TestCov:

Robust Test-Suite Execution and Coverage Measurement

Thomas Lemberger
Joint work with Dirk Beyer

LMU Munich, Germany

2019-11-12, ASE 2019 Software Systems

Thomas Lemberger LMU Munich, Germany

/11

Program
under
Test

Test

] Coverage
Execution

Test
Suite

In our case: International Competition of Software Testing
(Test-Comp)

1 #include <stdio.h>

2 #include <unistd.h>

3 extern char input ();

4

5 int main() {

6 char x = input();

7 if (x=="a"){

8 while (1) {

9 fork ();

10

11 } else {

12 remove("important.txt");
13 if (access("important.txt", F_OK) !=
14 return 1;

15 }

16}

17}

1 #include <stdio.h>

2 #include <unistd.h>

3 extern char input ();

4

5 int main() {

6 char x = input();

7 if (x=="a"){

8 while (1)

9 fork ();

10

11 } else {

12 remove("important.txt");
13 if (access("important.txt", F_OK) !=
14 return 1;

15 }

16}

17}

CO~NOO1T A~ WN

—_
o o

11
12
13
14
15
16
17

#include <stdio.h>
#include <unistd.h>
extern char input ();

int main() {

}

char x = input();

if (x=="a"){

while (1)

fork ();

} else {

}

remove("important.txt");
if (access("important.txt",

}

return 1;

" OK) !

-

1 #include <stdio.h>
2 #include <unistd.h>
3 extern char input ();
4
5 int main() { Goal: Achieve 100 % branch coverage
? ‘f:‘a" x = input(); But: You don't want to use your
: (X. ==)4 system to execute a test suite that
8 while (1) .
9 fork (); achieves that.
10
11 } else {
12 remove("important.txt");
13 if (access("important.txt", F_OK) I= —1) {
14 return 1;
15 }
6}

17}

afl-generated, minimized image test sets (partial)

These very compact, synthetic corpora were generated with afl-fuzz for some of the image formats supported in
modern web browsers. They exercise a remarkable variety of features in common image parsers and are a superior
starting point for manual testing or targeted fuzzing work. The test cases are selected for optimal edge coverage and a
wide range of coarse hit counts for every branch, as culled with afl-cmin. There are also *-edges-only variants that do
not factor in hit counts.

Format Parsing library Instrumented tool Browsers Preview link

JPEG #1 1JG jpeg9a djpeg All click here L
JPEG #2 libjpeg-turbo 1.3.1 djpeg All click here L
GIF #1 giflib 5.1 gif2rgb! All click here L
GIF #2 ImageMagick 6.8.9 convert All click here L
PNG libpng 1.6.16 readpng All click here L
BMP ImageMagick 6.8.9 convert All click here L
ICO ImageMagick 6.8.9 convert All click here L
WebP libwebp 0.4.2 dwebp Chrome click here L
TIFF libtiff CVS 2014/12/24 tiff2rgba’ IE, Safari click here L
JPEG XR jxrlib 1.1 JxrDecApp! IE click here
! With some ad-hoc security fixes incorporated into the utility.

2 Due to the sheer number of exploitable bugs that allow the fuzzer to jump to arbitrary addresses.
You can also grab a downloadable archive containing all of the above.

Note that some of this may crash your browser or make it use up 100% of CPU time (and let's not even mention trying
to open this in any desktop software).

Additional sets are probably coming in the near future. This may include:

afl-generated, minimized image test sets (partial)

These very compact, synthetic corpora were generated with afl-fuzz for some of the image formats supported in
modern web browsers. They exercise a remarkable variety of features in common image parsers and are a superior
starting point for manual testing or targeted fuzzing work. The test cases are selected for optimal edge coverage and a
wide range of coarse hit counts for every branch, as culled with afl-cmin. There are also *-edges-only variants that do
not factor in hit counts.

