A Data Set of Program Invariants and Error Paths

Dirk Beyer

LMU Munich, Germany

Witnesses from Software Verification

Programs available in public benchmark repository of the verification-research community [1]: https://github.com/sosy-lab/sv-benchmarks

Witnesses available in the data set [2] and described in this paper [6].

Example: Witness with Invariants

What is a witness?

An automaton that contains invariants (or error paths).

```
q_0
  int main() {
                                      true
    unsigned int x = nondet();
                                               3,enterLoopHead:
    unsigned int y = x;
    while (x < 1024) {
                                             q_1
       x = x + 1;
       y = y + 1;
                                    4,then:
                                                  4,else:
                                         o/w
    // Safety property
                              true
                                                         true
                                     q_2
                                                    q_3
   assert(x == y);
    return 0;
                                   5:
10
                                            6,enterLoopHead:
11 }
                              true
                                      q_4
```

Main Purpose of Witnesses: Result Validation

Software-verification community mostly interested in result validation [4, 3, 5].

- Validate untrusted results
- Easier than full verification

Possible Research Questions

What else can we do with these nice verification artifacts?

- Visualization of error paths
- Annotations of programs with invariants
- Classification of bugs
- Classification of program invariants
- Can violation witnesses improve understanding of bugs?
- Can correctness witnesses improve understanding the correctness proof?
- Is it possible to predict (and later check) program invariants?

Statistics about the Witnesses

Witness Measure	All Witnesses				Correctness Witnesses					Violation Witnesses			
	Median	Mean	Max	Sum	Median	Mean	Max		Sum	Median	Mean	Max	Sum
Number of States Number of Transitions	27 27		$1.5 \cdot 10^6$ $1.5 \cdot 10^6$	58 · 10 ⁶ 74 · 10 ⁶	23		1.0 · 10 ⁶ 0.90 · 10 ⁶		· 10 ⁶	31	750 860	1.5 · 10 ⁶ 1.5 · 10 ⁶	
Number of Invariants	21	1 200	1.5 · 10*	74 · 10*	3.0		0.90 · 10 ⁶	_	1 . 106	l 1	800	1.5 · 10*	22 · 10-
Length of All Invariants					270	35 000		٥.	· 10 ⁶				

The paper [6] provides more statistics, and a detailed description of the structure of the data set.

Data set is result of 450 days of CPU time, distributed over 168 computers.

Purpose of a Data Set

- Analyze invariants and error paths
- Gain insights from data analysis
- Almost no analysis was done yet for witnesses

Remember the research questions:

- Can violation witnesses improve understanding bugs?
- Can correctness witnesses improve understanding the correctness?
- Is it possible to predict (and later check) program invariants?

Lots of papers need to be written!

Thanks! Questions?

References I

Beyer, D.: SV-Benchmarks: Benchmark set of 8th Intl. Competition on Software Verification (SV-COMP 2019). Zenodo (2019). https://doi.org/10.5281/zenodo.2598729

Beyer, D.: Verification witnesses from SV-COMP 2019 verification tools. Zenodo (2019). https://doi.org/10.5281/zenodo.2559175

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016). https://doi.org/10.1145/2950290.2950351

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM (2015). https://doi.org/10.1145/2786805.2786867

Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses: Execution-based validation of verification results. In: Proc. TAP. pp. 3–23. LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

Beyer, D.: A data set of program invariants and error paths. In: Proc. MSR. pp. 111–115. IEEE (2019). https://doi.org/10.1109/MSR.2019.00026