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Motivation

”First, [SL] merges with the scientific-engineering 

model the programmer uses to understand and build 

the software. [...] 

Secondly, the proof theory developed to check 

software using SL is based on rules for scaling the 

reasoning task [...]” (Pym et al. [1])
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Background

● Two memory cells “separately in memory”

● Corresponding formula:

● Implicit assertion by spatial conjuntion * that x ≠ y

[2]

x xxy y y
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Background

● Based on Symbolic Heaps, SL extends Hoare Logic [3, 4] 
by spatiality

● Rule of constancy

● Spatial conjunction works out

x=y

42

does not hold for SL

✔
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Pointer Analysis

● Based on symbolic execution

● CPA implementation of the CPAchecker framework

● Transformation of C code to SL formulae using JavaSMT

● Check formulae for memory safety properties:

– Invalid read and write (     ,      ) 

– Invalid free (     )

– Memory leak (     )
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Pointer Analysis – Abstract Domain

{+, -, <<, >>, ∙}

Grammar of SL formulae
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Pointer Analysis – Language

Basic programming language inspired by C
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Pointer Analysis – Locations and Values

● C assignment statement of the form

x = x + 1;    

● Transformation of both to the representative formula

ValueLocation
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Pointer Analysis – Memory Model

● Syntactic sugar for memory segments

● Memory as collection of byte-sequences

● Corresponding formula (simplified)

bytes (little endian)
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Pointer Analysis – Memory Access

● Allocation check

– Frame and antiframe

– Frame inference and antiframe abduction together 
refered to as Bi-Abduction [5]

– Bi-Abduction not represented in SL-COMP 2019 [6]
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Pointer Analysis – Memory Access

● Allocation check using a SL solver (without Bi-Abduction)

● Dereferencing
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Pointer Analysis – Transfer Relation

● As part of the CPA formalism, CFA provides different kinds 
of edges:

– Statement edge

– Assumption edge

– Function call edge

– ...

● For each of them, rules are defined to track the memory 
manipulation
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Pointer Analysis – Transfer Relation

● Statement edge: dynamic allocation and assignment

“E pointing to n bytes 
of an arbitrary value”

Similar rule for statements
other than assignments
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Pointer Analysis – Transfer Relation

● Statement edge: dynamic deallocation

– segmentSize(E) determines the size of an allocated segment for a 
given start address, -1 otherwise

– Symbolic heap can be subdivided into heap     and stack     part as 
referred to in the context of C 
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Pointer Analysis – Transfer Relation

● Assumption edge: feasability check

– Ensures termination of analysis

– SMT solver sufficient for satisfiability check
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Pointer Analysis – Memory Leak

● Dropped values might lead to leakage (assignment, 
scope, free())

1 char *p = 0;
2 {
3  char *q = malloc(1);
4  p = q;
5 }

malloc! → 0p → 0
q → malloc!
p → malloc!
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Pointer Analysis – Memory Leak

● Dropped values pointing to an allocated heap cell have to 
be checked for reachability

– Remember already visited aliases to handle cycles 
(here: left out for readability)

direct access via stack

alias F exists

E is active heap address

check alias recursively
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Implementation

● Allocation checks for each heaplet might lead to overhead

● “Simulation” through SMT

● Can be further optimized to a single solver call using model 
generation
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Evaluation

● Comparison of the approach (SL CPA) to SMG CPA (cf. [7])

SL CPASMG CPA

SL
SMT SMT_ModelSAT

CVC4 MathSAT5CVC4CVC4 MathSAT5

CPA

Allocation 
check

Solver
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Evaluation – Test-sets

● SV-Benchmarks

– memsafety-ext3 (18/18)¹

– memsafety-ext2 (2/10)²

● CPAlien test-set (16/21)³

● 36 problems solved

● including function calls, singly-linked lists and structures

1: https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext3
2: https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext2
3: https://github.com/sosy-lab/cpachecker/tree/trunk/test/programs/cpalien

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext3
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext2
https://github.com/sosy-lab/cpachecker/tree/trunk/test/programs/cpalien
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Evaluation – Execution Environment

● Intel Xeon E3-1230 v5 CPUs, 3.40 GHz CPU frequency, 
33 GB RAM

● Run on two CPU cores, limited to 90s execution time 
and 15GB RAM

● Measurments using

● Branch: sl-integration0:r34981
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Evaluation – CPU time

● SLCPA_SL_CVC4 slow and has one timeout

● All SMT aproaches significantly faster

● SLCPA_ModelSAT_MathSAT5 comparable to SMGCPA
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Evaluation – Memory

● CVC4 without ModelSAT is memory consuming

● Again SLCPA_ModelSAT_MathSAT5 comparable to SMGCPA
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Evaluation – Solver calls and Memory

● CVC4: significant increase of memory consumption with the amount 
of solver calls; not observable for MathSAT5

→ potential memory leak in CVC4 solver interface
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Conclusion

● SL solver interface for allocation check and 
dereferencing is crucial for performance

● However, model checking approach with symbolic 
execution and SL worked out

● Problems without spatiality are better suited for SMT

● Combination of SL and SMT is promising in respect to 
composition and efficiency
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Appendix



Evaluation

• BenchExec tables:

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.
results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathS
AT5.results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.
html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_CVC4.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.
html

file:///home/mo/Documents/Thesis/talk/benchexec/SMGCPA.results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathSAT5.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathSAT5.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_CVC4.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.html
file:///home/mo/Documents/Thesis/talk/benchexec/SMGCPA.results.html
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Evaluation – Solver calls and CPU time

● CPU time increases with amount of solver calls

● SLCPA_SMT_CVC4 faster than SLCPA_ModelSAT_CVC4 although 
significantly more solver calls



Pointer Analysis – Locations and Values

Operational semantics of 



Pointer Analysis – Locations and Values

Operational semantics of 



Pointer Analysis – Transfer Relation

● Declaration edge:



Pointer Analysis – Transfer Relation

● Statement edge: assignment



Pointer Analysis – Transfer Relation

● Statement edge: dynamic allocation



Pointer Analysis – Transfer Relation

● Function call edge:

– Allocated memory for parameters (    ) and return 
value (    )



Pointer Analysis – Transfer Relation

● Function call edge:



Pointer Analysis – Transfer Relation

● Return statement edge:



Pointer Analysis – Transfer Relation

● Function return edge:
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Pointer Analysis – Transfer Relation

● Variable Scope:

– special statement oos(x) representing a variable x 
that goes out of scope
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Implementation

● SL State



Implementation

● Why SSAMap?

→ SymLoc(x) = &main:x@i



 
42 / 25

Implementation

● Dereferencing with model generation: 
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