Type Theory in Software Verification

TYPES in Munich

Gidon Ernst
gidon.ernst@lmu.de = LMU Munich

SoSy-Lab
Software Systems

7 June 2019 Type Theory in Software Verification 1/17

This Talk

a (major) side interest

* Question: "
What’s the impact of research in Type Theory
on “practical” Software Verification

I~

my main research area

* Background

* Examples

e Conclusions

7 June 2019 Type Theory in Software Verification 2/17

Software Verification (Analogy)

concrete system abstract model

laws of d hour _ 1
phySiCS d minute 60

/N

easy to understand
unambiguous

7 June 2019 Type Theory in Software Verification 3/17

Software Verification

concrete system abstract model

laws of
rogramming

read(write(x)) = x

c->nSrc-1; i++, pRight++, pLeft++){
1tTab = pRight->pTab;

left->pTab==0 || pRightTab==0)) con
)Right->fg.jointype & JT_OUTER)!=0;

hard with automation
impossible without

j<pRightTab->nCol; j++)
lame; /* me f column in
't

7 June 2019 Type Theory in Software Verification 4/17

How much Effort?

standard academic production

algorithms: prototype: quality:

>1h 1-5 py > 20 py
search tree file systems CompCert
Flash fgg C compiler

iﬁ@ ?‘!’1
Ml fscqg

—EEEN OS Kernel

= S

7 June 2019 Type Theory in Software Verification 5/17

How much Effort?

standard academic production
algorithms: prototype: quality:
>1h 1-5 py > 20 py
bottlenecks:

writing good specifications
engineering & tool aspects
new correctness criteria
proof automation

7 June 2019 Type Theory in Software Verification

6/17

Typical Hoare-style verification (Dafny)

method bsearch(value: int, a: array<int>) returns (res: bool)
requires a = null & sorted(a)

ensures res = contains(value, a) ﬁ Speciﬁcation

{
var low, high := 0, a.Length;
while low < high
invariant forall 1 ::
0 < i< low || high € 1 < a.Length = a[i] = value
t "
) proof guidance
return false;
}

https://rise4fun.com/datny/tutorialcontent/guide#h211

7 June 2019 Type Theory in Software Verification 7/17

Type Theory (for the purpose of this talk)

* Expressiveness: proposition = type
-~ Even={n|n%2=0}

ease of specification
— x: Vector n

* Constructivism: proof = program
— solve: A — Bool (terminates)

@ COM N — M- N+ m=m+n ease of proof
(lemmas = functions)

7 June 2019 Type Theory in Software Verification 8/17

Automath [de Bruijn 1967]

* early general & useful proof checker

* based on type theory
(flexible choice of which kind)

* high influence on design of later tools

7 June 2019 Type Theory in Software Verification

9/17

Coq ?

e Calculus of inductive constructions
[Coquand, Huet, 1988]

* Impressive applications to software development
— CompCert, DeepSpec, FSCQ, ...

* Similarly: verified programming in
— Agda, Idris, Epigram, Lean (mostly math)
— Fx (verified crypto in Firefox!)

7 June 2019 Type Theory in Software Verification 10/17

PVS [Owre, Shankar, Rushby 1992]
classical, predicative + dependent types

below(i): TYPE
= {s: nat | s < i} =

~ set-based semantics

: bool
= (EXISTS n,

(f: [(s) = below[n]]): injective?(f))

finite_set: NONEMPTY_TYPE
= () CONTAINING emptyset

7 June 2019 Type Theory in Software Verification 11/17

Data Invariants (Why3, VCC, JML, ...)

type array 'a = {
elts : 1nt — 'a;
length : 1int

 Invariants are re-checked after modifications

7 June 2019 Type Theory in Software Verification 12/17

Lemma Functions (Dafny, Why3, VCC, ...)

function index(x: T, xs: seq<T>) returns (r: int)

decreases |xs| // inductive measure

if xs =[] {r :=-1; }
else if x = xs[0] { r := 0; }

else { r := index(xs[1..1); r := r + 1; }

[T—

programs represent proofs

7 June 2019 Type Theory in Software Verification 13/17

Synthesis with Refinement Types
[Polikarpova et al 2016]

data BST a where
Empty :: BST a
Node :: x: a = 1: BST {a | _v < x}
— r: BST {a | v > x} = BST a

measure keys :: BST a — Set a where
Empty — []
Node x 1 r > keys 1 + keys r + [x]

insert :: x: a = t: BST a
%

insert = 7?

ﬁ search guided by type structure

7 June 2019 Type Theory in Software Verification 14/17

New theories for Program Verification

* Mechanize meta-theory in proof assistant

e Two alternatives:

— implement tool based on that (e.g. VeriFast)
— potential gain in automation

— shallow embedding into common logic (e.g. Coq)
— re-use existing infrastructure

both approaches are practical and successful

7 June 2019 Type Theory in Software Verification 15/17

Type Theory: Criticism
(Context: QED Manifesto retrospective)

Instead of trying to prove as many true statements as possible, constructive

mathematics is about making it difficult to prove something. (Of course, if you then
prove it, the proof contains a bit more information.)

[Wiedijk 2007]

The HOL type system is too poor. As we already argued in the previous

section, it is too weak to properly do abstract algebra.

my opinion: theory is not at fault but user interface

7 June 2019 Type Theory in Software Verification 16/17

Take-Away

* “Pure” Type-Theory
— elegantly captures key concepts
— good as foundations

— good as vehicle of thought

* “Messy” verification methodology for programs
— needs to cope with practical issues
— focus on efficient and effective automation

— gains a lot by incorporating foundational concepts

7 June 2019 Type Theory in Software Verification 17/17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

