

Newton Refinement as Alternative to Craig Interpolation in CPAchecker

Matthias Gerlach

09.01.2019

Newton Refinement as Alternative to Craig Interpolation in CPAchecker

> < E

> < ∃ > ∃ = √QQ

Motivation Verification

- Growing reliance on computer systems
- Ensure specifications
- Tests only covers a subset of scenarios
- Verification can prove specification over all scenarios
- Common approach: Predicate Analysis based on CEGAR

Counterexample Guided Abstraction Refinement

- Requires a method to extract state assertions from error traces
 - ► Typical approach: Craig Interpolation
 - ► Alternative (previous) approach: Newton Refinement

<日 > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and Goals of this Thesis

- Motivation for Newton Refinement
 - Alternative to Craig Interpolation
 - Recent paper "Craig vs. Newton" shows comparable results to interpolation
 - Limited number of SMT-solvers supporting interpolation
- Implementation of Newton Refinement in CPAchecker
- Evaluation of the method based on Benchmarks

Statements and Path Formulas

- Two types of statements
 - ► Assignment: *x* := *e*
 - \blacktriangleright Assume statement: assume φ
- Each statement can be translated to a path formula:
 - Assignment: $x_i = \text{rename}_i(e)$
 - Assume statement: rename_i(φ)
- rename_i(ψ)
 - Replaces all program variables with indexed version
 - Index is location of last assignment new value.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ りへへ

int main(){
 int x = 0;
 int y = 1;

