Disjunction of the
splitted states represent
the same concrete states
as in the original state ⇒
soundness

I Incoming & outgoing
edges have to be copied

I Slice by removing
infeasible edges

I disconnected subgraphs
can be removed
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Slicing Abstractions in Software Model Checking
(2007) Slicing Abstractions

I program counter (if present) tracked symbolically
I motivated by predicate abstraction
I Implementation: SLAB

(2012) Splitting via Interpolants

I makes use of control-flow graph
⇒ symbolic program counter not needed

I motivated by SLAB
I uses Large-Block Encoding
I Implementation: Ultimate Kojak
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Example Program

example.c
0 int i = 0;
1 do {
2 assert i == 0;
3 if (∗) {
4 i = 1;
5 }
6 } while (true );

CFA
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Splitting via Interpolants (Kojak)

Basic Steps:

I Split: Split states along the error path using interpolants
I Slice: Remove infeasible edges

Termination
I when finding a real counterexample: return false
I when all error states are disconnected: return true
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Splitting via Interpolants (Kojak)

CFA
Initial Abstract Model
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Splitting via Interpolants (Kojak)

Initial Abstract Model
Split
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Splitting via Interpolants (Kojak)

Split
Slice
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Slicing Abstractions (SLAB)

Basic Steps:

I Similar to Kojak, but treat program counter symbolically
I Special initial abstract model with predicates init and

error

Termination
I when finding a feasible counterexample: return false
I when no states with predicate error are left: return true
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Slicing Abstractions (SLAB)
CFA

init pc = 0
error pc = 1 ∧ i 6= 0
start pc = 0 ∧ pc′ = 1 ∧ i′ = 0
skip pc = 1 ∧ pc′ = 1
enter pc = 1 ∧ pc′ = 2
inc pc = 2 ∧ pc′ = 1 ∧ i′ = 1
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Slicing Abstractions (SLAB)
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Slicing Abstractions (SLAB)
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Implementation of Kojak in CPAchecker

I Entirely new CPA is NOT needed, instead we reuse the
CPA of predicate abstraction with adjustable-block
encoding (CPAABE)

I Path formulas need to be constructed separately
I Special choice of CPA- and CEGAR algorithm inputs
I Refinement procedure that implements splitting and slicing
I Refinement operates on abstract reachability graph (ARG)
⇒ lots of graph manipulation, esp. for ABE
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CPA* Algorithm Setup for Kojak
1: while waitlist 6= ∅ do
2: choose e from waitlist
3: waitlist := waitlist \ {e}
4: for all e′ with e e′ do
5: for all e′′ ∈ reached do
6: // combine with existing abstract state
7: enew := merge(e, e′′)
8: if enew 6= e′′ then
9: waitlist := (waitlist ∪ {enew}) \ {e′′}

10: reached := (reached ∪ {enew}) \ {e′′}
11: if ¬stop(e′, reached) then
12: if abort(e′) then
13: return (reached, waitlist)
14: waitlist := waitlist ∪ {e′}
15: reached := reached ∪ {e′}
16: return (reached, waitlist)

I merge operator:
Merge states at
same location in the
ARG until parent
sets are equal

I stopsep is sufficient,
since all states have
abstraction formula
>

I Global Refinement:
abort (e′) always
returns ⊥

* original algorithm also contains precision, removed here for brevity
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Slicing Abstractions as CEGAR Refinement
Strategy
Input: a CPA D = (D, , merge, stop),

an initial abstract state e0 ∈ E,
a function refine : P(E)× P(E)→ P(E)× P(E),
a function abort : E → B
a function isTargetState : E → B

1: loop
2: (reached, waitlist) := CPA*(D, reached, waitlist, abort)
3: if ∃ e ∈ reached : isTargetState(e) then
4: (reached, waitlist) := refine(reached, waitlist)
5: if ∃ e ∈ reached : isTargetState(e) then
6: return false
7: else
8: return true

I Formulate splitting and
slicing as CEGAR
refinement strategy (called
in refine)

I Strategy repeats splitting
and slicing until feasible
counterexample is found or
all error states have been
removed

I ⇒ CPA* and refine will
only be called once in this
setup
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Adjustable-Block Encoding

I ABE as flexible replacement for LBE (used by Kojak)
I PredicateCPA is already used to store abstraction formulas
⇒ ABE from PredicateCPA can be reused

I However: block formulas from PredicateCPA cannot be
used because the abstraction states in the ARG do not
form a tree (previous abstraction state will be ambigious)
⇒ dynamically recalculate them

I Loss of tree shape in ARG causes other problems
I Non-abstraction states have to be copied when splitting

states (example on next slide)
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Adjustments for SLAB

I We need a custom transfer relation in the PredicateCPA
⇒Generates successors: init ∧ error,¬init ∧ error,. . .

I Adapt path-formula creation to generate formulas for
program counter

I We need a way to store multiple CFA edges for the
transition between two ARG states
⇒ refinement refineSliAbs needs to be aware of this

I Presence of LocationCPA is sometimes assumed in
CPAchecker
⇒ add right handling for when this is not the case

I Apart from that, we can use the same procedure as for
Kojak
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Flexible-Block Encoding

Problem:
I How can we add ABE to SLAB?
I We cannot form blocks in the initial abstract model

Solution: Flexible-Block Encoding (FBE)

I Use a blk operator similar to that of ABE
I Convert abstraction states after each refinement step
I Fixed-point iteration: apply blk, slice, repeat . . .

