
Bachelor Thesis

Test-based Fault Localization in the Context of Formal Verification:
Implementation and Evaluation of the Tarantula Algorithm

in CPAchecker

Schindar Ali

Software and Computational Systems Lab
LMU Munich

Schindar Ali (SoSy-Lab) Bachelor Thesis 1

02.09.2020

Agenda

1. Motivation

2. Background

3. Implementation

4. Evaluation

5. Future Work

6. Conclusion

Schindar Ali (SoSy-Lab) Bachelor Thesis 2

Motivation

Schindar Ali (SoSy-Lab) Bachelor Thesis 3

1.1 Motivation

1. Debugging software is an expensive and mostly manual
process.

2. Of all debugging activities, locating the fault is the most
challenging one.

Schindar Ali (SoSy-Lab) Bachelor Thesis 4

Schindar Ali (SoSy-Lab) Bachelor Thesis 5

1.1 Motivation

1. Debugging software is an expensive and mostly manual
process.

2. Of all debugging activities, locating the fault is the most
challenging one.

Schindar Ali (SoSy-Lab) Bachelor Thesis 6

1.1 Motivation

Testing Formal Verification

Checking whether the software design
satisfies some requirements (properties)

There are two important concepts of checking whether the software contains bugs

Where we make sure our code -
as written - actually works the way it’s
supposed to work

Schindar Ali (SoSy-Lab) Bachelor Thesis 7

1.1 Motivation

Testing Formal Verification

Checking whether the software design
satisfies some requirements (properties)

There are two important concepts of checking whether the software contains bugs

Where we make sure our code -
as written - actually works the way it’s
supposed to work

1.2 Motivation - Goal

We want to check whether Test-Based
Tarantula works better with Abstract

reachability graph (ARG) than with test suites

Schindar Ali (SoSy-Lab) Bachelor Thesis 8

Schindar Ali (SoSy-Lab) Bachelor Thesis 9

Background

2.1 Background - Tarantula

Schindar Ali (SoSy-Lab) Bachelor Thesis 10

Insight
– Program elements that are executed by failed
test cases/Counterexample are more likely to be faulty than those that
are executed by passed test cases/Safe paths.

Solution
– Make ranking for the program by giving probability for
each code line based on suspiciousness.

Suspicious(s) =
𝒇𝒂𝒊𝒍 𝒔
𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍

𝒇𝒂𝒊𝒍 𝒔
𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍!

𝒑𝒂𝒔𝒔 𝒔
𝒕𝒐𝒕𝒂𝒍𝒑𝒂𝒔𝒔

We need at leat one fail(s) and one pass(s) to prevent divided by 0

2.1.2 Background -Tarantula Example Process of
using Tarantula

Schindar Ali (SoSy-Lab) Bachelor Thesis 11

(1/1)/((1/1)
+(5/5)) = 0.5

(1/1)/((1/1)+(1/5
)) =0.83

Suspicious(s) =
𝒇𝒂𝒊𝒍 𝒔
𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍

𝒇𝒂𝒊𝒍 𝒔
𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍!

𝒑𝒂𝒔𝒔 𝒔
𝒕𝒐𝒕𝒂𝒍𝒑𝒂𝒔𝒔

Schindar Ali (SoSy-Lab) Bachelor Thesis 12

2.3 Background - DStar and Ochiai

Suspicious(s) = 𝑭𝒂𝒊𝒍𝒆𝒅(𝒔)𝜹

𝑷𝒂𝒔𝒔𝒆𝒅 𝒔 ∗(𝑻𝒐𝒕𝒂𝒍𝑭𝒂𝒊𝒍𝒆𝒅0𝑭𝒂𝒊𝒍𝒆𝒅(𝒔))

1. DStar Metric

Suspicious(s) = 𝑭𝒂𝒊𝒍𝒆𝒅(𝒔)
𝑻𝒐𝒕𝒂𝒍𝑭𝒂𝒊𝒍𝒆𝒅∗ 𝑭𝒂𝒊𝒍𝒆𝒅 𝒔 !𝑷𝒂𝒔𝒔𝒆𝒅(𝒔)

2. Ochiai Metric

We used (𝜹 = 2), the most efficient
value

In our Evaluation we compared Tarantula against:

Needs at least only one failed(s)

Schindar Ali (SoSy-Lab) Bachelor Thesis 13

Implementation

2.4.1 Implementation - Test-based Tarantula

Schindar Ali (SoSy-Lab) Bachelor Thesis 14

How did we run Tarantula on test suites?