Format Parsing library Instrumented tool Browsers Preview link
JPEG #1 1JG jpeg9a djpeg All click here
JPEG #2 libjpeg-turbo 1.3.1 djpeg All click here

IE #1 giflih 5.1 gif2rght All click here

Note that some of this may crash your browser or make
it use up 100% of CPU time (and let's not even mention
trymg to open this in any desktop software)

TS CNTOETCR OO CoTIverT
WebP libwebp 0.4.2 dwebp Chrome

TIFF libtiff CVS 2014/12/24 tiff2rgba® IE, Safari click here
JPE@F XR jxrlib 1.1 JxrDecApp! [IE click here

= oM = - = = =

1'Wj

some ad-hoc security fixes incorporated into the utility.

e to the sheer number of exploitable bugs that allow the fuzzer to jump to arbitrary addresses.
u can also grab a downloadable archive containing all of the above.

ote that some of this may crash your browser or make it use up 100% of CPU time (and let's not even mention trying

to open this in any desktop software).

Additional sets are probably coming in the near future. This may include:

Virtual Machines

Containerization (Docker etc.)

Potentially large overhead
Manual setup
Setups consist of multiple tools

Require superuser privileges

Test isolation through Linux kernel features

Coherent, single tool (for C programs)

Test isolation through Linux kernel features

Coherent, single tool (for C programs)

Program
under
Test

Executable

Coverage

TeStCOV Statistics

Coverage
Criterion

Malicious influences:

Resource exhaustion
File system modifications
Dependencies between tests

Isolate each individual run

Technology:

Control Groups (CGroups)
Containers

Both provided by BencuExEC

https://github.com/sosy-lab/benchexec/

Measurement through 1cov and 11lvm-cov or gcov

Provide line- and condition-coverage
Unfitting definition of branch-coverage

Branch coverage manually computed through program
instrumentation

Produced data:

Test success

Individual test coverage

Accumulated test coverage (after each execution)
Individual resource measurements

.csv table, . json data, .svg plot

Condition Coverage (%)

100 -

90

80 -

60 1

40 1

20 1

Thomas Lemberger

Coverage Plot

——— Accumulated coverage
B Individual coverage

4 6 8 10
Test Executed
LMU Munich, Germany

/11

Goal: Create test suite with same coverage as input test
suite, but less tests

Strategies in TestCov:

Simple, accumulative order-based approach
Similarity-based approach

Extensible through strategy pattern

Program
under
Test

Coverage
Criterion

Executable

TestCov

Coverage
Statistics

Reduced
Test
Suite

https://gitlab.com/sosy-lab/software/test-suite-validator/

Program | S

TESTCOV available open source (Apache 2.0):

Demonstration:
Tomorrow, 10:00-10:40, Kensington Ballroom

Thank You!

Suite Tgst
Suite

https://gitlab.com/sosy-lab/software/test-suite-validator/

TestCov: Robust test-suite execution and coverage
measurement.

Reliable benchmarking: Requirements and solutions.

XML-based
Two components:

metadata.xml
one XML-file per test case

Sequence of test inputs

Handled as zip archive

<?xml version="1.0"7>
<IDOCTYPE test—metadata PUBLIC "+//IDN sosy—lab.org//DTD test—format te
<test—metadata>
<sourcecodelang>C< /sourcecodelang>
<producer>Testsuite Validator v2.0</producer>
< specification >CHECK(FQL(cover EDGES(@CONDITIONEDGE)))< /specificatic
< programfile>example.c< /programfile>
<programhash>eeecda9cbf27c43c9017fa00dd900c19a5ec18d46303f59a6e0357db78
<entryfunction>main< /entryfunction>
< architecture >32bit< /architecture>
< inputtestsuitefile > original —suite.zip</ inputtestsuitefile >
<inputtestsuitehash >11911d658dcfbf8501390bf0faa96eb193b11bb1< /inputtestsui
<creationtime>2019—06—19T14:17:34Z< /creationtime>
< /test—metadata>

Thomas Lemberger LMU Munich, Germany 14 / 11

Test Case

<?xml version="1.0"7>
<IDOCTYPE testcase PUBLIC "+//IDN sosy—lab.org//DTD test—format testcase
<testcase>
<input>'b'</input>
<input>10</input>
<input>0x0f</input>
< /testcase>

Thomas Lemberger LMU Munich, Germany 15 /11

	Appendix

