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Introduction
 Software correctness is important

 Testing is expensive, up to 50% of all development costs go into 
testing

 Hence, automatic test generators

 Test generation is hard
 We could combine the strengths of each generator
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Conditions
 Automaton that describes which paths have 

been verified

 Assumptions: Conditions under which a path 
has been explored

 A condition covers a path iff there is a run s.t.
 the run ends in an accepting state
 all assumptions are satisifed
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start

Example CFA of a program with two branching if/else blocks
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Our Approach
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Phase 1: BFS
 We want to find leaf goals

 Partition them into covered/ not covered

 We can at most remove covered leaf goals



Phase 2: Condition 
generation
 Covered leaf goals: True assumption

 Uncovered goals: False assumption
 To avoid issues with non-linear program flows we use 

all nodes

 Everything else: True assumption

 This condition satisfies our requirements:
 All paths that only contain covered goals are pruned
 Others are kept



Optimization: Propagation

NAÏVE APPROACH APPROACH W/ PROPAGATION
We just identify leaf goals. We merge nodes whose ancestors are all 

either covered or uncovered



Evaluation



Evaluation
 Branch coverage

 Resource consumption
 CPU
 RAM

 Number of tasks that were successfully completed

 Benchexec as benchmarking tool, orchestrated by CoVeriTeam

 Testers participants of Test-Comp 2020



Setup

Instrumenter Tester à 
7min Extractor Pruner Tester à 

8min



One Tester
 One Tester, applied sequentially

 Baseline: Tester à 15min

 CondTest: Using CondTest’s reducer





Memory (Average) Memory (Maximum)



Naïve vs optimized version
CoVeriTest HybridTiger Klee

PRtest Symbiotic TracerX



HybridTiger Klee PRtest

Symbiotic TracerX CoVeriTest



Two Testers
 Two combinations:
 PRTest/ CoVeriTest
 PRTest/ HybridTiger

 Idea: PRTest “dumb” random tester, eliminates the easy paths





Memory (Maximum) Memory (Average)



PRtest and
CoVeriTest

PRtest and
Hybridtiger



Conclusion



Conclusion
 We have shown two approaches that generate condition automata from test goals

 The approaches work well for a single tester (comparable to both baseline and CondTest)

 They suffer when being used with pairs of different testers

 There is some evidence that there is a bug in the implementation
 Resource usage indicates most of the time only one tester is running

 What are “good” combinations for testers? How to find them?

 Play around with the time limits

 What happens if we use other testers?
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