Correctness Witness Validation
using Predicate Analysis

Maximilian Wiesholler

June 5, 2019

s -
LM U o Software Systems

Maximilian Wiesholler 1/53

Motivation
Background
Concepts
Evaluation

Outlook

Validation of correctness witnesses can increase trust in the
verification result.

Only two validators for correctness witnesses exist:

k-Induction-based validator in CPAcHECKER [1]

Automata-based validator in Urrimate Automizer [1]

Goal: Use predicate analysis in CPAcHECKER as new validator.

Approaches for predicate analysis as new validator:

Reuse witness invariants for the initial precision

Define witness invariants as additional verification goal

Motivation
Background
Concepts
Evaluation

Outlook

is a partial correctness proof when a program fulfills a
specification

can contain invariants which have been found during the
verification of the program

Syntactic level: Witness is stored in an exchangeable format

Semantic level: Witness is represented by an observer
automaton

Example program and its corresponding correctness witness automaton

1 int main(void) {

2 unsigned int x =
__VERIFIER_nondet_uint();

3 unsigned int y = x;

4 while (x < 1024) {

5 x++;

6 y++;

T

8 if (x 1= y){

9 ERROR: return 1;

10 }

11 return O;

12

o/w

PL=4 true
n4

o/w o/w o/w

imilian Wiesholler

o1
@

includes general information in the header:
witness type (violation | correctness)
producer
proved specification
program hash

contains the witness automaton

Using predicate abstraction in a reachability analysis with
CEGAR.

Computation of predicates (boolean expressions) over program
variables.
Motivation: Abstract concrete states and their assigned variables.

Predicates can be solved by a SMT solver.

A set of reachable abstract states is computed to create an abstract
model of the program.

The abstract model has the form of an abstract reachability graph
(ARG) [3].

The computation of abstract states is guided by the current
precision [3].

The precision describes the current stored information.

Motivation: Find a suitable precision during the verification that is
neither too coarse nor too accurate.

CEGAR iteratively calls the reachability analysis with a refined
precision

CEGAR terminates when a counterexample is satisfiable or no
abstract state violates the specification.

A predicate precision 7 is a mapping from program locations to sets
of predicates over the program variables [2].

m(l) describes the predicate precision at program location [.

Motivation
Background
Concepts
Evaluation

Outlook

A location invariant is a tuple (I,0) where [denotes the CFA
location and 6 denotes the invariant.*

I denotes the set of location invariants.

I can be derived from the correctness witness.

*An implementation of a location invariant already exists for k-induction-based
validator in CPACHECKER

I can be received in CPAcHECKER by using the following steps:

Parsing the correctness witness file into a witness automaton*
Performing a reachability analysis on the witness automaton*

Extracting the invariants and their corresponding CFA locations
from set reached

To guarantee soundness: If (I,0) is received so that [=’ holds for
(I,6) eI, (1,6 NO') is created and (I',6") removed.

>"Implementations already exist for k-induction-based validator in CPACHECKER

Motivation: Witness invariants as precision facts might decrease
number of refinements and CPU time.

Approach:

get I from the correctness witness

for each ¢ € I: convert 0 from ¢ into a predicate p

add p to the location, function or global predicate precision
CFA location is known because of [

Atomic predicate: Splitting the predicate would create components
that are no boolean formulas anymore.

Getting atomic predicates: Split predicates into predicate
components until all components have an atomic form.

Motivation: Validate the invariants in the correctness witness.

Is a control automaton which is constructed by using the
invariants from the correctness witness.

Is used as an additional verification goal.

Three ISA concepts are presented.

ISA® has two states: an initial state and an error state.

Example:

I'={(ls,z=19)}

start la N[z # Y]
i 5)

b

=ly ViIig N[z =1y]

®

ISAYFA structure refers to structure of the CFA of the program.

Motivation: better performance expected compared to ISA%.

Example:
I={(ls,z=y)}

start

unsigned int x = nondet_ uint();

lx!=y x 1=y v+

CFA

ISAVT extends the original witness with invariant-based assumptions.

