A Data Set of

Program Invariants and Error Paths

Dirk Beyer

LMU Munich, Germany

Rl -
|_|V|U MONCHEN Software Systems

Dirk Beyer LMU Munich, German y 1/8

Program Bl
Specification
Result (True/False)B

' Witness

Programs available in public benchmark repository
of the verification-research community [1]:

Witnesses available in the data set [2] and
described in this paper [6].

https://github.com/sosy-lab/sv-benchmarks

What is a witness?
An automaton that contains
invariants (or error paths).

1 int main () {

unsigned int x
unsigned int y

while (x < 1024)

x = x + 1;
y =y + 1

b

3

// Safety property

assert(x == y);
return O;

nondet () ;
X,

{

!

o/w
true

3,enterLoopHead:

Software-verification community mostly interested in
result validation [4,3, 5].

Program Bl

Specification BI
' Result (True/False
Result (True/False) (True/False)

' Witness

Validate untrusted results

Easier than full verification

What else can we do with these nice verification artifacts?
Visualization of error paths
Annotations of programs with invariants
Classification of bugs
Classification of program invariants
Can violation witnesses improve understanding of bugs?

Can correctness witnesses improve understanding
the correctness proof?

Is it possible to predict (and later check)
program invariants?

Correctness Witnesses
Median Mean Max Sum

Violation Witnesses

Median Mean Max Sum

Witness Measure All Witnesses
Median Mean Max Sum

Number of States
Number of Transitions

27 950 1.5-10° 58-10°
27 1200 1.5-10° 74-10°

23 1100 1.0 -10° 39 -10°
24 1400 0.90-10° 52 -10°

3.0 380 0.70-10° 3.1-10°
270 35000 9.6 -10° 290 -10°

31 750 15-10° 19-10°
31 860 1.5-10° 22-10°

Number of Invariants
Length of All Invariants

The paper [6] provides more statistics,
and a detailed description of the structure of the data set.

Data set is result of 450 days of CPU time,
distributed over 168 computers.

Analyze invariants and error paths
Gain insights from data analysis

Almost no analysis was done yet for witnesses

Remember the research questions:
Can violation witnesses improve understanding bugs?

Can correctness witnesses improve understanding
the correctness?

Is it possible to predict (and later check)
program invariants?

Lots of papers need to be written!

Thanks! Questions?

References |

1

=)

=7

Beyer, D.: SV-Benchmarks: Benchmark set of 8th Intl. Competition on Software
Verification (SV-COMP 2019). Zenodo (2019).
https://doi.org/10.5281/zenodo.2598729

Beyer, D.: Verification witnesses from SV-COMP 2019 verification tools. Zenodo
(2019). https://doi.org/10.5281/zenodo.2559175

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses:
Exchanging verification results between verifiers. In: Proc. FSE. pp. 326-337.
ACM (2016). https://doi.org/10.1145/2950290.2950351

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness
validation and stepwise testification across software verifiers. In: Proc. FSE. pp.
721-733. ACM (2015). https://doi.org/10.1145/2786805.2786867

Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3-23.
LNCS 10889, Springer (2018).
https://doi.org/10.1007/978-3-319-92994-1_1

Beyer, D.: A data set of program invariants and error paths. In: Proc. MSR. pp.
111-115. IEEE (2019). https://doi.org/10.1109/MSR.2019.00026

Dirk Beyer LMU Munich, Germany

8/8

https://doi.org/10.5281/zenodo.2598729
https://doi.org/10.5281/zenodo.2559175
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1109/MSR.2019.00026

