Bachelor's Thesis

Converting between ACSL Annotations
and Witness Invariants

Sven Umbricht

Sven Umbricht LMU Munich, Germany 1/19

int main() {
inta=1b=1;
while(b < 1000) {
a += a;
b +=b;
}
if (a!=Db){
ERROR: return 1;
}

return 0;
}

Example program with
loop invariant b == a

int main() {
inta=1b=1;
while(b < 1000) {
a += a;
b +=b;
}
if (a!=Db){
ERROR: return 1;
}

return 0;
}

Example program with
loop invariant b ==

<node id="N9">
<data key="invariant">(b == a)</data>
<data key="invariant.scope">main</data>
</node>
<edge source="N2" target="N9">
<data key="enterLoopHead" >true</data>
<data key="startline">2</data>
<data key="endline">2</data>
<data key="startoffset ">28</data>
<data key="endoffset">32</data>
</edge>

GraphML-based correctness
witness containing the invariant

int main() {
inta=1>b=1;

Advantages of Annotations: //@ loop invariant b == a;
Easy to understand /modify while(b < 1000) {
for a human a += g
b +=b;

No need for additional files }

if (a!=b){
Might create compatibility ERROR: return 1:
with other tools }

return 0;

Preliminaries
ACSL & Witness
Evaluation

Summary

ANSI/ISO C Specification Language
Used by the Frama-C framework

Specification as special comments in the program:

/¥@ ... x/or//@ ...

Several kinds of annotations, e.g.
Function Contracts
Loop Annotations
Assertions

Building blocks of ACSL annotations
Roughly correspond to C Expressions

Distinction between Terms and Predicates, e.g.

x and 1+2+3 are terms
\true and x == 0 are predicates

Structure: //@ assert <predicate>;

Contained predicate should evaluate to true where the
assertion is located

Example:

int x =1;

//@ assert x == 1;
int y =5;

//@ assert x + y < 10;

Specify properties of functions

Made of different kinds of clauses, e.g.

requires clauses describe properties of the pre-state
ensures clauses describe properties of the post-state

Example:

/%@ requires y <= x;
ensures x >= 0; */
int natural_subtraction (int x, int y) {

}

Observe the state space exploration of the verifier

May provide invariants that hold at certain program
locations

Invariants used in the GraphML-based witness exchange
format

must be valid C expressions

must evaluate to an int

may contain conjunction /disjunction
may not contain function calls

Witness invariants are valid ACSL predicates
— Conversion is easy

Example:
x == 0 becomes assert x == 0;
But: Where to put assertions?

Use location information from witness
Run observer analysis on the program with the witness as
observer automaton

Basic idea: Represent annotations by predicates
ACSL predicates are often equivalent to C expressions

ACSL assertion can simply be represented by contained
predicate — Conversion is straightforward

Example:
assert x => y; can be converted to /x /| y

How to represent the following?

/*@ requires y <= x;
ensures x >= 0; */
int natural_subtraction (int x, int y) {
X =x-y;
return x;

}

Split up contract into several assertions:

/%@ requires y <= x; int natural_subtraction
ensures x >= 0; x/ (int x, int y) {
int natural_subtraction //@ assert y <= x;
(int x, int y) { X =X—y;
X =X —Y; //@ assert x >=0;
return x; return x;

} }

Translate assertions like before

Implementation

Specificationt

Sven Umbricht

Annotated
Program

CPA
Algorithm

Location
CPA

LMU Munich, Germany

Generate valid ACSL annotations from correctness
witnesses

Parse ACSL annotations and create witnesses containing
derived invariants

Validate generated ACSL annotations/witnesses

Good performance of the
actual algorithm v/

Often no result because
invariants are not found X

Found invariants can
usually be converted
successfully v/

input witnesses 10387
algorithm done 9775
generated programs | 5387
with annotations 4685

ACSL annotations can be
parsed and are interpreted
correctly v/

Parsing annotations is
apparently inefficient X

Conversion is often
possible and performed
correctly v/

Many annotations are
skipped because they are
invalid X

input programs 4685
produced witnesses | 3392
with invariant 1585

ACSL annotations can be
parsed and are interpreted
correctly v/

Parsing annotations is
apparently inefficient X

Conversion is often
possible and performed
correctly v/

Many annotations are
skipped because they are
invalid X

input programs 4685
produced witnesses | 3392
with invariant 1585

int i =0;

for (int j =10;j >0; j—) {
i+t
¥

//@ assert j == 0 && i == 10;

Invalid ACSL assertion for
which no correct location exists

Validation of produced
ACSL annotations usually
successful v/

Validation of produced
witnesses succeeds almost
always v/

No incorrect invariants
after roundtrip v/

input programs 4685
Frama-C-SV true 3188
Frama-C-SV unknown | 1445
Frama-C-SV other 52
input witnesses 3483
true 3463
ERROR (recursion) | 19
TIMEOUT 1

Conversion Witness Invariant = ACSL Annotation
Easy in theory: Just use invariant as predicate in ACSL

assertion
Several approaches to find correct location for assertion

There might not be a correct location

Conversion ACSL Annotation = Witness Invariant
Represent annotations by predicates
Predicates can then be converted to invariants
Bigger contracts can be split up into multiple assertions
before conversion

Future Work
Better way to extract invariants from witnesses
Improve parsing of ACSL annotations

	Preliminaries
	ACSL Witness
	Evaluation
	Summary