Computation of I not required.

Example:

o/w

start %‘ PL=3A[z # y]
N

PL=6A[z # y] PL=3 Alz = y]

52\ PL=4
o/wA [z #y]
o/w o/wA [z =y]

Maximilian Wiesholler

Three types of correctness witnesses are distinguished:

non-trivial-
witness

true-witness

hidden-true-
witness

Witness has states with non-trivial-Invariants and at
least one of these states is reachable in the analysis

Witness has no states labeled with non-trivial-
Invariants.

Witness has states with non-trivial-Invariants but
each of these states is unreachable in the analysis

Consequences of correctness witness types:

A true-witness or hidden-true-witness leads to an empty set of
location invariants.

non-trivial-witness

true-witness

hidden-true-witness

0 dleLm(l)#0 |Vie Lno(l)=0| Vie Lmy(l)=10
ISA® 1 2 2
ISACFA 1 2 2
ISAVI 1 2 3

1: transitions into error states exist
2: transitions into error states do not exist
3: transitions into error states exist but are not reachable

Motivation
Background
Concepts
Evaluation

Outlook

Unreachability of error function __VERIFIER_error().

Tasks taken from SV-COMP 2019 from categories
ReachSafety* and SoftwareSystems**

Excluding all tasks that violate the specification (focus is on
correctness witnesses)

In total 4668 tasks

*without subcategory ReachSafety-Recursive
**only with subcategory Systems_DeviceDriversLinux64_ReachSafety

Machines: 8 core CPUs with 3.40 GHz (Intel Xeon E3-1230 v5)
and 33 GB of RAM memory

Operating system: Ubuntu 18.04 (64 Bit)
Time limit: 900s
Memory limit: 15 GB

Requirement of 8 CPU cores for a task

Does reuse of invariants-based predicates lead to less CPU time
and fewer CEGAR refinements?

Is predicate analysis able to validate the original specification
and invariants of

its own correctness witnesses?

correctness witnesses from k-induction in CPAcHEckER and from
ULTIMATE AUTOMIZER?

The evaluation can be divided into three parts:

Producing correctness witnesses
Initialize predicate precision with invariant-based predicates

Validate correctness witnesses by using an ISA

status all correct-true correct-false incorrect-true incorrect-false timeout error other
pA-Verification 4668 2396 0 0 5 1533 696 38
kl-Verification 4668 2599 0 0 1 1784 134 150
uA-Verification 4668 2688 0 0 2 1684 90 204

N
@

Maximilian Wiesholler

Witnesses

Witnesses

no-true

no-true*®

Correctness witnesses are no
true-witnesses.

Correctness witnesses are no
true-witnesses and no hidden-
true-witnesses.

Producing correctness witnesses

Initialize predicate precision with invariant-based
predicates

Validate correctness witnesses by using an ISA

Six different configurations:

atomic predicates

no yes

local | pA-Validation-PR® pA-Validation-PR'o*2

function | pA-Validation-PR" pA-Validation-PRfu+2

scope

global | pA-Validation-PR8' pA-Validation-PR&!*2

pA-Validation-PR initialized with invariants from 223
pA-Witnessesno-true™ (%)

© 2 o x®
<& & & &
- & & & i~ O
pA-Validation-PR R & R & 3
N s AN S N
\° > © A 0
¥ ¥ N ¥
Q & Q & <
accepted 223 219 223 219 222
rejected 0 0 0 0 0
error 0 0 0 0 0
timeout 0 4 0 4 1
other 0 0 0 0 0

*filtered from 2396 pA-Witnesses

Predicate precision in pA-Validation-PR'® and pA-Validation-PR&!*2
initialized with invariants from pA-Witnesses

1000

100

-
(==}

CPU time for pA-Verification (s)

1

F A
/ 4
A |
1 10 100 1000

CPU time for pA-Validation-PR™ (s)

CPU time for pA-Verification (s)

1000

—

— For pA-Validation-PR® no changes.
— For pA-Validation-PR&'™ no speedup.

