
Test Harnesses for Pointer-based C Programs

Jakob Selberg

October 2020

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 1 / 31

Table of Contents

1 Motivation: Tests from witnesses

2 Extending test harness generation to pointer types
Naive approach
Utilizing PredicateCPA
Examples

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 2 / 31

Goals

Why test from witnesses: supply an accessible interface to verification
results
My contribution: extending CPAchecker’s existing test generation
functionality to pointer based programs.

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 3 / 31

Input and output of CPAchecker

input
C Program
Specification e.g. any call to
function verifier_error()
unreachable

output:
if violation of spec was found:
violation witness

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 4 / 31

Example of a simple C Program

1 extern void __VERIFIER_error(void) ;
2 extern int __VERIFIER_nondet_int(void) ;
3 extern void __VERIFIER_int_sink(int i);
4 int main () {
5 unsigned int x = 1 ;
6 __VERIFIER_int_sink(x);
7 while (__VERIFIER_nondet_int ()) {
8 x = x + 2;
9 }

10 if (x >= 1) __VERIFIER_error () ;
11 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 5 / 31

Violation Witness

loop

q0 q1

q2 q3

q4 q5

[__VERIFIER_nondet_int() == 0] [!(__VERIFIER_nondet_int() == 0)]

[x >=1] [!(x >=1)]

x = x + 2

__VERIFIER_error(); default return

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 6 / 31

Input and output of test programs

Input function: __VERIFIER_nondet_int() : unimplemented
function, return values non-deterministic
Output function: __VERIFIER_int_sink(x): unimplemented
function, no return value, takes parameters

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 7 / 31

Drawbacks of violation witnesses

Working with a violation witness:
can often contain an unreachable violation
can be very complex
developer has to learn to read them
cant use any familiar tools for investigation

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 8 / 31

Solution: Tests from witnesses

Idea
error path in witness holds assumptions about input values
let’s implement the input function to return exactly those values in
that order
compiling the original program with that implementation should
always lead to the witnessed violation

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 9 / 31

Advantages of tests over witnesses

Advantages:
successful test generation rules out spurious violations
can be analyzed and debugged with the tools and methods familiar to
developers

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 10 / 31

Existing implementation of test harness generation
q0

q1

q2

q3

[__VERIFIER_nondet_int() == 0]

[__VERIFIER_nondet_int() == 42]

[__VERIFIER_nondet_int() == 9321]

1 unsigned int __VERIFIER_nondet_int_index__ = 0;
2 int __VERIFIER_nondet_int () {
3 switch (__VERIFIER_nondet_int_index__) {
4 case 0: retval = 0; break;
5 case 1: retval = 42; break;
6 case 2: retval = 9321; break;
7 }
8 ++ __VERIFIER_nondet_int_index__;
9 return retval;

10 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 11 / 31

Limitations of current implementation

Limitations of this approach:
error-path assumptions must only include types that can be assigned
literal values

1 int* i = __VERIFIER_nondet_pointer ();
2 int* j = __VERIFIER_nondet_pointer ();
3 if(i == j) {
4 __VERIFIER_error ();
5 }

cannot handle violations dependent on undefined or unspecified
behavior. E.g. depending on the order of evaluation of function
parameters.

1 int i;
2 foo(setIToZero (), setIToOne ());
3 if(i == 1) {
4 __VERIFIER_error ();
5 }

We addressed the first limitation and extended the functionality to handle
pointer types as well

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 12 / 31

C Types

literally assigned: int, char, etc.
int a = 5;
char c = ’A’;

not literally assigned: derived types
such as pointer to, array of
int* i = malloc(sizeof(int));
int** q = &i;
explicit value cannot be known at
compile time

Problem
if we can’t know the explicit value of an expression, we can’t implement it
as a return value of our switch-case function

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 13 / 31

Handling pointer types

Central assumption
Only those memory locations can be given as input, that have previously
been given as output. I.e. those that have been parameters to calls to
output functions.

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 14 / 31

Naive approach

A CPA with:
explicit tracking of all pointers
partition pointers into equivalence classes
collection of all memory locations given as output
merge pointer equivalence classes at equivalence assumptions

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 15 / 31

Example of naive implementation state information

1 #include <stdlib.h>
2
3 extern void output(int* p);
4 extern int* input(void);
5
6 int main() {
7 int *p = malloc(sizeof(int));
8 output(p);
9 int *q = input();

10 if (p == q) {
11 __VERIFIER_error ();
12 }
13 return 0;
14 }

1
2
3
4
5
6
7 (p,m1)
8 (p,m1),[m1]
9 (p,m1)(q,i1 ,[m1]) ,[m1]

10 (p,q,i1 ,m1), [m1]
11
12
13
14

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 16 / 31

Problems with naive approach

must track every single addressable memory location (variables, struct
fields), lots of useless information
High computational and memory cost
duplicates existing, more sophisticated functionality, e.g. PredicateCPA
PredicateCPA is a powerful analysis, much more likely to be
improved/maintained in the future

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 17 / 31

PredicateCPA-based implementation

CPA that collects memory locations given to output functions, and
leverages state information from the PredicateCPA to resolve aliasing
information

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 18 / 31

PredicateCPA

Implements predicate abstraction analysis. Its state consists of an
abstraction formula and a concrete path formula, we can use the path
formula to infer equality of pointer type variables.