Basic Approach - Example

Trace and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$

```
while (x < 1) {
    x = x + 1;
    }
    if (x != 1) {
        goto ERROR;
    }
    return 0;
ERROR:
    return -1;
}</pre>
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQ@

int main(){

Basic Approach - Example

Trace and Path formula:

int $x = 0;$	i	Statement
int $y = 1;$	1	x := 0;
	2	y := 1;
while $(x < 1)$ {	3	assume $x <$
x = x + 1;		
}		
if $(x != 1)$ {		
goto ERROR;		
}		
return 0;		
ERROR :		
return $-1;$		
}		

i	Statement <i>st</i> i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$

・ロト < 団ト < ヨト < ヨト < ロト

Basic Approach - Example

Trace and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$

Basic Approach - Example

Trace and Path formula:

<pre>int main(){</pre>	
int $x = 0;$	
int $y = 1;$	
while $(x < 1)$ {	
x = x + 1;	
}	
if $(x != 1)$ {	
goto ERROR;	
}	
return 0;	
ERROR :	
return $-1;$	
}	

i	Statement <i>st_i</i>	Path formula <i>F_i</i>
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x eq 1;$	$x_4 eq 1$

Sequence of Assertions

• Has to fulfill following conditions:

$$egin{aligned} & arphi_0 = \texttt{true} \ & arphi_{i+1} = \texttt{SP}(arphi_i, st_{i+1}) & ext{for } i = 0, \dots, n-1 \ & arphi_n = \texttt{false} \end{aligned}$$

- $SP(\varphi_i, st_{i+1})$ is the strongest postcondition of the statement st_{i+1}
 - Conjunction of φ_i and F_i
 - ► For Assignments: Existentially quantify old indexed variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

i	sti	State assertions
		$\varphi_{0} := \texttt{true}$
1	<i>x</i> := 0;	
2	y := 1;	
3	assume $x < 1$;	
4	x = x + 1;	
5	assume $\neg(x < 1);$	
6	assume $x eq 1;$	

・ロト < 団ト < ヨト < ヨト < ロト

i	sti	State assertions
		$\varphi_{0} := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
3	assume $x < 1$;	
4	x = x + 1;	
5	assume $\neg(x < 1);$	
6	assume $x eq 1$;	

・ロト < 団ト < ヨト < ヨト < ロト

i	sti	State assertions
		$\varphi_0 := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
4	x = x + 1;	
5	assume $\neg(x < 1);$	
6	assume $x \neq 1$:	

i	sti	State assertions
		$\varphi_{0} := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
5	assume $\neg(x < 1);$	
6	assume $x \neq 1$:	

i	sti	State assertions
		$\varphi_{0} := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
		$arphi_{4}:=\exists x_{1}.x_{1}=0\wedgey_{2}=1\wedgex_{1}<1\wedgex_{4}=x_{1}+1$
5	assume $\neg(x < 1);$	
6	assume $x \neq 1$;	

i	sti	State assertions
		$\varphi_0 := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
		$\varphi_4:=x_4=1\wedge y_2=1$
5	assume $\neg(x < 1);$	
6	assume $x \neq 1$	

i	sti	State assertions
		$\varphi_0 := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
		$\varphi_4:=x_4=1\wedge y_2=1$
5	assume $\neg(x < 1);$	
		$arphi_5:=x_4=1\wedge y_2=1\wedge eg(x_4<1)$
6	assume $x eq 1$;	

i	sti	State assertions
		$arphi_{0}:=\mathtt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
		$\varphi_4:=x_4=1\wedge y_2=1$
5	assume $\neg(x < 1);$	
		$arphi_5:=x_4=1\wedge y_2=1\wedge eg(x_4<1)$
6	assume $x \neq 1$;	
		$arphi_{6}:x_{4}=1\wedgey_{2}=1\wedge eg(x_{4}<1)\wedgex_{4} eq1$

Matthias Gerlach

・ロト < 団ト < ヨト < ヨト < ロト

i	sti	State assertions
		$\varphi_{0} := \texttt{true}$
1	<i>x</i> := 0;	
		$\varphi_1 := x_1 = 0$
2	y := 1;	
		$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	
		$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	
		$arphi_4:=x_4=1\wedge y_2=1$
5	assume $\neg(x < 1);$	
		$arphi_5:=x_4=1\wedge y_2=1\wedge eg(x_4<1)$
6	assume $x \neq 1$;	
		$arphi_{6} := \mathtt{false}$

・ロト < 団ト < ヨト < ヨト < ロト

Motivation for Abstractions

- State assertions very specific
- State assertions become very long
- \Rightarrow Abstraction of state assertions
 - Infeasible Core abstraction
 - Live Variable abstraction

Infeasible Core Abstraction

- Idea: Only add path formulas that are relevant
- Using Unsatisfiable Core