Maximilian Wiesholler

no-true*®

+

Ll
10

Lol -
100
CPU time for pA-Validation-PREM*2 (s)

1000

o1
@

CEGAR refinements | 0 1 2 3 4 5 [6-10] [11-20] [21-30] 30< ‘ Number of tasks
pA-Verification 0 180 3 6 4 1 9 7 1 12 223
pA-Validation-PR' 0 182 5 3 3 1 10 6 1 12 223
pA-Verification 0 179 3 6 4 1 9 7 1 9 219
pA-Validation-PR®*2 | 0 181 5 3 3 1 9 7 2 8 219
pA-Verification 0 180 3 6 4 1 9 7 1 12 223
pA-Validation-PR™ 2 181 4 3 4 0 10 8 0 11 223
pA-Verification 0 179 3 6 4 1 9 7 1 9 219
pA-Validation-PRU+2 | 2 180 4 3 4 0 9 8 2 7 219
pA-Verification 0 180 3 6 4 1 9 7 1 11 222
pA-Validation-PR€' | 115 69 4 5 4 0 9 7 0 9 222
pA-Verification 0 179 3 6 4 1 9 7 1 7 217
pA—VaIidation—PRg|+a 114 69 4 5 4 0 8 8 1 4 217

CEGAR refinements only reduced for pA-Validation-PR&' and
pA-Validation-PRe'*2

CPU time almost never decreased for any pA-Validation-PR when
compared with pA-Verification.

Why no changes in CPU time and CEGAR refinements in particular
for pA-Validation-PR'°?

Possible reasons:

Information from witness invariants not sufficient for an
efficient precision reuse

Bug in the implementation in CPACHECKER

Producing correctness witnesses
Initialize predicate precision with invariant-based predicates

Validation of correctness witnesses by using an ISA

Evaluation: Validating pA-Witnesses

- ~ . : 2396 Tasks
== accepted
E violated
e timeout
m error
other

Maximilian Wiesholler 37

53

Evaluation: Validating pA-Witnesses"tr

222 Tasks

== accepted
= violated
I timeout
I error
other

Maximilian Wiesholler

38/

53

configuration ‘ pA-Validation-ISA% pA-Validation-ISA°FA pA-Validation-ISAV/
WIV 2 2 2

Why does each pA-Validation-ISA approach produces for the same
two pA-Witnesses a witness invariant violation (WIV)?

Witness is imprecise: Invariant is validated at a location where
the invariant variables are not yet assigned

Witness invariant contains pointer values from the SMT solver
which can not be validated

Why do the pA-Validation-ISA approaches sometimes exceed the
time limit?

Likely reason: Additional computation effort to validate the

Invariants.
1000
+
5 d
< 100 2 4
) +
= A sk
3 ARTOPZE
5 / LA
s 10 N El
£ /
2
S
L ‘
1 10 100 1000

CPU time for pA-Validation-1SE* (s)

Maximilian Wiesholler

1000

3
E
5
z
o

1 10

|
100
CPU time for pA-Validation-ISK™ (s)

1000

CPU time for pA-Veril

100

.
10 100
CPU time for pA-Validation-ISA"" (s)

1000

40

o1

@

Evaluation: Validating k/-Witnesses

o
5
a

2599 Tasks

== accepted
= violated

I timeout
B error

other

Maximilian Wiesholler 41

/ 53

Evaluation: Validating k/-Witnesses"° "¢

o
°
©

1748 Tasks

== accepted
= violated
I timeout
I error
other

Maximilian Wiesholler 42

/ 53

configuration ‘ pA-Validation-ISA&% pA-Validation-ISA“F4 pA-Validation-1SAV/

wiv | 533 533 523

Why are so many WIVs detected?
Found reasons:

kI-Witnesses"* ' are sometimes "imprecise" for the ISA
approaches

Loop invariants in kl-Witnesses"®'"® do not hold for all loop
iterations

Evaluation: Validating uA-Witnesses

o~
=
]
~

2688 Tasks

2362

== accepted
= violated
I timeout
I error
other

Maximilian Wiesholler 44

/ 53

Evaluation: Validating uA-Witnesses"o e

~
@
&

248 Tasks

== accepted
= violated
I timeout
I error
other

Maximilian Wiesholler

45 /

53

configuration ‘ pA-Validation-184% pA-Validation-ISAFA pA-Validation-1SAW!

