
Converting
Test Goals To
Condition
Automata
FREDERIC SCHÖNBERGER/
BACHELOR’S THES IS

Introduction
 Software correctness is important

 Testing is expensive, up to 50% of all development costs go into
testing

 Hence, automatic test generators

 Test generation is hard
 We could combine the strengths of each generator

Presenter
Presentation Notes
Linear math, long loops, …

Conditional Testing

Program

Tester 1

Some goals
are covered

Pruner

Reduced
program

Tester 2

Presenter
Presentation Notes
Combine the strengths of each generator
CondTest!

Conditions
 Automaton that describes which paths have

been verified

 Assumptions: Conditions under which a path
has been explored

 A condition covers a path iff there is a run s.t.
 the run ends in an accepting state
 all assumptions are satisifed

Some goals
are covered

Reduced
program

Pruner

Presenter
Presentation Notes
CondTest!

Some goals
are covered

Reduced
program

List of
covered goals

CPAchecker’s
reducer

?

Converting Test
Goals to Condition
Automata

start

Example CFA of a program with two branching if/else blocks

start

Example CFA of a program with two branching if/else blocks

start

Example CFA of a program with two branching if/else blocks

start

Example CFA of a program with two branching if/else blocks

Our Approach

Identify our
goals

Generate a
condition from

these goals
Prune!

Phase 1: BFS
 We want to find leaf goals

 Partition them into covered/ not covered

 We can at most remove covered leaf goals

Phase 2: Condition
generation
 Covered leaf goals: True assumption

 Uncovered goals: False assumption
 To avoid issues with non-linear program flows we use

all nodes

 Everything else: True assumption

 This condition satisfies our requirements:
 All paths that only contain covered goals are pruned
 Others are kept

Optimization: Propagation

NAÏVE APPROACH APPROACH W/ PROPAGATION
We just identify leaf goals. We merge nodes whose ancestors are all

either covered or uncovered

Evaluation

Evaluation
 Branch coverage

 Resource consumption
 CPU
 RAM

 Number of tasks that were successfully completed

 Benchexec as benchmarking tool, orchestrated by CoVeriTeam

 Testers participants of Test-Comp 2020

Setup

Instrumenter Tester à
7min Extractor Pruner Tester à

8min

One Tester
 One Tester, applied sequentially

 Baseline: Tester à 15min

 CondTest: Using CondTest’s reducer

Memory (Average) Memory (Maximum)

Naïve vs optimized version
CoVeriTest HybridTiger Klee

PRtest Symbiotic TracerX

HybridTiger Klee PRtest

Symbiotic TracerX CoVeriTest

Two Testers
 Two combinations:
 PRTest/ CoVeriTest
 PRTest/ HybridTiger

 Idea: PRTest “dumb” random tester, eliminates the easy paths

Memory (Maximum) Memory (Average)

PRtest and
CoVeriTest

PRtest and
Hybridtiger

Conclusion

Conclusion
 We have shown two approaches that generate condition automata from test goals

 The approaches work well for a single tester (comparable to both baseline and CondTest)

 They suffer when being used with pairs of different testers

 There is some evidence that there is a bug in the implementation
 Resource usage indicates most of the time only one tester is running

 What are “good” combinations for testers? How to find them?

 Play around with the time limits

 What happens if we use other testers?

	Converting Test Goals To Condition Automata
	Introduction
	Conditional Testing
	Conditions
	Slide Number 5
	Slide Number 6
	Converting Test Goals to Condition Automata
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Our Approach
	Phase 1: BFS
	Phase 2: Condition generation
	Optimization: Propagation
	Evaluation
	Evaluation
	Setup
	One Tester
	Slide Number 20
	Slide Number 21
	Naïve vs optimized version
	Slide Number 23
	Two Testers
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Conclusion
	Conclusion

