SMT-Based Verification of
ECMAScript Programs in CPAchecker

Michael Maier

LMU Munich, Germany

CPAvV

Michael Maier LMU Munich, Germany 1/34

Most commonly used programming language!

Main language for Web applications

Also used in server, desktop, and mobile applications
Evaluated by interpreter

Interpreter define different dialects

'https://insights.stackoverflow.com/survey/2019/

https://insights.stackoverflow.com/survey/2019/

Specified in standard ECMA-2622
Different standard versions

Most3 JS dialects conform to ECMAScript 5.1*

’https://www.ecma-international.org/publications/
standards/Ecma-262.htm

Shttp://kangax.github.io/compat-table/es5/
“https://www.ecma-international .org/ecma-262/5.1/

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
http://kangax.github.io/compat-table/es5/
https://www.ecma-international.org/ecma-262/5.1/

Extend CPAcHECKER to a restricted subset of ECMAScript 5.1
for SMT based verification approaches

Parser frontend that creates CFA

Strongest post operator (SMT formula encoding)

No rarely used statements
No recursive function calls
No exceptions in general

No standard built-in ECMAScript objects

Parser Frontend

Michael Maier LMU Munich, Germany 6 /34

Program Representation (CFA)

Michael Maier LMU Munich, Germany 7 /34

Assumption | p |

Variable declaration var x or var x = e

Function declaration function func(args*) { ... }
Assignment 1hs = e,

Delete operation delete o.propName Or delete ol[e]
Function call func(ex)

Constructor call new func(ex)

SMT Formula Encoding

Michael Maier LMU Munich, Germany 9 /34

CPAcHECKER does reachability analysis based on the CFA

A location is reachable if a path o to it exists, where
SP,(T) is satisfiable

SPL(1) = SPop, (- (SPap, (1) ...)

Goal of a verification task: Show that an error location is
not reachable from the initial program location

Definition of strongest post operator SP,, (1) required

Strongest post operator of an assumption [p] as operator
parameter:
SPy(¥) = ¥ A ToBoolean(p)

ToBoolean(p) represents large formula

Other conversions like ToNumber, ToString, etc. have to
be defined, too

var x;
if (predicate) {

x = 42;
} else {
X = true;

}

var y = X;

Variables may store values of different types

SMT variables do not

SMT variables are used as value IDs (integer)®
Associate value and type with value ID using UFs®

Basic idea:
x = 42 is encoded as

typeof () = Thumber A numberValue(z) = 42
x = true is encoded as

typeof () = Thoolean /A booleanValue(xz) = T

5No assignment of specific integer required
SUF = uninterpreted function

Index counter is added for each variable

Index counter is incremented on assignment

Fresh value ID is used on every assignment

var x;
if (predicate) {
x = 42;
} else {
X = true;
}

var y = X;

var zo;
if (predicate) {
X, = 42;
} else {
xr1 = true;
}

var yg = Ti;

function counter() {
var x = 0;
return function next() {
X =x+1;
return Xx;
}
+

On each call of counter
New variable x is created
New function object next is created

Variable x of counter is captured by reference from
function object next

function counter() {
var x = 0;
return function next() {
X =x + 1;
return x;
}
}
var cl = counter();
var c2 = counter();

c10; // 1
c1Q; // 2
c20); // 1
c10; // 3

c1 and c2 are different instances of next

ct and c2 do not capture the same x

Use scoped value ID var(s, x)
s is scope ID (integer)

x is (unscoped) value ID

On each function call
Create fresh scope ID

Put it on scope stack of called function object
(array of scope IDs of outer function calls)

Associate it with this scope stack using UF scopeStack
Track current scope using a variable

On creation of function object associate it
with current scope
Captured variable x is encoded as
var (select(scopeStack(currentScope), n), x)

where n is the nesting level of the declaration of =

String values are mapped to a unique string ID
by enumerating all constants of the program

var x = "foo"; // "foo" -> 1
var o = { bar: 42 }; // "prop" -> 2
o.foo: 42; // "foo" -> 1

var t = typeof o;

// result of typeof may be:

// "undefined" -> 3, "object" -> 4, "boolean" -> 5,
// "number" -> 6, "string" -> 7, "object" -> 8,

// "function" -> 9

Michael Maier LMU Munich, Germany

{3
42;

var o
o.foo

Object value is represented by unique object ID (integer)
typeof (o) A objectV alue(o) = 1
Array objectFields;, maps each object ID to its properties
store(objectFields;, 1, emptyObjectFields)
Property changes tracked by objectFields

fields 4 = select(objectFields;, 1)
objectFields;, , = store(objectFields;, 1, fields

