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Software Verification and Validation

Verifier
P |= φ ?

Program P

Specification φ

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness

Validator
P |=w φ

Progam P

Specification φ

Witness w

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness
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Why Witnesses?

I Result validation [2, 1, 3]
(eliminate wrong results, increase trust)

I Interface for component-based verifier construction
(exchange of information for cooperative verification)

I Decomposition of verification into components
(for example, a CEGAR verifier can be constructed from
off-the-shelf components)
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Advance Summary

I There was no validator for multi-threaded programs

I Implemented a validator for multi-threaded programs

I In the following more details
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Witness-Based Result Validation
Witness can be an automaton for guiding the validator
I nodes:

control states with invariants
I edges:

transitions with source-code information and assumptions
I standardized format: GraphML

...
<node id="A19"/>
<node id="A20"/>
<edge source="A19" target="A20">
<data key="startline">10</data>
<data key="control">condition-true</data>
<data key="assumption">k == (0); NUM == (4);</data>
<data key="assumption.scope">t1</data>

</edge>
...
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Problems

Results validation is required to eliminate wrong results
I including multi-threaded (MT) tasks

1) Witness format was previously not suitable for MT
I format had no information about threads available

2) No validators for multi-threaded tasks were available
I only validators for sequential programs were available
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Witness Validation for Concurrent Programs

Correctness Witnesses
I unbounded number of threads
I invariants over different threads

Violation Witnesses
I counterexample: fixed number of statements, no loops

→ limited thread interleavings
I information about thread interleaving required
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Solution

1) Extension of the witness format
I What is the current thread?
I Where does a new thread starts?

2) CPAchecker as result validator for concurrent tasks
I Based on already existing components
I Minimal development overhead for CPAchecker
I For violation witnesses only

Evaluation
I Which tools provide sufficient witnesses?
I How well does CPAchecker perform for validation?
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Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?
I guidance through the state space!

→ thread interleaving along the counterexample

What is not important for a validator?
I already handled by the underlying analysis

→ mutex locks, atomic statements
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Witnesses for Concurrent Programs
Extension: information about thread interleaving
I What is the current thread?

→ threadId for every transition
I Where does a new thread starts?

→ threadCreate for introducing a new thread

<edge source="A15" target="sink">
<data key="threadId">0</data>
<data key="createThread">2</data>
<data key="startline">26</data>

</edge>

<edge source="A19" target="A20">
<data key="threadId">1</data>
<data key="startline">10</data>

</edge>
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Evaluation

I Tools
I CPAchecker r33531: ThreadingCPA with BDD analysis
I several participants of SV-COMP 2019

Cbmc, CPA-Seq, Divine, Esbmc, Lazy-CSeq, PeSCo,
Yogar-CBMC

I Environment
I Intel Xeon E3-1230 v5 CPU
I over 1000 tasks (concurrency set from SV-COMP)
I Limitations: 15 GB RAM and 15 minutes
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Evaluation: Tools and Features

Verifier thread thread all thread
id creation interleavings

Cbmc
CPA-Seq
CPAchecker (r33531)
Divine
Esbmc
Lazy-CSeq
PeSCo
Yogar-CBMC
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Evaluation: Verifier Performance
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Evaluation: Validator Performance (CPAchecker)
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Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Future Work

SMT-based analysis for concurrent programs
I improved pointer analysis

Optimization
I shrink witnesses to only relevant information

Encode more properties into witnesses
I deadlocks: possible, but benchmark programs missing
I data races: ongoing effort in SV-COMP community
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