Klee or
VeriFuzz

Buggy
Program Test Suites TestCov

Coverage
Statistics

Tarantula

Ranking

Schindar Ali (SoSy-Lab) Bachelor Thesis 15

2.4.2 Implementation - Formal-based Tarantula

C-Program

CFA

ARG

Algorithm

CPA Tarantula

How did we run Tarantula in CPAchecker?

Schindar Ali (SoSy-Lab) Bachelor Thesis 16

2.4.3 Implementation - Formal-based Tarantula

C-Program

CFA

ARG

Algorithm

CPA Tarantula

ReachedSet

no bugs
found

Candidate of suspicious
program elements

How did we run Tarantula in CPAchecker?

Schindar Ali (SoSy-Lab) Bachelor Thesis 17

2.4.4.1 Tarantula on ARG - Example
1. Generating ARG

Example of ARG using Predicate Abstraction without meging the paths together

int main() {
char a = __VERIFIER_nondet_char();
char b = __VERIFIER_nondet_char();
char c = __VERIFIER_nondet_char();

if (a == ’a’ && b == 5 && c == 16) {
ERROR:__VERIFIER_error();

}
}

Schindar Ali (SoSy-Lab) Bachelor Thesis 18

2.4.4.2 Tarantula on ARG - Example

Three Safe paths

One Error path

2. Determine of Safe/fail paths

Example of ARG using Predicate Abstraction without meging the paths together

Schindar Ali (SoSy-Lab) Bachelor Thesis 19

2.4.4.3 Tarantula on ARG - Example
3. Determine of Coverage for each CFAEdge

CFAEdge Coverage Suspicious

[(a==`a`)] ((S,2),(E,1))

[!(a==`a`)] ((S,1),(E,0))

[(b==5)] ((S,1),(E,1))

[!(b==5)] ((S,1),(E,0))

[(c==16)] ((S,0),(E,1))

[!(c==16)] ((S,1),(E,0))

ERROR ((S,0),(E,1))

S: means Coverage of Safe paths
E: means Coverage of Error paths

Schindar Ali (SoSy-Lab) Bachelor Thesis 20

2.4.4.4 Tarantula on ARG - Example
4. Calculate the Suspicious

S: means Coverage of Safe paths
E: means Coverage of Error paths

Suspicious(s) =
𝒇𝒂𝒊𝒍𝑷𝒂𝒕𝒉 𝒔

𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍𝑷𝒂𝒕𝒉𝒔
𝒇𝒂𝒊𝒍𝑷𝒂𝒕𝒉 𝒔

𝒕𝒐𝒕𝒂𝒍𝒇𝒂𝒊𝒍𝑷𝒂𝒕𝒉𝒔!
𝒔𝒂𝒇𝒆𝑷𝒂𝒕𝒉𝒔 𝒔
𝒕𝒐𝒕𝒂𝒍𝒔𝒂𝒇𝒆𝑷𝒂𝒕𝒉𝒔

CFAEdge Coverage Suspicious

[(a==`a`)] ((S,2),(E,1)) 0.75

[!(a==`a`)] ((S,1),(E,0)) 0.0

[(b==5)] ((S,1),(E,1)) 0.60

[!(b==5)] ((S,1),(E,0)) 0.0

[(c==16)] ((S,0),(E,1)) 1.0

[!(c==16)] ((S,1),(E,0)) 0.0

ERROR ((S,0),(E,1)) 1.0

Schindar Ali (SoSy-Lab) Bachelor Thesis 21

Evaluation

Schindar Ali (SoSy-Lab) Bachelor Thesis 22

3.2 Evaluation - Setup

1. Sv-Benchmarks and Bekkouche Benchmarks
2. Omega evaluation metric
3. Predicate Abstraction with 𝑚𝑒𝑟𝑔𝑒!"#
4. Symbolic Execution with CEGAR
5. Test Generators with Branch Coverage
6. BenchExec for Time Measurement
7. Time limit: 900 seconds
8. Memory limit: 4869 MB