HBW)

Properties are managed as SMT array
Property name (string ID) is mapped to value ID

Names of unset properties are mapped to special
value ID objectFieldNotSet

For each set property use fresh value ID p and mark it as

set property
p # objectFieldNotSet

Map all string IDs of the program to objectFieldNotSet’

store(store(empty, StringID("foo"), objectFieldNotSet),
StringID("var"), objectFieldNotSet)

’ Program ‘ "foo" "bar" ‘

var o = {}; - -
o.foo = 42;

o["foo"] = true;

o.bar = true;

delete o.foo;

"objectFieldNotSet is displayed as - in table

Use fresh value ID pgy for o.foo

po # objectFieldNotSet
A typeof (po) = Thumber A numberValue(pg) = 42

’ Progran1 "foo" "bar" ‘

var o = {}; - -

o.foo = 42; Po -

o["foo"] = true;

o.bar = true;

delete o.foo0;

Use fresh value ID p; for next property assignment

o["foo"] = true

p1 # objectFieldNotSet
A typeof (p1) = Thoolean /A booleanValue(py) = T

’ Progran1 "foo" "bar" ‘

var o = {}; - -

o.foo = 42; Po -

o["foo"] = true; D1 -

o.bar = true;

delete o.foo;

Use fresh value ID ps for next property assignment

o.bar = true

p2 # objectFieldNotSet
A typeof (p2) = Thoolean /A booleanValue(py) = T

’ Progran1 "foo" "bar" ‘

var o = {}; - -

o.foo = 42; Po -
o["foo"] = true; D1 -
o.bar = true; 1 D2

delete o.foo;

Use objectFieldNotSet as value ID to delete o.foo;

Program "foo" "bar"

var o = {}; - -

o.foo = 42; Do -
o["foo"] = true; Jai -
o.bar = true; D1 D2

delete o.foo; - D2

’ Object ‘ "foo" "bar" "foobar" [[Prototypel] 8
a Po - - b
b - P1 - C
c - D2 b3 .

If property is not found on object recursively look it up on

prototype object (if existent)

Prototype chain a — b — ¢

8Special string ID for internal prototype property

Prototype chain might be arbitrary long but it is always
finite

We assume that no prototype chain is longer as a
maximum maxPrototype ChainLength

Thereby, we can unroll the look-up in the prototype chain

Drawback: look-up of a property might falsely return
undefined if maxPrototypeChainLength is too small

Evaluation

Michael Maier LMU Munich, Germany 29 / 34

Evaluation of the functional correctness of the implementation
of the formula encoding

Using bounded model checking (BMC) with k-induction

Based on the test programs of the official ECMAScript
Conformance Test Suite Test262°

Automatic and manual filtering of test programs that
contain unsupported or unimplemented features

Generate negated tests (negate assertion condition) and
check that they fail

https://github.com/tc39/test262

https://github.com/tc39/test262

’ Run H Files ‘ Correct Incorrect Unknown ‘

1 [780 | 641 42 97
2 || 664 | 662 0 2
| 3 || 8625 8593 13 19 |

Results of different evaluation runs

Positive tests after automatic filtering

Positive tests after manual filtering and reconfiguring failed
tests of 1st run

Negative tests of correct tests of 2nd run

660 test files correct (21 float encoded as rational)
2 test files unknown (timeout)

2 bugs!? found in Test262

Whttps://github.com /tc39/test262 /issues/2049

Dynamic types

Implicit type conversion

Extensible objects

Dynamic property access

Prototype inheritance

Function objects (higher order functions)

Closures (scope chain)

Thank you for your attention!

no recursive function calls
no for-in statements

no with statement

no debugger statements
no exceptions in general

no standard built-in ECMAScript objects

global variables are not set on the global object
no arguments object

it is assumed that all properties are named data properties
that are writable and configurable

implicit function calls from internal methods are not
considered

no regular expression literals

no <, >, <=, and >= to compare strings

binary operators &, /, ==, ===, >, >=, in,

instanceof , <<, <, <=, -, == I= |+
>>> %, 7
unary operators + , - , ~, !, typeof, void

the property-access operators o.f and o[p]

special operator declaredBy (not part of regular
ECMAScript)

used to resolve dynamic function calls

id declaredBy functionDeclaration checks if the
function object stored in id has been declared by the
function declaration of functionDeclaration

function £() { ... }
function g() { ... %}
/] ...

