Fault Localization in Model Checking

Implementation and Evaluation of Fault-Localization
Techniques with Distance Metrics

Angelos Kafounis

Bachelor Thesis

Mentor:
Thomas Lemberger
Professor in charge:

Prof. Dr. Dirk Beyer 30.09.2020

Agenda

Motivation Background Implementation Evaluation Future Work Conclusion

Motivation

Programming like a boss

Motivation

Programming like a boss Suddenly something is not working

(Z® ﬁl_g

Motivation

Programming like a boss Suddenly something is not working

Looking for the fault

RS

Motivation

Goal of the Research

* Help developers locate the fault in a program that
violates its specification, using distance metrics

1 int main ()
2 int inputl, input2, input3;
3 int least = inputl;
n int most = inputl;
if (most < input2)

6 most = inputl;
7 if (most < input3)
5 most = input3;

g if (least > input)

10 LEEEt = input2;| // ERROR
1 if (least > input3)

12 least = input3;

13 assert (least <= most);

Background Knowledge

Parts of Program Execution

<
<

Parts of Program Execution

10

Parts of Program Execution

11

Parts of Program Execution

Steps

12

Parts of Program Execution

Steps

) > D 4

13

Distance Metrics for Program Executions

Distance Metrics for Program Executions

Distance Metrics for Program Executions

Counterexample

l Find a feasible

Distance Metrics for Program Executions

Find a feasible
Counterexample

S~ oo -

Distance Metrics for Program Executions

Find all successful
executions

Find a feasible
Counterexample é é é

S~ oo -

Distance Metrics for Program Executions

Find all successful
executions

Find a feasible —
Counterexample é é é

s~__ ___,

S~ oo JE—

Distance Metrics for Program Executions

Create
l alignments
o—0
l Find all successful .(—)‘

executions
Find a feasible “
Counterexample é é é

‘~__ _——’

S~ao T

Distance Metrics for Program Executions

Create
l alignments
o—0
l Find all successful .(—)‘

executions
Find a feasible &
Counterexample é é é __________

‘~__ _——’

S~ oo JE—

Distance Metrics for Program Executions

alignments counterexample

o—0 m
l Find all successful .(—)‘

executions
Find a feasible &
Counterexample é é é __________

Compare the
l Create executions to the

‘~__ _——’

S~ao T

Distance Metrics for Program Executions

alignments counterexample

o—0 m
l Find all successful .(—)‘

executions
Find a feasible “
Counterexample é é é _________

Compare the
l Create executions to the

‘~__ _——’

S~ao T

Comparison of Program Executions

Same Length

24

Comparison of Program Executions

Different Length

25

Comparison of Program Executions

Different Length

26

Comparison of Program Executions

Different Length

27

Alignments

a b
{}O_: }Oﬂ
IO OI

ZO Oi
4O 04
50\@5

Oﬁ

Program executions of different length

28

Alignments

a b
0= ~()0
10 O! Program executions of different length

0 o $
30\03
40 O
50\@5

Oﬁ

29

Alignments

i b
0() =< =)0
'® O!
20) 0?2
Ho\oh
40) O4
50\@5

Oﬁ

Program executions of different length

¥

What step of the execution ‘@’
Vs
What step of the execution ‘b’

30

Alignments

‘ Aligned steps

‘ Unaligned steps = NOT aligned steps

31

Distance Metrics

Distance Metrics

1. Abstract Distance Metric

33

Abstract Distance Metric

Changes in actions of the
execution

[Predicate Distance } Number of Unaligned steps]

Abstract Distance Metric

34

Abstract Distance Metric

Predicate Distance

Ap(i, j,v) {

- # P _‘b
1, if align(i, j) Apo(s]) # p?{bj)
0, otherwise

Predicate
Distance

wherei < |al, j < |bland v < |p;.(s:?)|

The predicate distance is defined :

lal-1 |b|-1 Ip(s]) -1
Ap(ab) =YY Y Ap(ijo)

i=0 j=0 ©v=0

Abstract Distance Metric

Changes in actions of the
execution

1, ifalign(i,i)Aa® #a®
Aa(z}j)—{ f align(i, j) Aaj # a;

0, otherwise

where 1 < |a|, and j < |b|.

Changes in actions
of the execution

la|—1 |b|-1

Aa(a,b) = Z Z Aa(i, f)

i=0 j=0

Abstract Distance Metric

Number of Unaligned States

|ﬁ|_I |E]|_l
Unaligned steps Ac(a,b) = Z unalign, (i) + Z unaligny(j)

i=0 =0

ADM

Abstract Distance Metric

N— —

d(a,b) = W,-Ap(a,b) +W,-Aa(a,b) + W, -Ac(a,b)

38

Distance Metrics

1. Abstract Distance Metric
2. Control Flow Distance Metric

39

Control Flow Distance Metric

Control Flow Distance Metric

* Steps:
— Find all branches

— Align the branches of the two executions with
each other

— Compare the outgoing edges of the aligned
branches

41

Control Flow Distance Metric

Control Flow Distance Metric

To compare:
1. The counterexample

43

Control Flow Distance Metric

To co m pa re : 1L
1. The counterexample
2. A successful execution

44

Control Flow Distance Metric

1. Find all branches

45

Control Flow Distance Metric

1. Find all branches

46

Control Flow Distance Metric

1. Find all branches

a7

Control Flow Distance Metric

2. Align the branches

3

48

Control Flow Distance Metric

3. Compare the outgoing edges

49

Control Flow Distance Metric

3. Compare the outgoing edges

50

Control Flow Distance Metric

The difference is:

N e
/\

51

Problem with Distance Metrics
for Fault-Localization

If the number of successful executions is excessive:

i. Huge amount of calculations to find all the
successful executions

ii. Enormous number of comparison in order to find
the successful execution which is closer to the
counterexample

52

L =

Solution!