I FBE can also be used for Kojak
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Interprocedural Analysis

For Kojak

I Add CallstackCPA that tracks the call stack
I effectively results in function inlining in the initial abstract

model
⇒ sound and precise, but potentially inefficient

I obviously fails for recursive procedures
(Ultimate Kojak suppports recursion via nested word
automata)
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Interprocedural Analysis

For SLAB
I Simply adding a CallstackCPA would lead to an infinite

initial abstract model
I Fix: CallstackCPA would need to be aware of whether a

function can be called from the current context
I This is then similar to a recursive CFG as used by

Ultimate Kojak
⇒ potentially extendable for recursion
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Benchmark

Tasks
I 2942 tasks from the reach-safety category of the 2018

Competition on Software Verification (SVCOMP18)
I 10 subcategories

Environment (identical to SVCOMP18)

I Hosts: Intel Xeon E3-1230 v5 CPU, 8 processing units, 33
GB of memory, Ubuntu 16.04 / Linux kernel 4.4.0-128

I Limits: 900s, 15 GB, 8 processing units
I BenchExec is used for run isolation, resource

measurement and limitation
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Comparision using Single-Block Encoding
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Comparision using Single-Block Encoding

Quantile-Plot Insights

I Replacing the refiner of Impact by our refineSliAbs does
not change the results significantly (apart from minor
overhead of splitting/slicing)

I CPAKojak-abel is faster than CPAPredAbs-sbe, but
solves less tasks (differences are mostly due to
product-lines category)

I CPASlab-sbe takes too many solver calls to discover the
control flow

I Ultimate Kojak is not shown since there is no option to
disable LBE

Martin Spießl LMU Munich 23 / 28



Ultimate Kojak vs. CPAKojak-abel
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Comparison using Adjustable-Block Encoding
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Comparision using Adjustable-Block Encoding

Quantile-Plot Insights

I CPAKojak-abel outperforms Ultimate Kojak
(however: not in all subcategories)

I CPAKojak-abel outperformed by CPAPredAbs-abel and
CPAImpact-abel

I CPASlab-fbe is better than CPASlab-sbe but has still
same problem (too many solver calls for control flow)

I CPAKojak-fbe is no improvement compared to
CPAKojak-abel
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Solver Calls for Slicing
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Summary

I CPAchecker can now do analyses comparable to Kojak
and SLAB

I Our implementation of Kojak is not worse than Ultimate
Kojak

I Cost of slicing edges becomes dominant with increasing
block size

I Direct usage of control-flow information is important when
dealing with programs

I Still a lot of open questions for future work, e. g. recursion,
function handling for SLAB, increasing slicing performance,
concurrency, witness generation/validation, . . .
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BACKUP
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arrays (167 tasks)
correct results 10 11 4 3 5 4 3 6 6 3 3 7 5

bitvectors (50 tasks)
correct results 19 19 36 27 33 34 30 39 28 31 30 17 19

control flow (94 tasks)
correct results 31 68 59 44 52 55 24 62 34 39 23 4 8

ECA (1149 tasks)
correct results 328 235 200 6 201 450 3 477 4 241 3 1 3

floats (172 tasks)
correct results 33 53 34 6 34 28 6 91 11 27 5 2 2

heap (181 tasks)
correct results 100 117 108 94 103 110 94 114 94 100 94 54 77

loops (163 tasks)
correct results 96 103 76 73 74 74 71 82 69 71 68 64 63

product lines (597 tasks)
correct results 295 462 463 327 463 578 309 551 406 203 304 0 78

recursive (96 tasks)
correct results 45 0 0 0 0 0 0 0 0 0 0 0 0

sequentialized (273 tasks)
correct results 17 155 131 12 131 127 22 116 14 109 23 1 2

total (2942)
correct results 974 1223 1111 592 1096 1460 562 1538 666 824 553 150 257
correct true 664 680 623 368 623 785 291 915 369 391 281 88 179
correct false 310 543 488 224 473 675 271 623 297 433 272 62 78

incorrect results 0 226 1 1 1 1 2 2 1 1 2 31 29
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Lazy Abstraction with Interpolants (IMPACT)

Basic Steps:

I Expand: Unwind the CFA until error state is discovered
I Refine: Use interpolation to remove infeasible states from

abstraction
I Cover: Calculate coverage relation to reach fixed point

Termination
I when finding a feasible counterexample: return false
I when fixed point is reached / all states explored: return

true

Martin Spießl LMU Munich 31 / 28



Lazy Abstraction with Interpolants (IMPACT)

CFA Expand
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Lazy Abstraction with Interpolants (IMPACT)

Expand Refine
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Lazy Abstraction with Interpolants (IMPACT)

Refine Cover

Martin Spießl LMU Munich 34 / 28



Lazy Abstraction with Interpolants (IMPACT)

Cover
Expand
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Lazy Abstraction with Interpolants (IMPACT)

Expand Refine
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Lazy Abstraction with Interpolants (IMPACT)

Refine Cover

Martin Spießl LMU Munich 37 / 28



Lazy Abstraction with Interpolants (IMPACT)

Cover Expand

Martin Spießl LMU Munich 38 / 28


