
Violation Witnesses and
Result Validation

for Multi-threaded Programs
Implementation and Evaluation with CPAchecker

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

ISoLA 2021

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 1 / 17



Software Verification and Validation

Verifier
P |= φ ?

Program P

Specification φ

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness

Validator
P |=w φ

Progam P

Specification φ

Witness w

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 17



Software Verification and Validation

Verifier
P |= φ ?

Program P

Specification φ

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness

Validator
P |=w φ

Progam P

Specification φ

Witness w

TRUE
specification is satisfied
+ correctness witness

FALSE
bug found
+ violation witness

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 17



Why Witnesses?

I Result validation [2, 1, 3]
(eliminate wrong results, increase trust)

I Interface for component-based verifier construction
(exchange of information for cooperative verification)

I Decomposition of verification into components
(for example, a CEGAR verifier can be constructed from
off-the-shelf components)

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 17



Advance Summary

I There was no validator for multi-threaded programs

I Implemented a validator for multi-threaded programs

I In the following more details

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 17



Witness-Based Result Validation
Witness can be an automaton for guiding the validator
I nodes:

control states with invariants
I edges:

transitions with source-code information and assumptions
I standardized format: GraphML

...
<node id="A19"/>
<node id="A20"/>
<edge source="A19" target="A20">
<data key="startline">10</data>
<data key="control">condition-true</data>
<data key="assumption">k == (0); NUM == (4);</data>
<data key="assumption.scope">t1</data>

</edge>
...

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 17



Problems

Results validation is required to eliminate wrong results
I including multi-threaded (MT) tasks

1) Witness format was previously not suitable for MT
I format had no information about threads available

2) No validators for multi-threaded tasks were available
I only validators for sequential programs were available

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 17



Problems

Results validation is required to eliminate wrong results
I including multi-threaded (MT) tasks

1) Witness format was previously not suitable for MT
I format had no information about threads available

2) No validators for multi-threaded tasks were available
I only validators for sequential programs were available

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 17



Witness Validation for Concurrent Programs

Correctness Witnesses
I unbounded number of threads
I invariants over different threads

Violation Witnesses
I counterexample: fixed number of statements, no loops

→ limited thread interleavings
I information about thread interleaving required

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 17



Witness Validation for Concurrent Programs

Correctness Witnesses
I unbounded number of threads
I invariants over different threads

Violation Witnesses
I counterexample: fixed number of statements, no loops

→ limited thread interleavings
I information about thread interleaving required

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 17



Solution

1) Extension of the witness format
I What is the current thread?
I Where does a new thread starts?

2) CPAchecker as result validator for concurrent tasks
I Based on already existing components
I Minimal development overhead for CPAchecker
I For violation witnesses only

Evaluation
I Which tools provide sufficient witnesses?
I How well does CPAchecker perform for validation?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 17



Solution

1) Extension of the witness format
I What is the current thread?
I Where does a new thread starts?

2) CPAchecker as result validator for concurrent tasks
I Based on already existing components
I Minimal development overhead for CPAchecker
I For violation witnesses only

Evaluation
I Which tools provide sufficient witnesses?
I How well does CPAchecker perform for validation?

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 17



Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?
I guidance through the state space!

→ thread interleaving along the counterexample

What is not important for a validator?
I already handled by the underlying analysis

→ mutex locks, atomic statements

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 17



Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?

I guidance through the state space!
→ thread interleaving along the counterexample

What is not important for a validator?
I already handled by the underlying analysis

→ mutex locks, atomic statements

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 17



Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?
I guidance through the state space!

→ thread interleaving along the counterexample

What is not important for a validator?
I already handled by the underlying analysis

→ mutex locks, atomic statements

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 17



Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?
I guidance through the state space!

→ thread interleaving along the counterexample

What is not important for a validator?

I already handled by the underlying analysis
→ mutex locks, atomic statements

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 17



Concurrent Programs with Pthreads

Pthreads and Locks
I pthread_create, pthread_join, mutex locks
I atomic statements and atomic sequences

What is important for a validator?
I guidance through the state space!

→ thread interleaving along the counterexample

What is not important for a validator?
I already handled by the underlying analysis

→ mutex locks, atomic statements

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 17



Witnesses for Concurrent Programs
Extension: information about thread interleaving
I What is the current thread?

→ threadId for every transition
I Where does a new thread starts?

→ threadCreate for introducing a new thread

<edge source="A15" target="sink">
<data key="threadId">0</data>
<data key="createThread">2</data>
<data key="startline">26</data>

</edge>

<edge source="A19" target="A20">
<data key="threadId">1</data>
<data key="startline">10</data>

</edge>

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 10 / 17



Evaluation

I Tools
I CPAchecker r33531: ThreadingCPA with BDD analysis
I several participants of SV-COMP 2019

Cbmc, CPA-Seq, Divine, Esbmc, Lazy-CSeq, PeSCo,
Yogar-CBMC

I Environment
I Intel Xeon E3-1230 v5 CPU
I over 1000 tasks (concurrency set from SV-COMP)
I Limitations: 15 GB RAM and 15 minutes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 17



Evaluation: Tools and Features

Verifier thread thread all thread
id creation interleavings

Cbmc
CPA-Seq
CPAchecker (r33531)
Divine
Esbmc
Lazy-CSeq
PeSCo
Yogar-CBMC

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 12 / 17



Evaluation: Verifier Performance

0 200 400 600 800
1

10

100

1 000

n-th largest witness

Nu
m
be
ro

fn
od

es

Cbmc CPA-Seq
CPAchecker (r33531) Divine

Esbmc Lazy-CSeq
PeSCo Yogar-CBMC

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 17



Evaluation: Validator Performance (CPAchecker)

0 200 400 600 800
10

100

1 000

n-th fastest correct validation result

CP
U

tim
e
(s
)

Cbmc CPA-Seq
CPAchecker (r33531) Divine

Esbmc Lazy-CSeq
PeSCo Yogar-CBMC

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 14 / 17



Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Conclusion

I Witness format is extended with threading information

I CPAchecker sucessfully produces and validates
verification results for concurrent programs

I New validator in SV-COMP 2022: Dartagnan

Reference: Proc. ISoLA 2020 [4]

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 15 / 17



Future Work

SMT-based analysis for concurrent programs
I improved pointer analysis

Optimization
I shrink witnesses to only relevant information

Encode more properties into witnesses
I deadlocks: possible, but benchmark programs missing
I data races: ongoing effort in SV-COMP community

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 16 / 17



References I

[1] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness
witnesses: Exchanging verification results between verifiers. In: Proc.
FSE. pp. 326–337. ACM (2016). doi:10.1145/2950290.2950351

[2] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.:
Witness validation and stepwise testification across software verifiers.
In: Proc. FSE. pp. 721–733. ACM (2015).
doi:10.1145/2786805.2786867

[3] Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from
witnesses: Execution-based validation of verification results. In: Proc.
TAP. pp. 3–23. LNCS 10889, Springer (2018).
doi:10.1007/978-3-319-92994-1_1

[4] Beyer, D., Friedberger, K.: Violation witnesses and result validation for
multi-threaded programs. In: Proc. ISoLA (1). pp. 449–470.
LNCS 12476, Springer (2020). doi:10.1007/978-3-030-61362-4_26

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 17 / 17

https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-61362-4_26

