
Shareable Benchmarking Reports 
with Enhanced Filters and 

Dynamic Statistics
for BenchExec

Bachelor Thesis by Dennis Simon

28.04.2021

Software and Computational Systems at the Ludwig-Maximilians-Universität München

1



Introduction

BenchExec:

• Benchmarking tool developed by the SoSy
Lab of the LMU Munich

• One of its core tools is the Table-Generator
• Used to create HTML result tables

2



Exemplary HTML table generated by the Table Generator tool – Summary tab
3



Exemplary HTML table generated by the Table Generator tool – Table tab
4



Exemplary HTML table generated by the Table Generator tool – Quantile plot tab
5



Motivation

Filters:
• Filters only accessible in table tab
• No multiselect for enumerable values

6

Statistics:
• not reacting to change



Motivation

Usability:

• No navigation history is being kept
• No possibility to link to specific tab

7



Filtering

• Creation of new filter 
algorithm

• Introduction of a new, 
globally accessible UI

• Enable multiselect

• More granular task ID 
filters

Statistics

• Automatic 
(re)calculation on 
filtering

• Calculation task 
delegation to pooled 
web workers

Usability

• Introduction of 
navigation history 
handling

• Navigation via hash 
routing

• Application state 
serialized in the URL

Solution (Overview)

8



Solution in detail (Filters)

Filtering

• Creation of new filter 
algorithm

• Introduction of a new, 
globally accessible UI

• Enable multiselect

• More granular task ID 
filters

9



Permanently accessible filter button
10



Multi-select enabled filters
11



Solution in detail (Statistics)

Statistics

• Automatic 
(re)calculation on 
filtering

• Calculation task 
delegation to pooled 
web workers

12



Solution in detail (Statistics)

Challenge:

JavaScript is single-threaded
→ UI might freeze under high workload

13



Solution in detail (Statistics)

Solution:

Offloading via pooled Web-Workers

14



Solution in detail (Statistics)

15

Split work into 
chunks

Create job and 
add it to queue

Wait for worker 
to become free

Delegate job to 
worker (different 

thread)

Worker 
completes job

Result returned 
to caller



Solution in detail (Usability)

Usability

• Introduction of 
navigation history 
handling

• Navigation via hash 
routing

• Application state 
serialized in the URL

16



Solution in detail (Usability)

/table.html

navigation

/table.html#/table
active tab

17

Hash routing



Solution in detail (Usability)

#/quantile?scaling=Linear
active tab Quantile plot configuration

18

State serialization



Solution in detail (Usability)

#/quantile?filter=0(0*status*(category(in(correct))))
active tab Serialized filter

19

State serialization



Solution in detail (Usability)

State is read from URL during navigation

Shareable application state

20



Solution in detail (Usability)

Navigation, filtering, configuring now result 
in changed browser history

21



Results

Result was measured using benchmarks:

• Comparison: before and after changes
• Tables sized 10 columns * number of rows

•Number of rows: from 1000 to 60 000
• Timings averaged over 10 executions
• Executed using Cypress

22



Results

Average filter application times per number of rows
(including render time)

Numeric filters Enumerable filters

23



Results

Average computation times of statistics
(including render time)

24



Results

Additional time penalty added to filtering
but

• Enabling multiselect
• Allowing for improvements and extensions 

in the future

25



Conclusion

New way to interact with the application
Implementation of requested features
Implemented filter and worker modules

Can be extended or built on

26

✔
✔

✔

✔



Conclusion

In the future:

• Optimization of table rendering
• Offloading of additional work to web-

workers
• Extension of filter logic

27