r =u();

dynamic function call u()

f or g might have been assigned to u

check by which function declaration the function object u has
been declared and call that function

function £(O) { ... }
function g() { ... }
/] ...
// r=uQ;
if (u declaredBy f) {
r=1£0;
} else if (u declaredBy g) {
r=gQ;
} else {
r = undefined; // this case would throw an exception,
} // but exceptions are not covered yet

Each type is encoded as a distinct integer called type tag
(similar to the result of the typeof operator):

Tundefined
Thoolean
Thumber
Tstring
Tobject

Ttunction

ECMAScript | SMT-Formula Encoding
Value Type Value
Undefined | Tundefinea Single value
Boolean Thoolean boolean

Number Tnumber FPe:ll,m:EJZ*
String Tstring ' Pe—12,m=52"

Object Tobject integer
Null Tobject integer
Function Thunction integer

* Floating point formula with exponent size e and mantissa size m

string values are mapped to a unique string-ID (floating
point number)

string values that are strict equal'! have the same ID
string-1Ds are encoded as FP._;2 ,—52
ECMAScript number values are encoded as FP._11 ;=52

values in range FP._; ,,—52 are used for string
representations of their respective ECMAScript number
value

values outside this range are used for all other strings

same sequence of characters

each function object value is encoded like a regular object,
but its type is Trunction

its object-1D is associated with its

function declaration using an uninterpreted function
declarationOf

scope using an uninterpreted function scopeOf

Associated type and value UF have to be compatible
typeof () = Thoolean A NumberValue(x) = 42
Value ID may not be associate with different types

tYPGOf(ﬂU) = Thoolean /\ tYPGOf(l’) = Tnumber

Different values are associated with different value IDs

42
A typeof (y) = Thoolean /A booleanValue(y) = T

typeof () = Thumber /A NUmMber Value(z)

or the same value ID using mutually exclusive conditions

42)
T)

(p A typeof(z) = Thumper A numberValue(z)
V(=p A typeof () = Thoolean /A booleanValue(x)

Create scope ID for currentScope on function call

Put it on its scope Stack

function counter() {
var x = 0;
return function next() {
X =x + 1;
return Xx;
+
+

var c2 = counter();

c1O; // 1
c1Q; // 2
c20; // 1
c10; // 3

Michael Maier

currentScope = 1
scopeStack(1) = (1)

LMU Munich, Germany

Use currentScope for local

function counter() {
ar x = 0;

return function next() {

X =

x + 1;

return x;

}

}

var cl =
var c2 =
c1Q; //
c1Q; //
c20; //
c10; //

counter();
counter();
1

2
1
3

Michael Maier LMU Munich, Germany 48

variables of current call

currentScope = 1
scopeStack(1) = (1)

numberValue(var(1, x¢)) =0

Create function object and

function counter() {
var x = 0;
[return function next[) {
X x + 1;
return Xx;
}
}
var cl = counter();
var c2 = counter();
c10; // 1
c1Q; //
c20; //
c1Q; //

2
1
3

Michael Maier

associate it with currentScope

currentScope = 1
scopeStack(1) = (1)

numberValue(var(1, zg)) =

scopeOf(cl) =1

LMU Munich, Germany

0

49 / 34

Create scope ID for currentScope on function call

Put it on its scope Stack

function counter() { currentScope = 2
var x = 0; scopeStack(1) = (1)
return function next() {

x =z + 1; scopeStack(2) = (2)
return x; numberValue(var(1, z¢)) =0

) l scopeOf(cl) =1

var cl1 = counter();

c10; // 1

c1Q; // 2

c20; // 1

c1Q; // 3

Use currentScope, update other scoped variables

function counter() {

return function next() {

X =

x + 1;

return x;

}

}

var cl =
var c2 =
c1Q; //
c1Q; //
c20; //
c10; //

counter();
counter();
1

2
1
3

Michael Maier

currentScope = 2
scopeStack(1) = (1)
scopeStack(2) = (2)
numberValue(var(1, zg)) =0
numberValue(var(2,x1)) =0
var(1,x;) = var(1, zo)
scopeOf(cl) =1

LMU Munich, Germany 51

Sim

plify formulas

function counter() {
ar x = 0;

return function next() {

X =

x + 1;

return x;