 - ► Subset of formulas, such that the conjunction is still unsatisfiable
 - Supported by most SMT solvers
- Unsatisfiable core of path formulas = Infeasible Core
- Only use path formulas of the infeasible core for state assertions

→ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● 回 ■ ● ○ ○ ○

i	sti	Fi	State assertions
			$arphi_{0} := \mathtt{true}$
1	<i>x</i> := 0;	$x_1 = 0$	
2	y := 1;	$y_2 = 1$	
3	assume $x < 1$;	$x_1 < 1$	
4	x = x + 1;	$x_4 = x_1 + 1$	
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
6	assume $x \neq 1$;	$x_4 eq 1$	

Matthias Gerlach

i	sti	Fi	State assertions
			$arphi_{0} := \mathtt{true}$
1	<i>x</i> := 0;	$\mathbf{x}_1 = 0$	
2	y := 1;	$y_2 = 1$	
3	assume $x < 1$;	$x_1 < 1$	
4	x = x + 1;	$x_{4} = x_1 + 1$	
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
6	assume $x \neq 1$;	$x_4 eq 1$	

Matthias Gerlach

i	sti	Fi	State assertions
			$arphi_{0} := \mathtt{true}$
1	<i>x</i> := 0;	$x_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
3	assume $x < 1$;	$x_1 < 1$	
4	x = x + 1;	$x_{4} = x_1 + 1$	
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
6	assume $x \neq 1$;	$x_4 eq 1$	

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 11/20

i	sti	Fi	State assertions
			$arphi_{0}:=\mathtt{true}$
1	<i>x</i> := 0;	$x_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	$x_1 < 1$	
			$\varphi_3 := x_1 = 0$
4	x = x + 1;	$x_{4} = x_1 + 1$	
			$arphi_{\mathtt{4}}:=\exists \mathtt{x}_{1}.\mathtt{x}_{1}=oldsymbol{0}\wedge\mathtt{x}_{\mathtt{4}}=\mathtt{x}_{1}+oldsymbol{1}$
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
6	assume $x \neq 1$;	$x_4 eq 1$	

Matthias Gerlach

i	sti	Fi	State assertions
			$arphi_{0}:=\mathtt{true}$
1	<i>x</i> := 0;	$\mathbf{x}_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	$x_1 < 1$	
			$\varphi_3 := x_1 = 0$
4	x = x + 1;	$x_4=x_1+1$	
			$arphi_4:=x_4=1$
5	assume $\neg(x < 1);$	$x_4 \ge 1$	
6	assume $x eq 1;$	$x_4 eq 1$	

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 11/20

i	sti	Fi	State assertions
			$arphi_{0}:=\mathtt{true}$
1	<i>x</i> := 0;	$\mathbf{x}_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	$x_1 < 1$	
			$\varphi_3 := x_1 = 0$
4	x = x + 1;	$x_{4} = x_1 + 1$	
			$arphi_4:=x_4=1$
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
			$arphi_5:=x_4=1$
6	assume $x \neq 1$;	$x_4 eq 1$	

i	sti	Fi	State assertions
			$arphi_{0} := \mathtt{true}$
1	<i>x</i> := 0;	$x_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	$x_1 < 1$	
			$\varphi_3 := x_1 = 0$
4	x = x + 1;	$x_4=x_1+1$	
			$arphi_4:=x_4=1$
5	assume $\neg(x < 1);$	$x_4 \geq 1$	
			$\varphi_5:=x_4=1$
6	assume $x \neq 1$;	$x_4 eq 1$	
			$arphi_{6}: x_4 = 1 \wedge x_4 eq 1$

i	sti	Fi	State assertions
			$arphi_{0} := \mathtt{true}$
1	<i>x</i> := 0;	$\mathbf{x}_1 = 0$	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$y_2 = 1$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	$x_1 < 1$	
			$\varphi_3 := x_1 = 0$
4	x = x + 1;	$x_4=x_1+1$	
			$arphi_4:=x_4=1$
5	assume $\neg(x < 1);$	$x_4 \ge 1$	
			$arphi_5:=x_4=1$
6	assume $x \neq 1$;	$x_4 eq 1$	
			$arphi_{6} := \texttt{false}$

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 11/20

Live Variable Abstraction

- Idea: Remove variables that are not used by following statements
- Identify sets of variables that are ...
 - ▶ ... Future live *FL*
 - ... Not future live \overline{FL}
- Existentially quantify variables of \overline{FL}

With Live Variable Abstraction - Example

i	sti	FL	State assertions
			$arphi_{\mathtt{0}}:=\mathtt{true}$
1	<i>x</i> := 0;	{}	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$\{y_2\}$	
			$\varphi_2 := x_1 = 0 \land y_2 = 1$
3	assume $x < 1$;	${y_2}$	
			$\varphi_3 := x_1 = 0 \land y_2 = 1 \land x_1 < 1$
4	x = x + 1;	$\{y_2, x_1\}$	
			$\varphi_4:=x_4=1\wedge y_2=1$
5	assume $\neg(x < 1);$	$\{y_2, x_1\}$	
			$\varphi_5:=x_4=1\wedge y_2=1$
6	assume $x \neq 1$;	$\{y_2, x_1, x_4\}$	