Automated Path
Generation

53

Path Generation

Instead of comparing all successful executions with the
counterexample

We generate automatically the successful execution which is
closer to the counterexample

Much faster

54

Path Generation

Start from the error

Path Generation

56

Path Generation

Search for the first branch

57

Path Generation

Search for the first branch

58

Path Generation

Search for the first branch

59

Branch found

Path Generation

60

Change the flow

Path Generation

61

Path Generation

Expand it

Path Generation

63

Is it a safe path ?

Path Generation

64

Path Generation

Closest Safe Path found!

65

Implementation

Insert the Title of the Talk here using the Footer Option

66

[Explainer J

67

Explainer

68

Explainer

ExplainTool

69

Explainer

ExplainTool

70

Presentation of the Differences

Error suspected on line(s): 31, 32, 34, 35, 37, 38, 40 and 41

8 hints are available:

LINE 31 WAS: i{most < in2), CHANGED TO: most < in2
LINE 34 WAS: most < in3, CHANGED TO: /{most < in3)
LINE 37 WAS: least > in2, CHANGED TO: {least > in2)
LINE 40 WAS: l{least > in3), CHANGED TO: least > in3
LINE 35, DELETED: most = in3;

LINE 38, DELETED: most = in2;

LINE 32, WAS EXECUTED: most = in2;

LINE 41, wWAS EXECUTED: least = in3;

..........

Relevant lines:

31 [{most < in2)]
34 [most < in3]
35 most = in3;
37 [least > in2]
38 most = inZ;
40 [Wleast > in3)

71

Evaluation

72

Evaluation

* We performed Quantitative and Runtime
analysis of the three techniques

73

Overview of the Results

Metric
0 10 20 30 40 50 60 70 80

74

Runtime

75

Time in Seconds

120

100

80

60

40

20

Runtime

—— ADM
—o— CFDM
- PG

1 2 3 4
Number Of Safe Paths

10°

Path Generation is clearly faster

500.000 different successful executions

77

Ranking Function

Rank: [0,1]xNxN — R

Hotlines

Rank(,Hotlines, Dif ferences) =

Dif ferences

successRate = the possibility for the actual fault to be included in the set of differences

78

Ranking Function

Rank: [0,1]xNxN — R

Rank(successRate Dif ferences) = successRate *
(’ ,Diff) Dif ferences

Hotlines >>> the more lines of code a program has, the more
Code that the developer must go through looking for the fault

79

Ranking Function

Rank: [0,1]xNxN — R

Hotlines

Rank(successRate, Hotlines,) = successRate

Differences >>> the number of differences between the counterexample and the
the closest to the counterexample found successful run

80

Rank Value

o
=

W
=

L]
=

2
=

(-
=

—e— ADM H
—— CFDM
- PG

40 60 80 100 120 140 160 180 200
Lines Of Code

Ranking

81

50 —o— ADM | T T T

e e

4() ~

30 /

M
20 e

~

=

40 60 80 100 120 140 160 180 200
Lines Of Code

Rank Value

Ranking

Path Generation has the lead because it gives a better
explanation about the fault

Evaluation

Suspicious lines using ABD

Suspicious lines using Path Generation

Future Work & Conclusion

Future Work

e Use of differently structured distance metrics
(ASSA-based distance metrics

e Combine distance metrics with another fault
localization technique:

Distance Metric finds the closest successful run

dTarantula locates the exact position of the fault

85

Conclusion

e Distance Metrics for fault-localization
purposes can be a great assistance to the
developer

86

Conclusion

 Distance Metrics for fault-localization
purposes can be a great assistance to the

developer
* Big programs 2 huge number of safe paths

W slow execution time

87

Conclusion

 Automated Path Generation technique is the
least promising to find the fault

88

Conclusion

 Automated Path Generation technique is the
least promising to find the fault

* PG is fastest out of all three and if it finds the
fault, it produces a much better explanation

89

Thank you for your attention!

Q&A

References

[1] S.Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples. In R. N.
Taylor and M. B. Dwyer, editors, Proceedings of the 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2004, Newport Beach, CA, USA,
October 31 - November 6, 2004, pages 73-82. ACM, 2004.

[2] A. Groce. Error explanation with distance metrics. In K. Jensen and A. Podelski,

editors, Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings, volume 2988 of Lecture Notes in Computer Science, pages 108-122.
Springer, 2004.

[3] T. Wang and A. Roychoudhury. Automated path generation for software fault
localization. In D. F. Redmiles, T. Ellman, and A. Zisman, editors, 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2005), November 7-11,
2005, Long Beach, CA, USA, pages 347-351. ACM, 2005.

[4] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 184-190.
Springer, 2011.

