
Solver-based Analysis of Memory Safety
using Separation Logic

Moritz Beck

Software and Computational
Systems Lab

LMU Munich

16.09.2020

Master’s Thesis

2 / 25

Motivation

”First, [SL] merges with the scientific-engineering

model the programmer uses to understand and build

the software. [...]

Secondly, the proof theory developed to check

software using SL is based on rules for scaling the

reasoning task [...]” (Pym et al. [1])

3 / 25

Background

● Two memory cells “separately in memory”

● Corresponding formula:

● Implicit assertion by spatial conjuntion * that x ≠ y

[2]

x xxy y y

4 / 25

Background

● Based on Symbolic Heaps, SL extends Hoare Logic [3, 4]
by spatiality

● Rule of constancy

● Spatial conjunction works out

x=y

42

does not hold for SL

✔

5 / 25

Pointer Analysis

● Based on symbolic execution

● CPA implementation of the CPAchecker framework

● Transformation of C code to SL formulae using JavaSMT

● Check formulae for memory safety properties:

– Invalid read and write (,)

– Invalid free ()

– Memory leak ()

6 / 25

Pointer Analysis – Abstract Domain

{+, -, <<, >>, ∙}

Grammar of SL formulae

7 / 25

Pointer Analysis – Language

Basic programming language inspired by C

8 / 25

Pointer Analysis – Locations and Values

● C assignment statement of the form

x = x + 1;

● Transformation of both to the representative formula

ValueLocation

9 / 25

Pointer Analysis – Memory Model

● Syntactic sugar for memory segments

● Memory as collection of byte-sequences

● Corresponding formula (simplified)

bytes (little endian)

10 / 25

Pointer Analysis – Memory Access

● Allocation check

– Frame and antiframe

– Frame inference and antiframe abduction together
refered to as Bi-Abduction [5]

– Bi-Abduction not represented in SL-COMP 2019 [6]

11 / 25

Pointer Analysis – Memory Access

● Allocation check using a SL solver (without Bi-Abduction)

● Dereferencing

12 / 25

Pointer Analysis – Transfer Relation

● As part of the CPA formalism, CFA provides different kinds
of edges:

– Statement edge

– Assumption edge

– Function call edge

– ...

● For each of them, rules are defined to track the memory
manipulation

13 / 25

Pointer Analysis – Transfer Relation

● Statement edge: dynamic allocation and assignment

“E pointing to n bytes
of an arbitrary value”

Similar rule for statements
other than assignments

14 / 25

Pointer Analysis – Transfer Relation

● Statement edge: dynamic deallocation

– segmentSize(E) determines the size of an allocated segment for a
given start address, -1 otherwise

– Symbolic heap can be subdivided into heap and stack part as
referred to in the context of C

15 / 25

Pointer Analysis – Transfer Relation

● Assumption edge: feasability check

– Ensures termination of analysis

– SMT solver sufficient for satisfiability check

16 / 25

Pointer Analysis – Memory Leak

● Dropped values might lead to leakage (assignment,
scope, free())

1 char *p = 0;
2 {
3 char *q = malloc(1);
4 p = q;
5 }

malloc! → 0p → 0
q → malloc!
p → malloc!

17 / 25

Pointer Analysis – Memory Leak

● Dropped values pointing to an allocated heap cell have to
be checked for reachability

– Remember already visited aliases to handle cycles
(here: left out for readability)

direct access via stack

alias F exists

E is active heap address

check alias recursively

18 / 25

Implementation

● Allocation checks for each heaplet might lead to overhead

● “Simulation” through SMT

● Can be further optimized to a single solver call using model
generation

19 / 25

Evaluation

● Comparison of the approach (SL CPA) to SMG CPA (cf. [7])

SL CPASMG CPA

SL
SMT SMT_ModelSAT

CVC4 MathSAT5CVC4CVC4 MathSAT5

CPA

Allocation
check

Solver

20 / 25

Evaluation – Test-sets

● SV-Benchmarks

– memsafety-ext3 (18/18)¹

– memsafety-ext2 (2/10)²

● CPAlien test-set (16/21)³

● 36 problems solved

● including function calls, singly-linked lists and structures

1: https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext3
2: https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext2
3: https://github.com/sosy-lab/cpachecker/tree/trunk/test/programs/cpalien

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext3
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/memsafety-ext2
https://github.com/sosy-lab/cpachecker/tree/trunk/test/programs/cpalien

