#### CoVeriTest Cooperative Verifier-Based Testing

#### Dirk Beyer and Marie-Christine Jakobs

FASE 2019











Quality?









Task:

Generate a test-suite for program  ${\cal P}$  that covers test goals

Task:

Generate a test-suite for program  ${\cal P}$  that covers test goals



Task:

Generate a test-suite for program P that covers test goals



Task:

Generate a test-suite for program  ${\cal P}$  that covers test goals



Need to combine different test tools  $\Rightarrow$  Use CoVeriTest

#### Overview of CoVeriTest Approach



Information exchange realized with ARGs and init procedure

ARG: graph representation of explored, abstract state space

- 1. Provides program and test goals
- 2. Realizes information exchange based on previous ARGs

- 1. Provides program and test goals
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]

- 1. Provides program and test goals
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]
    - Avoid to explore already explored state space
    - For restriction, use ARG of previous analysis

- $1. \ {\rm Provides \ program \ and \ test \ goals}$
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]
    - Avoid to explore already explored state space
    - For restriction, use ARG of previous analysis
  - Reuse own knowledge
    - $\Rightarrow$  set up initial ARG  $(N, E, root, F, \pi)$ 
      - use ARG returned by last run of this analysis

- $1. \ {\rm Provides \ program \ and \ test \ goals}$
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]
    - Avoid to explore already explored state space
    - For restriction, use ARG of previous analysis
  - Reuse own knowledge
    - ⇒ set up initial ARG  $(N, E, root, F, \pi)$ use ARG returned by last run of this analysis

#### Start from scratch

$$root = (pc_0, true)$$
  $N = F = \{root\}$   $E = \pi = \emptyset$ 

- $1. \ {\rm Provides \ program \ and \ test \ goals}$
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]
    - Avoid to explore already explored state space
    - For restriction, use ARG of previous analysis
  - Reuse own knowledge
    - $\Rightarrow \text{ set up initial ARG } (N, E, root, F, \pi) \\ \text{ use ARG returned by last run of this analysis}$ 
      - Start from scratch

$$root = (pc_0, true) \qquad N = F = \{root\} \qquad E = \pi = \emptyset$$

• Reuse abstraction level  $\pi$ 

- $1. \ {\rm Provides \ program \ and \ test \ goals}$
- 2. Realizes information exchange based on previous ARGs
  - Cooperation between analyses
    - Based on conditional model checking [Beyer et al., FSE'12]
    - Avoid to explore already explored state space
    - For restriction, use ARG of previous analysis
  - Reuse own knowledge
    - ⇒ set up initial ARG  $(N, E, root, F, \pi)$ use ARG returned by last run of this analysis
      - Start from scratch

$$root = (pc_0, true) \qquad N = F = \{root\} \qquad E = \pi = \emptyset$$

- Reuse abstraction level  $\pi$
- Continue exploration, i.e., reuse ARG

# One Analysis Run in CoVeriTest – Execution

Perform reachability analysis of uncovered goals



 $\mathsf{Feasible}\ \mathsf{counterexample} \Rightarrow \mathsf{uncovered}\ \mathsf{goal}\ \mathsf{reached}$ 

# One Analysis Run in CoVeriTest – Execution

Perform reachability analysis of uncovered goals



 $\mathsf{Feasible}\ \mathsf{counterexample} \Rightarrow \mathsf{uncovered}\ \mathsf{goal}\ \mathsf{reached}$ 

- Construct test cases from feasible counterexamples [Beyer et al., ICSE'04]
- Goals for which a test cases is constructed become covered

# One Analysis Run in CoVeriTest – Execution

Perform reachability analysis of uncovered goals



 $\mathsf{Feasible}\ \mathsf{counterexample} \Rightarrow \mathsf{uncovered}\ \mathsf{goal}\ \mathsf{reached}$ 

- Construct test cases from feasible counterexamples [Beyer et al., ICSE'04]
- Goals for which a test cases is constructed become covered
- Stops if goals covered, total or analysis time limit exceeded

**Output**: test cases + explored state space (ARG)

#### **Research Questions**

Internal comparison

- 1. How to configure CoVeriTest? time limits, information exchange
- 2. Does CoVeriTest's interleaving improve over
  - its single analyses,
  - their parallel combination?