WIV 4 4 1

For ISA% or ISA®FA three WIVs are produced more compared to
ISAVT,

Reason: Error states in ISA® and ISA“F4 are overapproximated
when analyzing the three uA-Witnesses.

— Only the ISAY is precise. It can guarantee to reflect the
semantics of the original witness.

No hidden-true-witnesses in pA-Witnesses and kl-Witnesses.
147 uA-Witnesses are hidden-true-witnesses in the context of a
validation analysis in CPACHECKER.

Found reasons:

Calling __VERIFIER_nondet_uint(); leads to two states and
transitions in uA-Witnesses. CPAcHECKER does not expect this.
(e.g. witness for task #2)

uA-Witnesses can have an invariant 0 to label explicitly
unreachable witness states

#2

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq1_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq1_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c

Evaluation: Comparing the pA-Validation-ISA Approaches
for pA-Witnesses

1000
b
H L
i
Z
£
g
w0
S
2
o

1

no-true
&
1000

10 100
CPU time for 1SA® (s)

Maximilian Wiesholler

1000

100 £

¥

oy

4
+
++
+
ot

10 100
CPU time for ISA® (s)

1000

CPU time for ISA™ (s)

1000

100 ¢

"
T
RO

4
o4

10 100
CPU time for ISA (s)

1000

48 / 53

Evaluation: Comparing the pA-Validation-ISA Approaches
for kI-Witnesses"> e

1000 ; . 1000 1000
z + - = =
P s N
g w0p S w0f 5100
Z [Z
5 £ &
8 @ g
H H 2
0 S o
= & g
5} o 13}

1 . 1 . 1 .
1 10 100 1000 1 10 100 1000 1 10 100 1000
CPU time for ISA® (s) CPU time for ISA® (s) CPU time for ISA%F4 (s)

Maximilian Wiesholler 49 / 53

Evaluation: Comparing the pA-Validation-ISA Approaches
for uA-Witnesses"otrue

1000 - 1000 1000
= = -
5 100p 2 100f S 100f
] 2] z
5 £ &
S B :
£ E E
= 10 S0 S
E a 2
o o o

1 - 1 - 1 -
1 10 100 1000 1 10 100 1000 1 10 100 1000
CPU time for ISA® (s) CPU time for ISA¥ (s) CPU time for ISA“™ (s)

Maximilian Wiesholler 50 / 53

Predicate analysis is able to validate the majority of its own
witnesses. |t understands other correctness witnesses but cannot
always validate them.

Verifying invariants in an ISA that is based on an imprecise
correctness witness leads in general to a WIV.

Proposing that correctness witnesses should be precise because:

Transitions in witness file correspond to a certain program
operation. If a transition enters a state labeled with an
invariant the invariant should indeed hold at the program
location that follows the program operation.

Future validators might have problems with imprecise witnesses
as well

Validation of negated witness invariants — Checking if predicate
analysis can reject the intentionally wrong correctness witnesses.

An ISA is independent from the applied abstraction-technique.
Hence, it can theoretically be used with other analyzes.

The ISAY! can be used for the program generation concept shown

in [4][5][6]-

Concept: Transform program into a behaviorally equal program
that is more efficiently verifiable. Use the ARG to create this
program.

Invariant-based error states affect the ARG — Verifying the
transformed program will also verify invariants.

