Violation Witnesses and
Result Validation
for Multi-threaded Programs

Implementation and Evaluation with CPAchecker

Dirk Beyer and Karlheinz Friedberger
LMU Munich, Germany i

ISoLA 2021

crl MA(Software Systems
riedberger ich; many 1/17

TRUE

Program P % specification is satisfied
+ correctness witness
PEo¢?
Qu FALSE

bug found
+ violation witness

Specificationg &

Program P

Specification gb

Progam P

Specification ¢

Witness w

!

5

¥
=
<

Validator
PE,¢

TRUE

specification is satisfied

4 correctness witness
PEo¢?
Qu FALSE

bug found
+ violation witness

TRUE

specification is satisfied
+ correctness witness

Qu FALSE

bug found
+ violation witness

Result validation [2, 1, 3]
(eliminate wrong results, increase trust)

Interface for component-based verifier construction
(exchange of information for cooperative verification)

Decomposition of verification into components
(for example, a CEGAR verifier can be constructed from
off-the-shelf components)

There was no validator for multi-threaded programs
Implemented a validator for multi-threaded programs

In the following more details

Witness can be an automaton for guiding the validator

nodes:

control states with invariants

edges:

transitions with source-code information and assumptions
standardized format: GraphML

<node id="A19"/>
<node id="A20"/>
<edge source="A19" target="A20">
<data key="startline">10</data>
<data key="control">condition-true</data>
<data key="assumption">k == (0); NUM == (4);</data>
<data key="assumption.scope">t1</data>
</edge>

Results validation is required to eliminate wrong results
including multi-threaded (MT) tasks

Results validation is required to eliminate wrong results
including multi-threaded (MT) tasks

1) Witness format was previously not suitable for MT

format had no information about threads available

2) No validators for multi-threaded tasks were available

only validators for sequential programs were available

Correctness Witnesses
unbounded number of threads

invariants over different threads

Correctness Witnesses
unbounded number of threads

invariants over different threads

Violation Witnesses
counterexample: fixed number of statements, no loops
— limited thread interleavings

information about thread interleaving required

1) Extension of the witness format
What is the current thread?

Where does a new thread starts?

2) CPACHECKER as result validator for concurrent tasks
Based on already existing components
Minimal development overhead for CPACHECKER

For violation witnesses only

1) Extension of the witness format
What is the current thread?

Where does a new thread starts?

2) CPACHECKER as result validator for concurrent tasks
Based on already existing components
Minimal development overhead for CPACHECKER

For violation witnesses only

Evaluation
Which tools provide sufficient witnesses?

How well does CPAcueckeR perform for validation?

Pthreads and Locks
pthread__create, pthread_join, mutex locks

atomic statements and atomic sequences

Pthreads and Locks
pthread__create, pthread_join, mutex locks

atomic statements and atomic sequences

What is important for a validator?

Pthreads and Locks
pthread__create, pthread_join, mutex locks

atomic statements and atomic sequences

What is important for a validator?
guidance through the state space!

— thread interleaving along the counterexample

Pthreads and Locks
pthread__create, pthread_join, mutex locks

atomic statements and atomic sequences

What is important for a validator?
guidance through the state space!

— thread interleaving along the counterexample

What is not important for a validator?

Pthreads and Locks
pthread__create, pthread_join, mutex locks

atomic statements and atomic sequences

What is important for a validator?
guidance through the state space!

— thread interleaving along the counterexample

What is not important for a validator?
already handled by the underlying analysis

— mutex locks, atomic statements

Extension: information about thread interleaving

What is the current thread?
— threadld for every transition

Where does a new thread starts?
— threadC'reate for introducing a new thread

<edge source="A15" target="sink">
<data key="threadId">0</data>
<data key="createThread">2</data>
<data key="startline">26</data>
</edge>

<edge source="A19" target="A20">
<data key="threadId">1</data>
<data key="startline">10</data>
</edge>

Tools

CPAchecker r33531: ThreadingCPA with BDD analysis
several participants of SV-COMP 2019

CBMc, CPA-SEQ, DivINE, EsBMc, LAazy-CSEQ, PESCoO,
YoGAR-CBMC

Environment

Intel Xeon E3-1230 v5 CPU
over 1000 tasks (concurrency set from SV-COMP)
Limitations: 15 GB RAM and 15 minutes

Verifier thread thread all thread
id creation interleavings

CBMC v’
CPA-SEQ v’ v’
CPACHECKER (r33531) v v
DI1vINE
EsBMmc
LAazy-CSEQ v’ v’ v’
PESCo v’ v’
YoGAR-CBMC v’ v’ v’

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany

Evaluation: Verifier Performance

1000

g |
o B N
o
< 100 | 4
Y E €
9] i]
g i
£ 10 i
3 .
= i
1k | | | [
0 200 400 600 800
n-th largest witness

—x— CBMC —— CPA-SEQ

~# CPACHECKER (r33531) —+— DIVINE

e EsBMC —— LAzy-CSEQ

—— PeESCo —— YOGAR-CBMC

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 /17

Evaluation: Validator Performance (CPACHECKER)

1000

100

CPU time (s)

10 -
C | | | .
0 200 400 600 800
n-th fastest correct validation result
—— CBMC —eo—- CPA-SEQ
~# CPACHECKER (r33531) —— DIVINE
—— EsBMC —— LAzvy-CSEQ
- PESCo —— YOGAR-CBMC

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 14 /17

Witness format is extended with threading information

Witness format is extended with threading information

CPAchecker sucessfully produces and validates
verification results for concurrent programs

Witness format is extended with threading information

CPAchecker sucessfully produces and validates
verification results for concurrent programs

New validator in SV-COMP 2022: Dartagnan

Reference: Proc. I1SoLA 2020 [4]

SMT-based analysis for concurrent programs

improved pointer analysis

Optimization

shrink witnesses to only relevant information

Encode more properties into witnesses
deadlocks: possible, but benchmark programs missing

data races: ongoing effort in SV-COMP community

References |

(1]

2]

3]

(4]

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness
witnesses: Exchanging verification results between verifiers. In: Proc.
FSE. pp. 326-337. ACM (2016). doi:10.1145/2950290.2950351

Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.:
Witness validation and stepwise testification across software verifiers.
In: Proc. FSE. pp. 721-733. ACM (2015).
doi:10.1145/2786805.2786867

Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from
witnesses: Execution-based validation of verification results. In: Proc.
TAP. pp. 3-23. LNCS 10889, Springer (2018).
doi:10.1007/978-3-319-92994-1_1

Beyer, D., Friedberger, K.: Violation witnesses and result validation for
multi-threaded programs. In: Proc. ISoLA (1). pp. 449-470.
LNCS 12476, Springer (2020). doi:10.1007/978-3-030-61362-4_26

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 17 /17

https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-61362-4_26

