
Reliable Benchmarking:
Requirements and Solutions

Dirk Beyer, Stefan Löwe, and Philipp Wendler

1 / 24

Benchmarking is Important

I Evaluation of new approaches
I Evaluation of tools
I Competitions
I Tool development (testing, optimizations)

Reliable, reproducible, and accurate results needed!

2 / 24

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

3 / 24

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

3 / 24

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

3 / 24

Goals

I Reproducibility
I Avoid non-deterministic effects and interferences
I Provide defined set of resources

I Accurate results
I For verification tools (and similar)
I On Linux

4 / 24

Checklist

1. Measure and Limit Resources Accurately
I Time
I Memory

2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Non-Uniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

I Communication
I File system

5 / 24

Measure and Limit Resources Accurately

I Wall time and CPU time
I Define memory consumption

I Size of address space? Too large
I Size of heap? Too low
I Size of resident set (RSS)?

I Measure peak consumption
I Always define memory limit for reproducibility
I Include sub-processes

6 / 24

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Limiting memory with “ulimit”

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Terminate Processes Reliably

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

7 / 24

Assign Cores Deliberately

I Hyper Threading:
Multiple threads sharing execution units

I Shared caches

8 / 24

Respect Non-Uniform Memory Access (NUMA)

I Memory regions have different performance depending on
current CPU core

I Hierarchical NUMA makes things worse

9 / 24

CPU

memory region

core

10 / 24

Isolate Individual Runs

I Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

I Thanks for thinking of cleanup

I But what if there are parallel runs?

11 / 24

Isolate Individual Runs

I Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

I Thanks for thinking of cleanup
I But what if there are parallel runs?

11 / 24

Isolate Individual Runs

I Temp files with constant names like /tmp/mytool.tmp
collide

I State stored in places like ~/.mytool
hinders reproducibility
I Sometimes even auto-generated

I Restrict changes to file system
as far as possible

12 / 24

Cgroups

I Linux kernel “control groups”
I Reliable tracking of spawned processes
I Resource limits and measurements per cgroup

I CPU time
I Memory
I I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

13 / 24

Cgroups

I Hierarchical tree of sets of processes

/

. . .

/user1

/benchmarks

/benchmarks/run1

5542 (bash)
5544 (firefox)
. . .

. . .

1130 (verifier)
1131 (subprocess1)
. . .

14 / 24

Namespaces

I Light-weight virtualization
I Only one kernel running, no additional layers
I Change how processes see the system
I Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
I PID 42 can be a different process in each namespace
I Directory / can be a different directory in each namespace
I . . .

I Can be used to build application containers
without possibility to escape

I Usable without root access

15 / 24

Benchmarking Containers

I Encapsulate groups of processes
I Limited resources (memory, cores)
I Total resource consumption measurable
I All other processes hidden

and no communication with them
I Disabled network access
I Adjusted file-system layout

I Private /tmp
I Writes redirected to

temporary storage

16 / 24

BenchExec

I A Framework for Reliable Benchmarking
and Resource Measurement

I Provides benchmarking containers
based on cgroups and namespaces

I Allocates hardware resources appropriately
I Low system requirements

(modern Linux kernel and cgroups access)

17 / 24

BenchExec

I Open source: Apache 2.0 License
I Written in Python 3
I https://github.com/sosy-lab/benchexec
I Used in International Competition on Software Verification

(SV-COMP) and by StarExec
I Originally developed for software-

verification, but applicable to
arbitrary tools

18 / 24

https://github.com/sosy-lab/benchexec

BenchExec Architecture

I runexec
I Benchmarks a single run of a tool
I Implements benchmarking container
I Easy integration into other frameworks

I benchexec
I Benchmarks multiple runs

(e.g., a set of configurations against a set of files)
I Allocates hardware resources
I Can check whether tool result is as expected

I table-generator
I Generates CSV and interactive HTML tables (with plots)
I Computes result differences and regression counts

19 / 24

BenchExec: runexec

I Benchmarks a single run of a tool
I Measures and limits resources using cgroups
I Runnable as stand-alone tool and as Python module
I Easy integration into other benchmarking frameworks

and infrastructure
I Example:

runexec ––timelimit 100 ––memlimit 16000000000
––cores 0-7,16-23 ––memoryNodes 0
––<TOOL_CMD>

20 / 24

BenchExec: benchexec

I Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

I Allocates hardware resources

I Can check whether tool result is as expected
for given input file and property

21 / 24

BenchExec: table-generator

I Aggregates results
I Extracts statistic values from tool output
I Generates CSV and interactive HTML tables (with plots)
I Computes result differences and regression counts

22 / 24

BenchExec Configuration

I Tool command line
I Expected result
I Resource limits

I CPU time, wall time
I Memory

I Container setup
I Network access
I File-system layout

I Where to put result files

23 / 24

Conclusion

Be careful when benchmarking!

Don’t use time, ulimit etc.
Always use cgroups and namespaces!

BenchExec
https://github.com/sosy-lab/benchexec

24 / 24

https://github.com/sosy-lab/benchexec

Directory Access Modes

Read Write temp Write persistent
existing content content content

hidden 7 3 7

read only 3 7 7

overlay 3 3 7

full access 3 7 3

25 / 24

	Appendix