References

D, Beyer, M. Dangl, D. Dietsch, and M. Heizmann. “Correctness Witnesses: Exchanging Verification

Results Between Verifiers”. 10.1145/2950290.2950351
https://www.sosy-1lab.org/research/pub/2016-
FSE.Correctness_Witnesses_Exchanging_Verification_Results_between_Verifiers.pdf

D, Beyer, M. Dangl, and P. Wendler. “A Unifying View on SMT-Based Software Verification”.
10.1007/s10817-017-9432-6

D, Beyer, S Lowe, E.Novikov, A Stahlbauer, and P.Wendler. “Precision reuse for efficient regression

verification”. 10.1145/2491411.2491429
https://www.sosy-lab.org/research/pub/2013-
FSE.Precision_Reuse_for_Efficient_Regression_Verification.pdf

M.-C. Jakobs and H. Wehrheim. “Programs from Proofs of Predicated Dataflow Analyses”.

10.1145/2695664.2695690
http://doi.acm.org/10.1145/2695664 .2695690

M.-C. Jakobs and H. Wehrheim. “Programs from Proofs: A Framework for the Safe Execution of
Untrusted Software”.

10.1145/3014427 http://doi.acm.org/10.1145/3014427

D. Wonisch, AL Schremmer, and H. Wehrheim. “Programs from Proofs — A PCC Alternative”.

Maximilian Wiesholler 53 /53

https://doi.org/10.1145/2950290.2950351
https://www.sosy-lab.org/research/pub/2016-FSE.Correctness_Witnesses_Exchanging_Verification_Results_between_Verifiers.pdf
https://www.sosy-lab.org/research/pub/2016-FSE.Correctness_Witnesses_Exchanging_Verification_Results_between_Verifiers.pdf
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/2491411.2491429
https://www.sosy-lab.org/research/pub/2013-FSE.Precision_Reuse_for_Efficient_Regression_Verification.pdf
https://www.sosy-lab.org/research/pub/2013-FSE.Precision_Reuse_for_Efficient_Regression_Verification.pdf
https://doi.org/10.1145/2695664.2695690
http://doi.acm.org/10.1145/2695664.2695690
https://doi.org/10.1145/3014427
http://doi.acm.org/10.1145/3014427

Appendix

Feasibility check |— """ — x

no counterexample
counterexample found
Initial precision g

5
Program P — Analyze P): (,07 spurious

S
Property ¢
refined precision 7

Abstraction refinement

Scetch from Lecture "Software Analysis and Verification" (Lecturer: M.-C. Jakobs)

Maximilian Wiesholler

o

o

o1

@

Predicate precision in pA-Validation-PR® is initialized with invariants from
+h
kI-Witnesses" e

1000 —
F A
= L +++++:
i il
‘é I + ++++¢ ++’
S 100} W o
K B
< L
& |-
8
g 10 ¢ .
S i 1
= - i
O | |
1 Lo Lol Lo
1 10 100 1000

CPU time for pA-Validation-PR' (s)

— No speedup.

Maximilian Wiesholler

Predicate precision in pA-Validation-PR” initialized with invariants from

uA-Witnesses" e
1000 ——————
: | |
2 L i
=
g 100)
< |
Q‘ |-
8
g 0
) -]
[a 9} I i
O | |
1 Lol Ll Lol

1 10 100 1000
CPU time for pA-Validation-PR' (s)

— No statement possible because too many witnesses are detected as
hidden-true-witnesses or true-witnesses.