External comparison

3. How does CoVeriTest compete with state-of-the-art?

# Evaluation Set Up



#### Evaluation Set Up





- 15 GB of memory, 900 s in total
- Analysis limits (V,P) in (s) (10,10) (50,50) (100,100) (250,250) (80,20) (20,80)

## Evaluation Set Up



 $\mathsf{Per} \ \mathsf{mode} \ m \ \mathsf{consider}$ 

- > all 6 configurations  $C_i$  with mode m, **but** different limits
- distribution of relative coverage (i.e., relative to best result)

#### $\mathsf{Per} \ \mathsf{mode} \ m \ \mathsf{consider}$

- > all 6 configurations  $C_i$  with mode m, **but** different limits
- distribution of relative coverage (i.e., relative to best result)

#### Computing relative coverage of a task

|                   | $C_1$          | $C_2$           | $C_3$          | $C_4$           | $C_5$          | $C_6$           | Maximum |
|-------------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|---------|
| # covered         | 7              | 13              | 4              | 16              | 9              | 11              | 16      |
| relative coverage | $\frac{7}{16}$ | $\frac{13}{16}$ | $\frac{4}{16}$ | $\frac{16}{16}$ | $\frac{9}{16}$ | $\frac{11}{16}$ |         |

 $\mathsf{Per} \ \mathsf{mode} \ m \ \mathsf{consider}$ 

- > all 6 configurations  $C_i$  with mode m, **but** different limits
- distribution of relative coverage (i.e., relative to best result)

 $\Rightarrow$  results in two mode clusters

Per mode m consider

- > all 6 configurations  $C_i$  with mode m, **but** different limits
- distribution of relative coverage (i.e., relative to best result)

 $\Rightarrow$  results in two mode clusters



Boxes closer to one that are small are better

Per mode m consider

- > all 6 configurations  $C_i$  with mode m, **but** different limits
- distribution of relative coverage (i.e., relative to best result)

 $\Rightarrow$  results in two mode clusters



Boxes closer to one that are small are better

- Use best time limit per mode
- Compare relative coverage of different modes

- Use best time limit per mode
- Compare relative coverage of different modes



- Use best time limit per mode
- Compare relative coverage of different modes



(i.e., reuse abstraction level or continue exploration)

- Use best time limit per mode
- Compare relative coverage of different modes



#### Alone vs. Use in CoVeriTest Interleaving

# • Compares absolute coverage (i.e., $\frac{\#covered}{\#total}$ goals)

Uses best CoVeriTest configuration

#### Alone vs. Use in CoVeriTest Interleaving

CoVeriTest better for points in lower right half



Compares absolute coverage (i.e., #covered #total goals)
Uses best CoVeriTest configuration

#### Alone vs. Use in CoVeriTest Interleaving

CoVeriTest better for points in lower right half



Compares absolute coverage (i.e., #covered #total goals)
Uses best CoVeriTest configuration

#### Parallel vs. Interleaving with CoVeriTest

CoVeriTest better for points in lower right half



Compares absolute coverage (i.e., #covered #total goals)
Uses best CoVeriTest configuration

#### Comparison to State-of-the-Art

Participated in 1. Intl. Competition on Software Testing:



#### Comparison to State-of-the-Art

Participated in 1. Intl. Competition on Software Testing:



Complements other participants, e.g.,



#### Comparison to State-of-the-Art

Participated in 1. Intl. Competition on Software Testing:

Complements other participants, e.g.,



- Compare coverage measured by gcov
- CoVeriTest better in lower right half

#### CoVeriTest approach for cooperative, test generation



CoVeriTest approach for cooperative, test generation

Evaluation results

- 1. Configuration
  - Continue own exploration
  - Prefer more mature analysis



CoVeriTest approach for cooperative, test generation

Evaluation results

- 1. Configuration
  - Continue own exploration
  - Prefer more mature analysis



- CoVeriTest improves over component, parallelization
- CoVeriTest complements state-of-the-art tools



CoVeriTest approach for cooperative, test generation

Evaluation results

- 1. Configuration
  - Continue own exploration
  - Prefer more mature analysis



- 2. Comparison
  - CoVeriTest improves over component, parallelization
  - CoVeriTest complements state-of-the-art tools

https://www.sosy-lab.org/research/coop-testgen/

DOI 10.5281/zenodo.2566735