Program Transformations with

CPAchecker

Thomas Lemberger

LMU Munich, Germany

CPA/

Thomas Lemberger LMU Munich, German 1/19

CPACHECKER is more than a verifier
CPAcHECKER provides full program-analysis infrastructure

CFA frontend parses programs and creates a flexible
program representation

CPA infrastructure is very flexible due to
composite structure, and easy to extend

Program representation: CFA
Program state-space representation: ARG

Examples

CFA P = (L,ly,G)

!
int i = nondet(); _ nondet();
int c —i; @
le=1i
if (c) { @
¢ = it =0\ fle==0)
} else { ” @ i=i+1
while (i < 100) { 0 <100L7 @ Temp0 — |
i =i+ 1 @ @
} li=i+1
return;

.
o
Il

tmp0;

}
if (c >=1i) { reach_error(); } [c >=1] \[!(c >=i)]

4

CFA substituteAstNodes(/* snip */ CFA,
BiFunction<CFAEdge, CAstNode, CAstNode>)

CFA createCfa(/* snip */ CFA,
MutableGraph<CFANode, CFAEdge>,
BiFunction<CFAEdge, CAstNode, CAstNode>)

Exports CFA to C.
Big challenge: Does not look like the original.

! int i; } else {
C) i = nondet(); label _O:;
é: nondet(); int ¢ = 1i; if (i < 100) {
Te=i; if (1(c == 0)) { i=1+1;
C) int tmpO = i; goto label_O;
[({(c==0))] [l(c==0)] i=1i+1; } else {
) —i=i+1 c = tmp0; return;
“(“1/@%@ Qf?mpO:i if (c >= i) { label 1:;
C) reach_error(); abort();
li=i+l goto label_2; }
<£2:tmp0 } else { }
[c>—ﬂ;i>JKc>—0] label _2:;

goto label_1;
}

Given program P and a slicing criterion C C L, compute a new
program slice(P,C) that is behaviorally equivalent regarding all
program executions to program locations [€ C.

Uses: Debugging, program abstraction

Computed with control and use-def
dependencies
(CSystemDependenceGraph)?
Control dependency: Reaching
location of interest is influenced by
this control statement
Use-def dependency: Evaluation of
statement of interest is influenced by
this variable assignment

We just replace program operations
with nop

Internally done by SlicingCPA

1 “Interprocedural Slicing
Using Dependence Graphs”.

https://doi.org/10.1145/77606.77608

Computed with control and use-def
dependencies
(CSystemDependenceGraph)?
Control dependency: Reaching
location of interest is influenced by
this control statement
Use-def dependency: Evaluation of
statement of interest is influenced by
this variable assignment

We just replace program operations
with nop

Internally done by SlicingCPA

1

Using Dependence Graphs”.

1
O]
|i = nondet()
@
le=i
(e == W@w —=0)]
i=i+1;
16 < 100)]/@ (@))
@ @ ngpo =i
Ti=i+1
@
|c = tmp0
[e>=1] @ e >=1)]

“Interprocedural Slicing

https://doi.org/10.1145/77606.77608

Computed with control and use-def
dependencies
(CSystemDependenceGraph)?
Control dependency: Reaching
location of interest is influenced by
this control statement
Use-def dependency: Evaluation of
statement of interest is influenced by
this variable assignment

We just replace program operations
with nop

Internally done by SlicingCPA

1

Using Dependence Graphs”.

@)
li=i+1
)
Qg:tmpo
[c>:i/ N
() G

“Interprocedural Slicing

https://doi.org/10.1145/77606.77608

Represents the explored state space as parent-child relation
between abstract program states.

1i = nondet();
lec=
(c== (/ (c==0)]
['(i < 100]/. [i < 100] mpO .
Iz
=it :|+1
ils)
lc=tmp0
e >= 1 [i(c >= 1)

Translates state space of ARG to C program.
Similar structure as CFAToCTranslator.

Any abstract domain can be used to compute ARG (here as
configurable program analysis)
= very flexible tool.

