
7 June 2019 Type Theory in Software Verification 1/17

Type Theory in Software Verification

TYPES in Munich

Gidon Ernst
gidon.ernst@lmu.de LMU Munich

7 June 2019 Type Theory in Software Verification 2/17

This Talk

● Question:

What’s the impact of research in Type Theory
on “practical” Software Verification

● Background
● Examples
● Conclusions

my main research area

a (major) side interest

7 June 2019 Type Theory in Software Verification 3/17

Software Verification (Analogy)

abstract model

d hour
d minute

=
1
60

concrete system

easy to understand
unambiguous

laws of
physics

7 June 2019 Type Theory in Software Verification 4/17

Software Verification

laws of
programming

abstract modelconcrete system

read(write(x)) = x

hard with automation
impossible without

7 June 2019 Type Theory in Software Verification 5/17

How much Effort?

CompCert
C compiler

OS Kernel

production
quality:
> 20 py

academic
prototype:

1-5 py

standard
algorithms:

> 1 h

file systemssearch tree

7 June 2019 Type Theory in Software Verification 6/17

How much Effort?

production
quality:
> 20 py

academic
prototype:

1-5 py

standard
algorithms:

> 1 h

bottlenecks:

writing good specifications
engineering & tool aspects

new correctness criteria
proof automation

7 June 2019 Type Theory in Software Verification 7/17

Typical Hoare-style verification (Dafny)

method bsearch(value: int, a: array<int>) returns (res: bool)

 requires a != null && sorted(a)

 ensures res == contains(value, a)

{

 var low, high := 0, a.Length;

 while low < high

 invariant forall i ::

 0 <= i < low || high <= i < a.Length ==> a[i] != value

 {

 ...

 }

 return false;

}

specification

proof guidance

https://rise4fun.com/dafny/tutorialcontent/guide#h211

7 June 2019 Type Theory in Software Verification 8/17

Type Theory (for the purpose of this talk)

● Expressiveness: proposition = type
– Even = { n | n % 2 = 0 }
– x : Vector n

● Constructivism: proof = program
– solve : A → Bool (terminates)
– com : n → m → n + m ≡ m + n

(lemmas = functions)

ease of specification

ease of proof

7 June 2019 Type Theory in Software Verification 9/17

Automath [de Bruijn 1967]

● early general & useful proof checker
● based on type theory

(flexible choice of which kind)
● high influence on design of later tools

7 June 2019 Type Theory in Software Verification 10/17

Coq

● Calculus of inductive constructions
[Coquand, Huet, 1988]

● Impressive applications to software development
– CompCert, DeepSpec, FSCQ, …

● Similarly: verified programming in
– Agda, Idris, Epigram, Lean (mostly math)
– F★ (verified crypto in Firefox!)

7 June 2019 Type Theory in Software Verification 11/17

PVS [Owre, Shankar, Rushby 1992]
classical, predicative + dependent types

below(i): TYPE
 = {s: nat | s < i}

is_finite(s): bool
 = (EXISTS n,

 (f: [(s) -> below[n]]): injective?(f))

finite_set: NONEMPTY_TYPE
 = (is_finite) CONTAINING emptyset

~ set-based semantics

7 June 2019 Type Theory in Software Verification 12/17

Data Invariants (Why3, VCC, JML, ...)

type array 'a = {

 elts : int --> 'a;

 length : int

} invariant {

 0 <= length

}

● Invariants are re-checked after modifications

7 June 2019 Type Theory in Software Verification 13/17

Lemma Functions (Dafny, Why3, VCC, ...)

function index(x: T, xs: seq<T>) returns (r: int)

 decreases |xs| // inductive measure

 ensures r >= 0 ==> contains(x, xs) && xs[r] == x

{

 if xs == [] { r := -1; }

 else if x == xs[0] { r := 0; }

 else { r := index(xs[1..]); r := r + 1; }

}

programs represent proofs

7 June 2019 Type Theory in Software Verification 14/17

Synthesis with Refinement Types
 [Polikarpova et al 2016]
data BST a where

 Empty :: BST a

 Node :: x: a -> l: BST {a | _v < x}

 -> r: BST {a | _v > x} -> BST a

measure keys :: BST a -> Set a where

 Empty -> []

 Node x l r -> keys l + keys r + [x]

insert :: x: a -> t: BST a

 -> {BST a | keys _v == keys t + [x]}

insert = ??
search guided by type structure

7 June 2019 Type Theory in Software Verification 15/17

New theories for Program Verification

● Mechanize meta-theory in proof assistant

● Two alternatives:
– implement tool based on that (e.g. VeriFast)

→ potential gain in automation
– shallow embedding into common logic (e.g. Coq)

→ re-use existing infrastructure

both approaches are practical and successful

7 June 2019 Type Theory in Software Verification 16/17

Type Theory: Criticism
(Context: QED Manifesto retrospective)

[Wiedijk 2007]

my opinion: theory is not at fault but user interface

7 June 2019 Type Theory in Software Verification 17/17

Take-Away

● “Pure” Type-Theory
– elegantly captures key concepts
– good as foundations
– good as vehicle of thought

● “Messy” verification methodology for programs
– needs to cope with practical issues
– focus on efficient and effective automation
– gains a lot by incorporating foundational concepts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