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 19 / 31

Example C Program

1 extern void __output(int* p);
2 extern int* __input(void);
3
4 int main() {
5 int *k = malloc(sizeof(int));
6 __output(k);
7 int *p = malloc(sizeof(int));
8 __output(p);
9 int *q = __input ();

10 int *r = __input ();
11 if (k == r) {
12 if (p == q) {
13 __VERIFIER_error ();
14 }
15 }
16 return 0;
17 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 20 / 31

Path formula of the program

(p3 = r3) ∧ (p3 = q3) ∧ (q3 = __input1) ∧ (r3 = __input0) ∧

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 21 / 31

Using the pathFormula

To use this information we do two things:
Conjunct it with the information we have gathered about memory
locations given as outputs
use SMT-solver to resolve formulas that equate each return value of
our input functions to the n-th memory location given as output, for n

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 22 / 31

function "index": denotes the index of a memory location in the array of all
memory locations given as output.
index(q@1) = 0 means that q@1 was the first memory location given as
output.

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 23 / 31

Example of state information, and index formula

path formula conjunction with index function:

(p3 = r3) ∧ (p3 = q3) ∧ (q3 = __input1) ∧ (r3 = __input0) ∧
(index(p3) = 0) ∧ (index(q3) = 1)

resolve for index returned by nth call to input function: e.g. resolve
index(input@1)

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 24 / 31

Frame Title

Program Statement HarnessCPA PredicateCPA
extern void foo(int* c); {} {}
extern *int bar(); {} {}
int* p = malloc(sizeof(int)) {} {}
foo(p); ϕ(p0) = 0 {}
int* q = malloc(sizeof(int)); ϕ(p0) = 0 {}
foo(q); ϕ(p0) = 0 ∧ ϕ(q0) = 1 {}
int* r = bar() ϕ(p0) = 0 ∧ ϕ(q0) = 1 {r0 = bar0}
if(r==q) error(); ϕ(p0) = 0 ∧ ϕ(q0) = 1 {r0 = bar0, r0 = q0}

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 25 / 31

Implementing the input functions

Analogous to the implementation for normal types:
use a switch-case statement over n for the n-th call
store all pointers in an array
retrieve them from the position we learned from the resolution of the
index function

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 26 / 31

Program Example 1

1 int main() {
2 int i = 5;
3 int arr [1];
4 int* p;
5 foo(arr);
6 p = bar();
7
8 if(p == arr) {
9 __VERIFIER_error ();

10 }
11 return 0;
12 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 27 / 31

Partial Test Harness for Program Example 1

1 void* HARNESS_externPointersArray [1];
2 unsigned long int bar_ret_counter = 0;
3 int *bar(){
4 int * retval;
5 switch(bar_ret_counter) {
6 case 0: retval = (int *) HARNESS_externPointersArray

[0]; break;
7 }
8 ++ bar_ret_counter;
9 return retval;

10 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 28 / 31

Program Example 2

1 foo(a);
2 foo(b);
3 foo(c);
4 foo(d);
5 p = bar();
6 q = bar();
7 r = bar();
8 s = bar();
9

10 if (p == d) {
11 if(q == a) {
12 if(r == c) {
13 if(s == b) {
14 __VERIFIER_error ();
15 }
16 }
17 }
18 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 29 / 31

Partial Test Harness for Program Example 2

1 void* HARNESS_externPointersArray [4];
2 unsigned long int bar_ret_counter = 0;
3 int *bar(){
4 int * retval;
5 switch(bar_ret_counter) {
6 case 0: retval = (int *) HARNESS_externPointersArray

[3]; break;
7 case 1: retval = (int *) HARNESS_externPointersArray

[0]; break;
8 case 2: retval = (int *) HARNESS_externPointersArray

[2]; break;
9 case 3: retval = (int *) HARNESS_externPointersArray

[1]; break;
10 }
11 ++ bar_ret_counter;
12 return retval;
13 }

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 30 / 31

Evaluation and Conclusion

Tested on svcomp-19 programs: unfortunately no improvement
Future work: find out why test generation fails so often
If likely to be useful, handle some undefined/unspecified behavior

Jakob Selberg Test Harnesses for Pointer-based C Programs October 2020 31 / 31

	Motivation: Tests from witnesses
	Extending test harness generation to pointer types
	Naive approach
	Utilizing PredicateCPA
	Examples