CPA D = (D, ~, merge, stop) ? with:

Abstract domain D = (C,&,[-])
Transfer relation ~
Operator merge

Operator stop

is used in fix-point algorithm to compute abstract state space.

2 “Combining Model Checking

and Data-Flow Analysis".

https://doi.org/10.1007/978-3-319-10575-8_16

CPA L = (Dy, ~>1, merge®P stop®P) can be used to compute
all reachable program locations:

l(lvgg?_;l/)]lll/

When starting with [y, all program locations from the program
entry are computed.

stop®® makes the algorithm explore each program location only
once.

Non-deterministic, finite automaton A = (Q, X, 9, qo, I) for
CFA P = (L,ly, G) with:
States ()

Alphabet 3 C 2¢ x & (source-code guards and
state-space guards)

Transition relation 6 C @) x X X Q)
Initial state qo
Accepting states F'

ControlAutomatonCPA tracks the currently possible states of
the automaton during program analysis and restricts the state
space through source-code and state-space guards.

3 “Witness Validation and Stepwise Testification across
Software Verifiers”.

https://doi.org/10.1145/2786805.2786867

Example: ControlAutomatonCPA

eee

i = nondet();

i
(e ==0))] [(c==0)]
/i: i+ 1

(i < 100)] /@\[i < 100]
51D

®®

[tmp0 =i

Thomas Lemberger LMU Munich, Germany

14 /19

Example: ControlAutomatonCPA

= nondet();

@r@%@%

(c== (/ H_\f ——0) J(Iloil_—onondet())

G < 100)]/@@ Tompo — o/w cj
@

J(l5,| =i+ 1;,13):
li=i+1; true

[c = tmp0;

[c >= i]/\[!(c S=)]

Thomas Lemberger LMU Munich, Germany

14 / 19

!
() (lo; 0, q0)
!

i = nondet(); ll = nondet();
ll {7 = U} Q1
I
e ==)] (1) e == 0] J(lo,l = nondet();, l1):
o e i==0 J[s(!(c:om
G < 100)]/@@ QIDtmpO _. o/w cj R
@ ® () J(l{),i =i+ 1;13): [< 100]
Qéi:wl; true (s, {.. -}, 1)
li=i+1;
Lc = tmp0; (5, {i=1,c=0},q)
[c>= i]/\[!(c S=)]

Thomas Lemberger LMU Munich, Germany

int i;
i = nondet();

(00,0,)] int ¢ = 1i;
|i = nondet(); if (1 (c == 0)) {
(11,{7??0]:@) label O:;
Bis 0.,(;:70},(11) abort();
l[!(?((f:= 0l } else {
UREh RN if (i < 100) {
s, {...}, 1 L .
17 < 100] i=1+1;
(15,{__l_},q1) goto label O;
i=i+1 } else {
(s, {i=1,c=0}9) goto label 0;
}

}

(. 0,)]

|i = nondet();
(lls {7 j 0}~ {Il>
(i =0.c=0}.0)
et — oy
(s, {---}. @)
T[i < 100]
(]5! { - } ‘h)
Ti=i+1
(I3, {i=1,¢=0},q2)

int i;
i = nondet();
int ¢ = i;
if (1(c == 0)) {
label O:;
abort();
} else {
if (4 < 100) {
i=1i+1;
goto label O;
} else {
goto label_O;
}
}

ARGToCTranslator can
differentiate between if
and else-conditions

Information from
abstract states is not
used (yet)

This concept is used for residual-program generation* and
difference verification ®.

“Reducer-Based Construction of Conditional Verifiers”.

5 “Difference Verification

with Conditions”.

https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-58768-0_8

Other examples for program transformations in CPACHECKER:

Abstraction of loops over arrays through
CFA transformation

MetaVal ©

Adding test-goal labels for coverage measurement
(LabelAdder)

Program repair with CFA mutations?

6 “"METAVAL: Witness Validation via

Verification”.

https://doi.org/10.1007/978-3-030-53291-8_10

In export, stay as close to original program as possible.

Thomas Lemberger

Thank you!

LMU Munich, Germany