Schindar Ali (SoSy-Lab) Bachelor Thesis 23

3.2.1 Evaluation - Setup - Benchmarks

Error Type Explaitation of the Error

assign Wrong assignment expression

op Wrong operator usage e.g. : <=instead of <

init Wrong value initialization of a variable

branch Error in branching due to negation of
branching condition

assign-for-loop Wrong assignment inside loop

if-for-loop Wrong check inside loop

index-for-loop Use of wrong array index

index-while Use of wrong array index inside while loop

This type of bug is taken from
BugAssist’s evaluation

Benchmark-set consists of 35 programs. An overview of error type is as following:

Schindar Ali (SoSy-Lab) Bachelor Thesis 24

3.2.2 Evaluation - Evaluation Metric

Worst-Case step

Omega Percentage = Worst-Case step / Total Code-Lines

cardinality of a set of code lines, whose rank is less than or equal to the rank of the actual error
code line and this set should not contain any faulty code line.

𝑤𝑜𝑟𝑠𝑡 − 𝑐𝑎𝑠𝑒 − 𝑠𝑡𝑒𝑝 = |{𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒; 𝑟𝑎𝑛𝑘 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒
≤ 𝑟𝑎𝑛𝑘 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒 && 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒 ! = 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒}|

Schindar Ali (SoSy-Lab) Bachelor Thesis 25

3.2.2.1 Evaluation - Evaluation Metric -
Example

Worst-Case step = |{5, 6, 1, 2, 11, 14, 4, 12}|=8

Omega percentage = 8/20 = 0.400

The lower the omega result the better
the technique

codeLine suspicious rank

5 1.0 1

6 1.0 1

1 0.5 2

16 0.5 2

2 0.5 2

11 0.5 2

14 0.5 2

4 0.5 2

12 0.5 2

𝑤𝑜𝑟𝑠𝑡 − 𝑐𝑎𝑠𝑒 − 𝑠𝑡𝑒𝑝 = |{𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒; 𝑟𝑎𝑛𝑘 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒 ≤ 𝑟𝑎𝑛𝑘 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒 && 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒
! = 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑑𝑒𝑙𝑖𝑛𝑒}|

3.2.3 Evaluation - Setup - merge operator

Schindar Ali (SoSy-Lab) Bachelor Thesis 26

With default merge we get for all merged paths as suspicious value 0.5,
therefore we use𝑚𝑒𝑟𝑔𝑒!"#

Schindar Ali (SoSy-Lab) Bachelor Thesis 27

3.3.1 Evaluation - Overview

1. Tarantula SymExec vs Predicate Abstraction
2. Tarantula vs DStar and Ochiai
3. Test-Based Tarantula vs Formal-based Tarantula

Schindar Ali (SoSy-Lab) Bachelor Thesis 28

3.4.1 Evaluation - Discussions - Symbolic vs
Predicate

Symbolic Execution is better than predicate analysis with mergeSEP

Reasons:

1. ARG of Predicate is merged together so we need to apply mergSEP which is very expensive and slows down the
analysis, and even runs the analysis for certain large programs infinitely.

Schindar Ali (SoSy-Lab) Bachelor Thesis 29

3.4.1 Evaluation - Discussions - Symbolic vs
Predicate

Symbolic Execution is better than predicate analysis with mergeSEP

Reasons:
2. ARG Graph from Predicate analysis is constructed in such a way that the bug location is more often on the safe
path than on the failed path which lowers the suspicious.

