
1

Fault Localization in Model Checking
Implementation and Evaluation of Fault-Localization

Techniques with Distance Metrics

Angelos Kafounis

Mentor:
Thomas Lemberger
Professor in charge:
Prof. Dr. Dirk Beyer

Bachelor Thesis

30.09.2020

Agenda

2

Motivation Background Implementation Evaluation Future Work Conclusion

Motivation

3

Programming like a boss

Motivation

4

Programming like a boss Suddenly something is not working

Motivation

5

Programming like a boss Suddenly something is not working

Looking for the fault

Motivation

6

Goal of the Research

• Help developers locate the fault in a program that
violates its specification, using distance metrics

7

Background Knowledge

8

Parts of Program Execution

9

Parts of Program Execution

10

Start

Parts of Program Execution

11

Start

Parts of Program Execution

12

Start

Steps

Parts of Program Execution

13

Start

Exit

Steps

Distance Metrics for Program Executions

Distance Metrics for Program Executions

Distance Metrics for Program Executions

Find a feasible
Counterexample

Distance Metrics for Program Executions

Find a feasible
Counterexample

Distance Metrics for Program Executions

Find a feasible
Counterexample

Find all successful
executions

Distance Metrics for Program Executions

Find a feasible
Counterexample

Find all successful
executions

Distance Metrics for Program Executions

Create
alignments

Find a feasible
Counterexample

Find all successful
executions

Distance Metrics for Program Executions

Create
alignments

Find a feasible
Counterexample

Find all successful
executions

Distance Metrics for Program Executions

Create
alignments

Compare the
executions to the
counterexample

Find a feasible
Counterexample

Find all successful
executions

Distance Metrics for Program Executions

Find a feasible
Counterexample

Find all successful
executions

Compare the
executions to the
counterexample

Create
alignments

Comparison of Program Executions

24

Start

Exit

Start

Exit

Same Length

Comparison of Program Executions

25

Start

Exit

Start

Exit

Different Length

Comparison of Program Executions

26

Start

Exit

Start

Exit

Different Length

?

Comparison of Program Executions

27

Start

Exit

Start

Exit

Different Length

?

Alignments

28

Program executions of different length

Alignments

29

Program executions of different length

Alignments

30

Program executions of different length

What step of the execution ‘a’
vs

What step of the execution ‘b’

Alignments

Aligned steps

Unaligned steps = NOT aligned steps

31

Distance Metrics

32

Distance Metrics

1. Abstract Distance Metric

33

Abstract Distance Metric

34

Predicate Distance

Changes in actions of the
execution

Number of Unaligned steps

Abstract Distance Metric

Abstract Distance Metric

35

Predicate Distance

Predicate
Distance

Abstract Distance Metric

36

Changes in actions
of the execution

Changes in actions of the
execution

Abstract Distance Metric

37

Number of Unaligned States
Number of

Unaligned steps

ADM

38

Abstract Distance Metric

Distance Metrics

1. Abstract Distance Metric

2. Control Flow Distance Metric

39

40

Control Flow Distance Metric

Control Flow Distance Metric

• Steps:

– Find all branches

– Align the branches of the two executions with
each other

– Compare the outgoing edges of the aligned
branches

41

Control Flow Distance Metric

42

Example

43

Control Flow Distance Metric

ERROR

To compare:
1. The counterexample

44

Control Flow Distance Metric

EXIT

To compare:
1. The counterexample

2. A successful execution

45

Control Flow Distance Metric

ERROR

1. Find all branches

46

Control Flow Distance Metric

ERROR

1. Find all branches

47

Control Flow Distance Metric

ERROR

1. Find all branches

48

Control Flow Distance Metric

ERROR

2. Align the branches

49

Control Flow Distance Metric

ERROR

3. Compare the outgoing edges

50

Control Flow Distance Metric

ERROR

3. Compare the outgoing edges

51

Control Flow Distance Metric

The difference is:

Problem with Distance Metrics

for Fault-Localization

If the number of successful executions is excessive:

i. Huge amount of calculations to find all the
successful executions

ii. Enormous number of comparison in order to find
the successful execution which is closer to the
counterexample

52

Solution!

53

Automated Path

Generation

Path Generation

• Instead of comparing all successful executions with the
counterexample

• We generate automatically the successful execution which is
closer to the counterexample

• Much faster

54

Path Generation

55

Example

Path Generation

56

ERROR

Start from the error

Path Generation

57

ERROR

Search for the first branch

Path Generation

58

ERROR

Search for the first branch

Path Generation

59

ERROR

Search for the first branch

Path Generation

60

ERROR

Branch found

Path Generation

61

ERROR

Change the flow

Path Generation

62

ERROR

Expand it

Path Generation

63

ERROR

Expand it

Path Generation

64

EXIT? ERROR

Is it a safe path ?

Path Generation

65

EXIT ERROR

Closest Safe Path found!

Implementation

Insert the Title of the Talk here using the Footer Option 66

67

Explainer

68

Explainer

ADM CFDM PG

69

Explainer

ADM CFDM PG

ExplainTool

70

Explainer

ADM CFDM PG

ExplainTool

Presentation of the Differences

71

Evaluation

72

Evaluation

• We performed Quantitative and Runtime
analysis of the three techniques

73

Overview of the Results

74

47,06%

61,76%

73,52%

0 10 20 30 40 50 60 70 80

Path Generation

Control Flow Distance
Metric

Abstract Distance Metric

Runtime

75

Runtime

77

Path Generation is clearly faster

500.000 different successful executions

Ranking Function

78

Rank 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝑹𝒂𝒕𝒆,𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠, 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝑹𝒂𝒕𝒆 ∗
𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

successRate = the possibility for the actual fault to be included in the set of differences

Ranking Function

79

Rank 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒, 𝑯𝒐𝒕𝒍𝒊𝒏𝒆𝒔, 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 ∗
𝑯𝒐𝒕𝒍𝒊𝒏𝒆𝒔

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

Hotlines >>> the more lines of code a program has, the more
Code that the developer must go through looking for the fault

Ranking Function

80

Rank 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒, 𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠, 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 ∗
𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠

𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔

Differences >>> the number of differences between the counterexample and the
the closest to the counterexample found successful run

Ranking

81

Ranking

Path Generation has the lead because it gives a better
explanation about the fault

82

Evaluation

83

Suspicious lines using ABD Suspicious lines using Path Generation

Future Work & Conclusion

84

Future Work

• Use of differently structured distance metrics

❑SSA-based distance metrics

• Combine distance metrics with another fault
localization technique:

❑Distance Metric finds the closest successful run

❑Tarantula locates the exact position of the fault

85

Conclusion

• Distance Metrics for fault-localization
purposes can be a great assistance to the
developer

86

Conclusion

• Distance Metrics for fault-localization
purposes can be a great assistance to the
developer

• Big programs huge number of safe paths

slow execution time

87

Conclusion

• Automated Path Generation technique is the
least promising to find the fault

88

Conclusion

• Automated Path Generation technique is the
least promising to find the fault

• PG is fastest out of all three and if it finds the
fault, it produces a much better explanation

89

Thank you for your attention!

90

Q & A

91

References

92

[1]

[2]

[3]

[4]

