
Reliable Benchmarking:
Requirements and Solutions

Dirk Beyer
Joint Work with Stefan Löwe and Philipp Wendler

1 / 32

Evaluation of Research Result

I Result “Theorem”
Evaluation “Proof”

I Result “Algorithm”
Evaluation “Algorithm Analysis, properties, Big-O”

I Result “Heuristics for Complex Problems”
Evaluation “Performance Experiments”

2 / 32

Comparative Evaluation

I Old: Done by competitors
I New: Done by independent competitions

3 / 32

Notions from Experimental Research

Experimental science needs:
Repeatability

Same team, same experimental setup
Replicability

Different team, same experimental setup
Reproducibility

Different team, different experimental setup
Source:
https://www.acm.org/publications/policies/
artifact-review-badging

4 / 32

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

Notions from Experimental Research

Example: You implemented new algorithm in CPAchecker
and compared it against Ultimate.
Repeatability

You execute same version of CPAchecker again.
Are the numbers the same?

Replicability
Somebody else takes same version of CPAchecker
and benchmark set and executes it.

Reproducibility
Somebody implements both algorithms in a
different tool (e.g., Ultimate) and compares them.

5 / 32

Notions from Experimental Research

Repeatability
Can you produce the same results
for the camera-ready version again?

Replicability
Can others take your tool etc.
and perform the experiment?
(main goal of providing artifacts)

Reproducibility
Can others come to the same conclusion
in a different experiment?

6 / 32

Background: Wording

experiments can be replicable
experiments can be repeatable (weaker than replicable)

effects can be reproducible
conclusions can be reproducible
performance results can be replicable (but better avoid this)

measurements can be accurate and precise
benchmarking can be reliable

runs are executed

We avoid
I benchmark
I to run

7 / 32

Background: Wording

experiments can be replicable
experiments can be repeatable (weaker than replicable)

effects can be reproducible
conclusions can be reproducible
performance results can be replicable (but better avoid this)
measurements can be accurate and precise
benchmarking can be reliable

runs are executed

We avoid
I benchmark
I to run

7 / 32

Background: Wording

experiments can be replicable
experiments can be repeatable (weaker than replicable)

effects can be reproducible
conclusions can be reproducible
performance results can be replicable (but better avoid this)
measurements can be accurate and precise
benchmarking can be reliable

runs are executed

We avoid
I benchmark
I to run

7 / 32

Background: Requirements

Repeatability
I everything documented

(machine, version of tool and OS, parameters)
I deterministic tool
I reliable benchmarking

Replicability
I everything above
I availability of tool, benchmark set,

configuration, environment
(published and archived, appropriate license)

Reproducibility
(not discussed here)

8 / 32

Benchmarking is Important

I Evaluation of new approaches
I Evaluation of tools
I Competitions
I Tool development (testing, optimizations)

Reliable, replicable, and accurate results needed!

9 / 32

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

10 / 32

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

10 / 32

Benchmarking is Hard

I Influence of I/O
I Networking
I Distributed tools
I User input

Not relevant for
most verification tools

Easy?

I Different hardware
architectures

I Heterogeneity of tools
I Parallel benchmarks

Relevant!

10 / 32

Goals

I Replicability
I Avoid non-deterministic effects and interferences
I Provide defined set of resources

I Accurate results
I For verification tools (and similar)
I On Linux

11 / 32

Checklist

1. Measure and Limit Resources Accurately
I Time
I Memory

2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Non-Uniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

I Communication
I File system

12 / 32

Measure and Limit Resources Accurately

I Wall time and CPU time
I Define memory consumption

I Size of address space? Too large
I Size of heap? Too low
I Size of resident set (RSS)?

I Measure peak consumption
I Always define memory limit for replicability
I Include sub-processes

13 / 32

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

14 / 32

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

14 / 32

Measuring CPU time with “time”
~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

14 / 32

Terminate Processes Reliably

~$ time verifier

real Xs
user Ys
sys Zs

Ve
rifi

er

Su
bp
ro
ce
ss

1

Su
bp
ro
ce
ss

2

Su
bp
ro
ce
ss

n

CPU time may not be
included in measurement

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB
Process may use 1 GiB

What about shared memory?

~$ verifier

~$ kill <PID>
Process might keep running

and occupy resources

14 / 32

Assign Cores Deliberately

I Hyper Threading:
Multiple threads sharing execution units

I Shared caches

15 / 32

Respect Non-Uniform Memory Access (NUMA)

I Memory regions have different performance depending on
current CPU core

I Hierarchical NUMA makes things worse

16 / 32

CPU

memory region

core

17 / 32

Isolate Individual Runs

I Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

I Thanks for thinking of cleanup

I But what if there are parallel runs?

