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Programs available in public benchmark repository
of the verification-research community [1]:

Witnesses available in the data set [2] and
described in this paper [6].


https://github.com/sosy-lab/sv-benchmarks

What is a witness?
An automaton that contains
invariants (or error paths).

1 int main () {

unsigned int x
unsigned int y

while (x < 1024)

x = x + 1;
y =y + 1

b
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// Safety property

assert(x == y);
return O;

nondet () ;
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Software-verification community mostly interested in
result validation [4,3, 5].
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Validate untrusted results

Easier than full verification



What else can we do with these nice verification artifacts?
Visualization of error paths
Annotations of programs with invariants
Classification of bugs
Classification of program invariants
Can violation witnesses improve understanding of bugs?

Can correctness witnesses improve understanding
the correctness proof?

Is it possible to predict (and later check)
program invariants?



Correctness Witnesses
Median Mean Max Sum

Violation Witnesses

Median Mean Max Sum

Witness Measure All Witnesses
Median Mean Max Sum

Number of States
Number of Transitions

27 950 1.5-10° 58-10°
27 1200 1.5-10° 74-10°

23 1100 1.0 -10° 39 -10°
24 1400 0.90-10° 52 -10°

3.0 380 0.70-10° 3.1-10°
270 35000 9.6 -10° 290 -10°

31 750 15-10° 19-10°
31 860 1.5-10° 22-10°

Number of Invariants
Length of All Invariants

The paper [6] provides more statistics,
and a detailed description of the structure of the data set.

Data set is result of 450 days of CPU time,
distributed over 168 computers.



Analyze invariants and error paths
Gain insights from data analysis

Almost no analysis was done yet for witnesses

Remember the research questions:
Can violation witnesses improve understanding bugs?

Can correctness witnesses improve understanding
the correctness?

Is it possible to predict (and later check)
program invariants?

Lots of papers need to be written!

Thanks! Questions?
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