}

}

var cl =
var c2 =
c1Q; //
c1Q; //
c20; //
c10; //

counter();
counter();
1

2
1
3

currentScope = 2
scopeStack(1) = (1)
scopeStack(2) = (2)

numberValue(var(1, x1))
numberValue(var(2, z1))

scopeOf(cl) =1

0
0

Create function object and associate it with currentScope

function counter() {
var x = 0;
[return function next[) {
x =x + 1;
return x;

}

}

var cl = counter();
var c2 = counter();
c10; // 1

c1Q; // 2

c20; // 1

c1(Q; // 3

Michael Maie

LMU Munich,

currentScope = 2
scopeStack(1) = (1)
scopeStack(2) = (2)

number Value(var(1, z1))

0
0

(1
numberValue(var(2, z1))
scopeOf(cl) =1
scopeOf(c2) = 2

Germany

Create scope ID for currentScope on function call

Put it on the scope Stack of the called function object

function counter() {
var x = 0;
return function next() {
X =x + 1;
return Xx;
+
}
var cl = counter();
var c2 = counter();
EiO:]// 1
c1Q; // 2
c20; // 1
c1Q; // 3

currentScope = 3
scopeStack(1) = (1)
scopeStack(2) = (2)
scopeStack(3) = (1, 3)
numberValue(var(1, zy))
numberValue(var(2, z))
scopeOf(cl) =1
scopeOf(c2) = 2

Use var(select(scopeStack(currentScope),n), x;)

Results in var(1, z;)

function counter() { currentScope = 3
var x = 0; scopeStack(1) = (1)
return function next() {
scopeStack(2) = (2)
return x; scopeStack(3) = (1, 3)
3 } numberValue(var(1, x1)) =
var cl = counter(); numberValue(var(1, z5)) =
Z?i)?/j iountero; number Value(var(2, z,)) =
c1Q; // 2 scopeOf(cl) =1
zig Z ; scopeOf(c2) = 2

var x is handled like an assignment operation

x = undefined

var x = e is handled like an assignment operation x = e

function declaration function func(args*) { ... }

function object of func is created similar to

prototype: {},
length: len

where len represents the count of function parameters

function declaration function func(args*) { ... }

object-ID o of the created object is used in constraints

typeof (fv) = Trunction
functionValue(fv) =
objectValue(fv) =
scopeOf (o) = urrentScope
declarationOf(0) =

where

fv is the scoped variable of the function declaration
identifier func

d is the declaration-1D of the declared function

different assignment targets:
assignment to identifier x = e
assignment to object property
dot notation obj.propName = e

bracket notation obj[propExpr] = e

assignment to identifier x = e

associate type of variable with type of expression
for each type case assign the respective value

update other scoped variables (same declaration, but
different scope-ID)

obj.propName = e Or obj[propExpr] = e

create a fresh variable-ID p and mark it as set property
(variable)
p # objectFieldNotSet

assign value to p
associate property of object with p

in case of bracket operator, ensure update of length
property (another property assignment)

delete operation delete o.propName or delete ol[e]

equivalent to assigning objectFieldNotSet to the property
of the object that is deleted

function call func(ex)

execution context switches from the caller (function or
global code) to the called function

the following has to be done:
create a new scope for the called function
update current scope stack
bind (optional) this argument
assign arguments of call to parameter variables of called
function

constructor call new func(ex)

handled like a function call func(ex)

but a new object is created and assigned to the this
variable:

[[Prototypel]: func.prototype

where [[Prototype]] represents the prototype property

Property Mapping

Object 00’ 'bar’ [[Prototype]]
A - - b
A.prototype foo, - C
B foo, - -
bProto / B.prototype | foo, - -
b foo, - -

function AQ) {}
A.prototype.foo = 1;
function B() {}
var bProto = new A();
bProto.bar 2;
B.prototype = bProto;
var b = new B();

Implementation

Michael Maier LMU Munich, Germany 66 / 34

Maximum Field Count: Required to initially map all
properties to objectFieldNotSet

Maximum Prototype Chain Length: Required to
unroll the prototype chain

Usage Of NaN and infinity:
Rational formulas do not support the values NaN and
+00 (only as a variable)

If floating point formulas are encoded as rational
formulas, checking for NaN or oo can lead to
satisfiable and non-tautological formulas

Option alters the formula encoding by assuming that
those checks always result in L

	Parser Frontend
	Program Representation (CFA)

	SMT Formula Encoding
	Evaluation

	Appendix
	Implementation