18 / 32

Isolate Individual Runs

I Excerpt of start script taken from some verifier in
SV-COMP:
. . . (tool started here)
killall z3 2> /dev/null
killall minisat 2> /dev/null
killall yices 2> /dev/null

I Thanks for thinking of cleanup
I But what if there are parallel runs?

18 / 32

Isolate Individual Runs

I Temp files with constant names like /tmp/mytool.tmp
collide

I State stored in places like ~/.mytool
hinders reproducibility
I Sometimes even auto-generated

I Restrict changes to file system
as far as possible

19 / 32

Cgroups

I Linux kernel “control groups”
I Reliable tracking of spawned processes
I Resource limits and measurements per cgroup

I CPU time
I Memory
I I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

20 / 32

Cgroups

I Hierarchical tree of sets of processes

/

. . .

/user1

/benchmarks

/benchmarks/run1

5542 (bash)
5544 (firefox)
. . .

. . .

1130 (verifier)
1131 (subprocess1)
. . .

21 / 32

Namespaces

I Light-weight virtualization
I Only one kernel running, no additional layers
I Change how processes see the system
I Identifiers like PIDs, paths, etc. can have different

meanings in each namespace
I PID 42 can be a different process in each namespace
I Directory / can be a different directory in each namespace
I . . .

I Can be used to build application containers
without possibility to escape

I Usable without root access

22 / 32

Benchmarking Containers

I Encapsulate groups of processes
I Limited resources (memory, cores)
I Total resource consumption measurable
I All other processes hidden

and no communication with them
I Disabled network access
I Adjusted file-system layout

I Private /tmp
I Writes redirected to

temporary RAM disk

23 / 32

BenchExec

I A Framework for Reliable Benchmarking
and Resource Measurement

I Provides benchmarking containers
based on cgroups and namespaces

I Allocates hardware resources appropriately
I Low system requirements

(modern Linux kernel and cgroups access)

24 / 32

BenchExec

I Open source: Apache 2.0 License
I Written in Python 3
I https://github.com/sosy-lab/benchexec
I Used in International Competition on Software Verification

(SV-COMP) and by StarExec
I Originally developed for software-

verification, but applicable to
arbitrary tools

25 / 32

https://github.com/sosy-lab/benchexec

BenchExec Architecture

runexec

· · ·
runexec

benchexec
Bench.
Def.

Input
Files

XML
Results

table-generator

HTML
Table

CSV
Data

BenchExec

runexec
Benchmarks a single run of a tool (in container)

benchexec
Benchmarks multiple runs

table-generator
Generates CSV and interactive HTML tables

26 / 32

BenchExec: runexec

I Benchmarks a single run of a tool
I Measures and limits resources using cgroups
I Runnable as stand-alone tool and as Python module
I Easy integration into other benchmarking frameworks

and infrastructure
I Example:

runexec ––timelimit 100 ––memlimit 16000000000
––cores 0-7,16-23 ––memoryNodes 0
––<TOOL_CMD>

27 / 32

BenchExec: runexec

Iso
la
tio

n
Resource Limitation /

Measurement

2 Process

Run
runexec

Iso
la
tio

n

Resource Limitation /
Measurement

2 Process

Run
runexec

CPU Cores 3 3 3 3 Memory

28 / 32

BenchExec: benchexec

I Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

I Allocates hardware resources

I Can check whether tool result is as expected
for given input file and property

29 / 32

BenchExec: table-generator

I Aggregates results
I Extracts statistic values from tool output
I Generates CSV and interactive HTML tables (with plots)
I Computes result differences and regression counts

30 / 32

BenchExec Configuration

I Tool command line
I Expected result
I Resource limits

I CPU time, wall time
I Memory

I Container setup
I Network access
I File-system layout

I Where to put result files

31 / 32

Conclusion

Be careful when benchmarking!

Don’t use time, ulimit etc.
Always use cgroups and namespaces!

BenchExec
https://github.com/sosy-lab/benchexec

32 / 32

https://github.com/sosy-lab/benchexec

There’s more

Dirk Beyer, Stefan Löwe, and Philipp Wendler.
Reliable Benchmarking:
Requirements and Solutions. [1]
STTT 2019 (preprint available here)
I More details
I Study of hardware influence on benchmarking results
I Suggestions how to present results

(result aggregation, rounding, plots, etc.)

33 / 32

https://doi.org/10.1007/s10009-017-0469-y
https://www.sosy-lab.org/research/pub/2019-STTT.Reliable_Benchmarking_Requirements_and_Solutions.pdf

References I

Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

34 / 32

https://doi.org/10.1007/s10009-017-0469-y

	Appendix