Schindar Ali (SoSy-Lab) Bachelor Thesis 30

3.4.2 Evaluation - Discussions -Tarantula vs
DStar and Ochiai

DStar is better than Ochiai and Tarantula

Reasons:

DStar does not take TotalSafePaths into account in its suspicious form and with the help of the delta exponential
variable, the suspicion of the fault position was increased

Schindar Ali (SoSy-Lab) Bachelor Thesis 31

3.4.2 Evaluation - Discussions -Tarantula vs
DStar and Ochiai

Ochiai is better than Tarantula

Reasons:

Ochiai’s Ω percentage was almost the same as Tarantula’s, but Ochiai analyzed more test programs than Tarantula.
The reason for this is that Ochiai does not need at least one failure path and at least one safe path in contrast to
Tarantula.

Schindar Ali (SoSy-Lab) Bachelor Thesis 32

3.4.3 Evaluation - Discussions - Formal-based
vs Test-based Tarantula

Formal-based is better than test-based Tarantula

Reasons:

Klee and VeriFuzz very often generated bad analyse through the whole program, so the bug sometimes suspected
0.0. Quite often both techniques delivered only counterexamples but no safe cases, so Tarantula can work perfectly
well, thus the suspicious is 1.

Schindar Ali (SoSy-Lab) Bachelor Thesis 33

Future Work

Schindar Ali (SoSy-Lab) Bachelor Thesis 34

4.1 Future Work

Future work should include:

1. The use of more advanced fault localization analysis on CPAchecker to choose
the best fault localization technique or to design a new ranking method and
use it as a default feature in CPAchecker.

2. The work on more ranking metrics, such as Barinel and Op2 is still open and
can be analysed.

3. Improving CPAchecker to be able to not only analyse C-programs but also java
and Java Script programs.

Schindar Ali (SoSy-Lab) Bachelor Thesis 35

Conclusion

Schindar Ali (SoSy-Lab) Bachelor Thesis 36

4.2 Conclusion

• DStar and Ochiai are improvements and work better than Tarantula

• Symbolic execution was able to identify potential faults, 88.57% of the chosen
benchmarks with a very good percentage of Ω, while predicate-merge-set found 60%
of the total benchmarks with very good results from Ω

• Klee was only successful in 17.14% of all benchmarks used

• VeriFuzz was better than Klee but not CPAchecker in 37.14%

Þ In our experimental Evaluation:
Techniques such as model checking and data flow analysis can find subtle and more bugs
in programs as test generators.

Schindar Ali (SoSy-Lab) Bachelor Thesis 37

References

• J. A. Jones and M. J. Harrold. “Empirical Evaluation of the Tarantula Automatic Fault-
Localization Technique.” In: (2005).

• W. E. Wong, V. Debroy, R. Gao, and Y. Li. “The DStar Method for Effective Software
Fault Localization.” In: IEEE Transactions on
Reliability 63.1 (2014),pp. 290–308

• M. A. Ali pour. “Automated fault localization techniques: a survey.” In:(2012), pp. 6–7.

• D. Beyer and E.Keremoglu “ CPAchecker: A Tool for Configurable Software
Verification”. 2011, pp. 184–190

• D. Beyer and T. Lemberger. “TESTCOV: Robust Test-Suite Execution and Coverage
Measurement.” In: (2019)

Schindar Ali (SoSy-Lab) Bachelor Thesis 38

References

• M. Jose and R. Majumdar. “Cause Clue Clauses: Error Localization using Maximum
Satisfiability” In: (2002), pp. 49, 76

Schindar Ali (SoSy-Lab) Bachelor Thesis 39

Available Sources

The used benchmark-set, evaluation data and
python script of test-based tarantula algorithm
are available under:

https://gitlab.com/Schindar/fault_localization
_tarantula

https://gitlab.com/Schindar/fault_localization_tarantula

Schindar Ali (SoSy-Lab) Bachelor Thesis 40

Thank you for your Attention
Questions?