21 / 25

Evaluation – Execution Environment

● Intel Xeon E3-1230 v5 CPUs, 3.40 GHz CPU frequency,
33 GB RAM

● Run on two CPU cores, limited to 90s execution time
and 15GB RAM

● Measurments using

● Branch: sl-integration0:r34981

22 / 25

Evaluation – CPU time

● SLCPA_SL_CVC4 slow and has one timeout

● All SMT aproaches significantly faster

● SLCPA_ModelSAT_MathSAT5 comparable to SMGCPA

23 / 25

Evaluation – Memory

● CVC4 without ModelSAT is memory consuming

● Again SLCPA_ModelSAT_MathSAT5 comparable to SMGCPA

24 / 25

Evaluation – Solver calls and Memory

● CVC4: significant increase of memory consumption with the amount
of solver calls; not observable for MathSAT5

→ potential memory leak in CVC4 solver interface

25 / 25

Conclusion

● SL solver interface for allocation check and
dereferencing is crucial for performance

● However, model checking approach with symbolic
execution and SL worked out

● Problems without spatiality are better suited for SMT

● Combination of SL and SMT is promising in respect to
composition and efficiency

References

[1] D. Pym, J. Spring, and P. O’Hearn. Why Separation Logic Works. Philosophy & Technology, 32(3):483–
516, 2019. https://doi.org/10.1007/s13347-018-0312-8.

[2] Facebook Infer. https://fbinfer.com/docs/separation-logic-and-bi-abduction. Online; accessed 16.09.2020

[3] P. O’Hearn, J. Reynolds, and H. Yang. Local Reasoning about Programs that Alter Data Structures. In
Computer Science Logic, pages 1–19. Springer, Berlin, Heidelberg, 2001. ISBN 978-3-540-44802-0.
https://doi.org/10.1007/3-540-44802-0_1.

[4] D. Distefano, P. O’Hearn, and H. Yang. A Local Shape Analysis Based on Separation Logic. In Proc.
TACAS, pages 287–302. Springer, Berlin, Heidelberg, 2006. ISBN 978-3-540-33057-8.
https://doi.org/10.1007/11691372_19.

[5] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means of Bi-
Abduction. J. ACM, 58(6), 2011.https://doi.org/10.1145/2049697.2049700.

[6] M. Sighireanu et al. SL-COMP: Competition of Solvers for Separation Logic. In Proc. TACAS, pages
116–132. Springer International Publishing, 2019. ISBN 978-3-030-17502-3.
https://doi.org/10.1007/978-3-030-17502-3_8.

[7] P. Muller and T.áš Vojnar. CPAlien: Shape Analyzer for CPAChecker. In Proc. TACAS, pages 395–397.
Springer Berlin Heidelberg, 2014. ISBN 978-3-642-54862-8.
https://doi.org/10.1007/978-3-642-54862-8_28.

https://doi.org/10.1007/s13347-018-0312-8
https://fbinfer.com/docs/separation-logic-and-bi-abduction
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/11691372_19
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-030-17502-3_8
https://doi.org/10.1007/978-3-642-54862-8_28

Appendix

Evaluation

• BenchExec tables:

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.
results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathS
AT5.results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.
html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_CVC4.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.
html

file:///home/mo/Documents/Thesis/talk/benchexec/SMGCPA.results.html

file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathSAT5.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_ModelSAT_MathSAT5.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SL_CVC4.results.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_CVC4.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.html
file:///home/mo/Documents/Thesis/talk/benchexec/SLCPA_SMT_MathSAT5.html
file:///home/mo/Documents/Thesis/talk/benchexec/SMGCPA.results.html

29 / 25

Evaluation – Solver calls and CPU time

● CPU time increases with amount of solver calls

● SLCPA_SMT_CVC4 faster than SLCPA_ModelSAT_CVC4 although
significantly more solver calls

Pointer Analysis – Locations and Values

Operational semantics of

Pointer Analysis – Locations and Values

Operational semantics of

Pointer Analysis – Transfer Relation

● Declaration edge:

Pointer Analysis – Transfer Relation

● Statement edge: assignment

Pointer Analysis – Transfer Relation

● Statement edge: dynamic allocation

Pointer Analysis – Transfer Relation

● Function call edge:

– Allocated memory for parameters () and return
value ()

Pointer Analysis – Transfer Relation

● Function call edge:

Pointer Analysis – Transfer Relation

● Return statement edge:

Pointer Analysis – Transfer Relation

● Function return edge:

39 / 25

Pointer Analysis – Transfer Relation

● Variable Scope:

– special statement oos(x) representing a variable x
that goes out of scope

40 / 25

Implementation

● SL State

Implementation

● Why SSAMap?

→ SymLoc(x) = &main:x@i

42 / 25

Implementation

● Dereferencing with model generation:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

