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Motivation

Programming like a boss Suddenly something is not working

Looking for the fault
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Goal of the Research

* Help developers locate the fault in a program that
violates its specification, using distance metrics

1 int main ()
2 int inputl, input2, input3;
3 int least = inputl;
n int most = inputl;
if (most < input2)

6 most = inputl;
7 if (most < input3)
5 most = input3;

g if (least > input)

10 LEEEt = input2;| // ERROR
1 if (least > input3)

12 least = input3;

13 assert (least <= most);
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Parts of Program Execution

Steps
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Comparison of Program Executions
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Alignments

‘ Aligned steps

‘ Unaligned steps = NOT aligned steps
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Distance Metrics

1. Abstract Distance Metric
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Abstract Distance Metric

Changes in actions of the
execution

[Predicate Distance } Number of Unaligned steps ]

Abstract Distance Metric
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Abstract Distance Metric

Predicate Distance

Ap(i, j,v) {

- # P _‘b
1, if align(i, j) Apo(s]) # p?{bj)
0, otherwise

Predicate
Distance

wherei < |al, j < |bland v < |p;.(s:?)|

The predicate distance is defined :

lal-1 |b|-1 Ip(s]) -1
Ap(ab) =YY Y Ap(ijo)

i=0 j=0 ©v=0




Abstract Distance Metric

Changes in actions of the
execution

1, ifalign(i,i)Aa® #a®
Aa(z}j)—{ f align(i, j) Aaj # a;

0, otherwise

where 1 < |a|, and j < |b|.

Changes in actions
of the execution

la|—1 |b|-1

Aa(a,b) = Z Z Aa(i, f)

i=0 j=0




Abstract Distance Metric

Number of Unaligned States

|ﬁ|_I |E]|_l
Unaligned steps Ac(a,b) = Z unalign, (i) + Z unaligny(j)
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Abstract Distance Metric
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d(a,b) = W,-Ap(a,b) +W,-Aa(a,b) + W, -Ac(a,b)
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Distance Metrics

1. Abstract Distance Metric
2. Control Flow Distance Metric
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Control Flow Distance Metric

* Steps:
— Find all branches

— Align the branches of the two executions with
each other

— Compare the outgoing edges of the aligned
branches
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Control Flow Distance Metric

To compare:
1. The counterexample
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Control Flow Distance Metric

To co m pa re : 1L
1. The counterexample
2. A successful execution
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Control Flow Distance Metric

1. Find all branches
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Control Flow Distance Metric

1. Find all branches
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Control Flow Distance Metric

1. Find all branches
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Control Flow Distance Metric

2. Align the branches

3
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Control Flow Distance Metric

3. Compare the outgoing edges
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Control Flow Distance Metric

3. Compare the outgoing edges
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Control Flow Distance Metric

The difference is:
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Problem with Distance Metrics
for Fault-Localization

If the number of successful executions is excessive:

i. Huge amount of calculations to find all the
successful executions

ii. Enormous number of comparison in order to find
the successful execution which is closer to the
counterexample

52



L =

Solution!

Automated Path
Generation

53



Path Generation

Instead of comparing all successful executions with the
counterexample

We generate automatically the successful execution which is
closer to the counterexample

Much faster
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Start from the error

Path Generation
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Path Generation

Search for the first branch
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Path Generation

Search for the first branch

58



Path Generation

Search for the first branch
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Branch found

Path Generation
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Change the flow

Path Generation
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Expand it

Path Generation
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Is it a safe path ?

Path Generation
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Path Generation

Closest Safe Path found!
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Implementation

Insert the Title of the Talk here using the Footer Option
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Explainer
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Explainer

ExplainTool
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Explainer

ExplainTool
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Presentation of the Differences

Error suspected on line(s): 31, 32, 34, 35, 37, 38, 40 and 41

8 hints are available:

LINE 31 WAS: i{most < in2), CHANGED TO: most < in2
LINE 34 WAS: most < in3, CHANGED TO: /{most < in3)
LINE 37 WAS: least > in2, CHANGED TO: {least > in2)
LINE 40 WAS: l{least > in3), CHANGED TO: least > in3
LINE 35, DELETED: most = in3;

LINE 38, DELETED: most = in2;

LINE 32, WAS EXECUTED: most = in2;

LINE 41, wWAS EXECUTED: least = in3;

..........

Relevant lines:

31 [{most < in2)]
34 [most < in3]
35 most = in3;
37 [least > in2]
38 most = inZ;
40 [Wleast > in3)
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Evaluation
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Evaluation

* We performed Quantitative and Runtime
analysis of the three techniques

73



Overview of the Results

Metric
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Path Generation is clearly faster

500.000 different successful executions
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Ranking Function

Rank: [0,1]xNxN — R

Hotlines

Rank( ,Hotlines, Dif ferences) =

Dif ferences

successRate = the possibility for the actual fault to be included in the set of differences
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Ranking Function

Rank: [0,1]xNxN — R

Rank(successRate Dif ferences) = successRate *
( ’ ,Diff ) Dif ferences

Hotlines >>> the more lines of code a program has, the more
Code that the developer must go through looking for the fault
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Ranking Function

Rank: [0,1]xNxN — R

Hotlines

Rank(successRate, Hotlines, ) = successRate

Differences >>> the number of differences between the counterexample and the
the closest to the counterexample found successful run
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Rank Value
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Ranking

Path Generation has the lead because it gives a better
explanation about the fault



Evaluation

Suspicious lines using ABD

Suspicious lines using Path Generation



Future Work & Conclusion



Future Work

e Use of differently structured distance metrics
(ASSA-based distance metrics

e Combine distance metrics with another fault
localization technique:

Distance Metric finds the closest successful run

dTarantula locates the exact position of the fault
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Conclusion

e Distance Metrics for fault-localization
purposes can be a great assistance to the
developer
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Conclusion

 Distance Metrics for fault-localization
purposes can be a great assistance to the

developer
* Big programs 2 huge number of safe paths

W slow execution time
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Conclusion

 Automated Path Generation technique is the
least promising to find the fault
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Conclusion

 Automated Path Generation technique is the
least promising to find the fault

* PG is fastest out of all three and if it finds the
fault, it produces a much better explanation
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Thank you for your attention!
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