Maximilian Wiesholler

o
J

o1
@

pA-Validation-PR \\bﬂy ,b’é\o *@9"0 6»{,\0 &\b’io ! y’-oo
8 & o » &
¥ & N & & N
2396 pA-Witnesses

accepted 2393 2351 2393 2352 2392 2349
rejected 0 0 0 0 0 0
error 1 1 1 1 1 1
timeout 1 43 1 42 2 45
other 1 1 1 1 1 1

223 pA-Witnesses"o-true™

accepted 223 219 223 219 222 217
rejected 0 0 0 0 0 0
error 0 0 0 0 0 0
timeout 0 4 0 4 1 6
other 0 0 0 0 0 0

Correctness witness produced by Urtimate AutoMmizer for task #1:

0
BB A &8 o
ni H N2 > A N8 H N9 > H N1
_/ _/ _/ _/

ng corresponds to a loop head in the program and is labeld with invariant 6

Original witness semantics: 6 needs only to be validated once

ISA® and ISA“F semantics: 6 must be validated every time when
entering the loop head

But: 6 only valid when entering the loop head the first time — ISA* and
ISACF4 trigger a false alarm

— Only the ISA" is precise. It can guarantee to reflect the original witness.

#1

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loops/invert_string_true-unreach-call_true-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loops/invert_string_true-unreach-call_true-termination.c

Witness accepted | pA-Validation-ISA%® - pA-Validation-ISA® | X
kl-Validation 83 12 95
- kl-Validation 74 53 127
)Y 157 65 222
Witness accepted | pA-Validation-ISA“F™ - pA-Validation-ISAF4 | ¥
kl-Validation 84 11 95
- kl-Validation 75 52 127
Y 159 63 222
Witness accepted | pA-Validation-ISA"? - pA-Validation-ISAW | =
kI-Validation 84 11 95
— kl-Validation 71 56 127
by 155 67 222

Witness accepted | pA-Validation-ISA® — pA-Validation-ISA* | 2
kl-Validation 807 862 1669

= kl-Validation 7 72 79
by 814 934 1748

Witness accepted | pA-Validation-ISAT4 - pA-Validation-ISAF4 ¥
kl-Validation 807 862 1669

- kl-Validation 7 72 79
by 814 934 1748

Witness accepted | pA-Validation-ISAY - pA-Validation-ISAV! by
kl-Validation 791 878 1669

— kl-Validation 7 72 79
Y 798 950 1748

Witness accepted | pA-Validation-ISA® = pA-Validation-ISA* | %
kl-Validation 104 63 167

- kl-Validation 19 62 81
by 123 125 248
Witness accepted | pA-Validation-ISA“F™ - pA-Validation-ISAF4 | ¥
kl-Validation 104 63 167
= kl-Validation 19 62 81
by 123 125 248
Witness accepted | pA-Validation-ISA"? - pA-Validation-ISAW | =
kl-Validation 107 60 167
= kl-Validation 17 64 81
by 124 124 248

configuration

pA-Witnesses:

pA-Validation-I1SA%

pA-Validation-T1SACTA

pA-Validation-1sAV!

all violations
original specification
WIV

2
0
2

2
0
2

2
0
2

configuration

kI-Witnesses:

pA-Validation-1SA%

pA-Validation-ISACTA

pA-Validation-1SAV!

all violations
original specification
WIV

534
1
533

534
1
533

524
1
523

configuration

uA-Witnesses:

pA-Validation-ISA%

pA-Validation-ISACFA

pA-Validation-15A"!

all violations
original specification
WIV

5
1
4

5
1
4

2
1
1

Detection:

If the witness

is a true-witness or hidden-true-witness for ISAF4 or ISAZ
and the witness

is not a true-witness for ISAV!
then the witness

is a hidden-true-witness.

approach

non-trivial-witnesses

hidden-true-witnesses or true-witnesses

true-witnesses

pA-Validation-1S4% 220 2169 -

Z | pA-Validation-1SA°F4 220 2169 -

2| pA-validation-1s4"7 220 - 2169
pA-Validation-184% 1696 559 -

= | pA-Validation-1SAF4 1696 559 -

8| pA-Validation-1SAW! 1696 . 550
pA-Validation-ISA% 40 2337 -

= | pA-Validation-18A°F4 40 2337 -

& | pA-Validation-ISAW! 187 . 2190

— 147 uA-Witnesses are hidden-true-witnesses for in the context of an analysis

in CPACHECKER.

Maximilian Wiesholler

o1

@

	References
	Appendix