			$arphi_{6} := \texttt{false}$

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 13/

With Live Variable Abstraction - Example

i	sti	FL	State assertions
			$arphi_{\mathtt{0}}:=\mathtt{true}$
1	<i>x</i> := 0;	{}	
			$\varphi_1 := x_1 = 0$
2	y := 1;	$\{y_2\}$	
			$\varphi_2 := x_1 = 0$
3	assume $x < 1$;	${y_2}$	
			$\varphi_3 := x_1 = 0 \land x_1 < 1$
4	x = x + 1;	$\{y_2, x_1\}$	
			$arphi_4:=x_4=1$
5	assume $\neg(x < 1);$	$\{y_2, x_1\}$	
			$arphi_5:=x_4=1$
6	assume $x \neq 1$;	$\{y_2, x_1, x_4\}$	
			$arphi_{6} := \mathtt{false}$

Implementation in CPAchecker

- New class NewtonRefinementManager
- Two approaches to get path formulas
 - Edge-Level: Edges in Control Flow Automaton
 - ► Block-Level: Block formulas of Abstract Reachability Graph
- Solver independent quantifier elimination in PseudoExistQeManager
 - Destructive Equality Resolution
 - Unconnected Parameter Drop

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ りへへ

Configurations

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 1

Setting and Questions

- Benchmark setting
 - ► SV-COMP 2018
 - Verifier Cloud
 - Linux 2CPUs(Intel Xeon), 15GB RAM
 - Timeout 600s
 - Solver: MathSAT5
- Interesting Questions
 - Best configuration of Newton Refinement?
 - Effectivity compared to Craig Interpolation?
 - Correct results where interpolation fails?

同 ・ ・ ヨ ト ・ ヨ ヨ ・ りゅつ

Comparing Newton Refinement Configurations

 \Rightarrow Best configuration: *Edge-LV*

◆母 ◆ ● ◆ ● ◆ ● ● ● ● ● ● ● ●

Comparison to Craig Interpolation Quantile Plot

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 18

18/20

◆母 ◆ ● ◆ ● ◆ ● ● ● ● ● ● ● ●

Scatter Plot Computation Time

Percentage of exclusively proved Programs

Conclusion

- Alternative error trace refinement
- Best configuration: Edge-LV
- Proofs some programs, where interpolation fails
- Similar results for Z3
- Solver based quantifier elimination only slightly more successful
- Possible extension: Newton Refinement as fallback for interpolation

<ロ> <同> <同> <目> <同> <日> <同> <日> <同> <日> <同> <日</p>

int main(){ int x = 0; int y = 1; while (x < 1){ x = x + 1: } if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x eq 1;$	$x_4 eq 1$

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20

int main(){ int x = 0; int y = 1; while (x < 1){ x = x + 1: } if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x eq 1;$	$x_4 eq 1$

int main(){ int x = 0; int y = 1; while (x < 1)x = x + 1: } if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1;$	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x \neq 1$;	$x_4 eq 1$

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20

int main(){ int x = 0; int y = 1; while (x < 1){ x = x + 1;} if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula <i>F_i</i>
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x eq 1;$	$x_4 eq 1$

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20,

int main(){ int x = 0; int y = 1; while (x < 1)x = x + 1;} if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1$;	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$ eg(x_4 < 1)$
6	assume $x eq 1$;	$x_4 eq 1$

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20

int main(){ int x = 0; int y = 1; while (x < 1){ x = x + 1;} if (x != 1){ goto ERROR; } return 0: ERROR: return -1;

Statements and Path formula:

i	Statement st _i	Path formula F_i
1	<i>x</i> := 0;	$x_1 = 0$
2	y := 1;	$y_2 = 1$
3	assume $x < 1;$	$x_1 < 1$
4	x = x + 1;	$x_4 = x_1 + 1$
5	assume $\neg(x < 1);$	$\neg(x_4 < 1)$
6	assume $x \neq 1$;	$x_4 eq 1$

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20

Backup Solver Benchmark

Newton Refinement as Alternative to Craig Interpolation in CPAchecker

Backup Z3 Quantile

▲圖▶ ▲ 분▶ ▲ 분▶ 분 분 의 의 Q @

Backup Z3 Quantile

Matthias Gerlach

Newton Refinement as Alternative to Craig Interpolation in CPAchecker 20,

20/20

= 990

Backup Quantifier Elimination

