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Programming like a boss Suddenly something is not working

Looking for the fault 
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Goal of the Research

• Help developers locate the fault in a program that 
violates its specification, using distance metrics
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Program executions of different length

What step of the execution ‘a’
vs

What step of the execution ‘b’
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Aligned steps

Unaligned steps = NOT aligned steps
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1. Abstract Distance Metric

2. Control Flow Distance Metric
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Control Flow Distance Metric

• Steps:

– Find all branches

– Align the branches of the two executions with 
each other

– Compare the outgoing edges of the aligned 
branches
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Control Flow Distance Metric

The difference is:



Problem with Distance Metrics 

for Fault-Localization

If the number of successful executions is excessive:

i. Huge amount of calculations to find all the 
successful executions

ii. Enormous number of comparison in order to find 
the successful execution which is closer to the 
counterexample
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Solution!
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Automated Path

Generation



Path Generation

• Instead of comparing all successful executions with the 
counterexample

• We generate automatically the successful execution which is 
closer to the counterexample

• Much faster
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EXIT ERROR

Closest Safe Path found!
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Evaluation

• We performed Quantitative and Runtime 
analysis of the three techniques
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Overview of the Results
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Runtime
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Path Generation is clearly faster

500.000 different successful executions
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Rank 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝑹𝒂𝒕𝒆,𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠, 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝑹𝒂𝒕𝒆 ∗
𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

successRate = the possibility for the actual fault to be included in the set of differences
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𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

Hotlines >>> the more lines of code a program has, the more
Code that the developer must go through looking for the fault
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Rank 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒, 𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠, 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 ∗
𝐻𝑜𝑡𝑙𝑖𝑛𝑒𝑠

𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔

Differences >>> the number of differences between the counterexample and the 
the closest to the counterexample found successful run
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Ranking

Path Generation has the lead because it gives a better 
explanation  about the fault
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Evaluation
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Suspicious lines using ABD Suspicious lines using Path Generation



Future Work & Conclusion
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Future Work

• Use of differently structured distance metrics

❑SSA-based distance metrics

• Combine distance metrics with another fault 
localization technique:

❑Distance Metric finds the closest successful run

❑Tarantula locates the exact position of the fault
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Conclusion

• Distance Metrics for fault-localization 
purposes can be a great assistance to the 
developer
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Conclusion

• Distance Metrics for fault-localization 
purposes can be a great assistance to the 
developer

• Big programs        huge number of safe paths

slow execution time
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Conclusion

• Automated Path Generation technique is the 
least promising to find the fault
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Conclusion

• Automated Path Generation technique is the 
least promising to find the fault

• PG is fastest out of all three and if it finds the 
fault, it produces a much better explanation
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Thank you for your attention!
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