ADJUSTABLE BLOCK
ANALYSIS

ACTOR-BASED CREATION OF CODE BLOCK SUMMARIES
FOR SCALING FORMAL VERIFICATION

Matthias Kettl
24.02.2022

Outline

Actor Model

Distributed Verification

Evaluation

1 Motivation :

B1:
int _ VERIFIER nondet_int();
int main();
int x;
x = _VERIFIER nondet_int();

m The primary goal is the reduction of the ,/ \

. o . 3 B3:
needed wall time for verification. N s oy | | <5 0)

m The decomposition of the program in
code blocks allows the distribution of the
verification to many workers.

B5:
[x > 100]
x = 100;

/

B4:
[l(x = 100)]

m Implementation of an easily extensible mt o 10,
framework for distributed analyses. / \
B7: B8:
[(x +y) ==10] [Nx +y) ==10)]
Y=Y-X; y=yt+tx
\
B10: B9:
[y !=10] [ty !=10)]
return 1; return 0;

Block Graph

2 Actor Model

m One actor broadcasts information to
all actors.

m Communication over messages in
the JSON format.

m Every worker processes every
message.

m The actors react to every message
differently.

(.

ctorl

“ Actor 3

2 Actor Model

m Messages are four-tuples: (type, id, target node, payload).

m Messages have one of five types.

m A message contains information about the origin of the message and arbitrary
information in the payload:

_____ Type | D | TargetNode Payload

Error, The node number

ErrorCondition, ;ka'e? thtgz of the CFANode, A JSON string
ErrorConditionUnreachable, the méssa o where the containing arbitrary
BlockPostCondition or g message key-value pairs.

FoundResult SlfFIEIEe I originated from.

2 Actor Model

Routine

while (!finished) {

}

Message m = nextMessage(); //blocks
// may modify variable finished

Set<Message> responses =
processMessage(m);

broadcast(responses);

Purpose

Workers are the entities of our actor
model.

Messages are the unit for exchanging
data.

Workers process messages and
produce a possibly empty set of
messages as response.

3 Distributed Verification

3 Distributed Verification

O

CFA Code Blocks

3 Distributed Verification
© @

3 Distributed Verification

© © @
00 © O ©

Code Blocks

3 Distributed Verification

© @
ZO 2 i ©
® O

00 8

O (o O

CFA Code Blocks

3 Distributed Verification

© © @
© © O ©

3 Distributed Verification

© © @
© 0O OiO ©

P Q

® O © 6
00 @ O

O (o O

CFA Code Blocks

3 Distributed Verification

© © @
© 0O OZO ©

ﬂ Q

® O © 6
00 @ O

3 Distributed Verification

m DCPAs extend known CPAs C (abstract domain, transfer relation, merge, stop) with
four operators.

m DCPAs run on code blocks.

m The four operators are defined as follows:

- proceed: M — B x 2M A th . ol

- the set of all possible messages
- cor.nb./ne. A XA A A the set of abstract states
- serialize: A » M B Boolean values {true, false}

- deserialize: M — A
m DCPAs support forward and backward analyses.

m DCPAs stop whenever they reach the block end.

15

3 Distributed Verification

1:}] £

t.I'igger
v

Vs

) S

®s

Simplified scheme of an Analysis Worker.

16

3 Distributed Verification

int main(

, { B0
int x = 0; =0
X = X 1;
= 1
if (x == Bl a:/ $+\ B2
X = X o # 1 z=1]
} else =g —1 r=x+1
X = X
} B3 Yy Y B4
assert(x = 0] [© # 0]
safe error

Program Block Graph

17

3 Distributed Verification

Type
WorkerlD

Node
Payload

BPC BPC BPC BPC
0] 1 2 3

2 5 5 7
PCPA: PCPA: PCPA: PCPA:
X0 =0A Xo # 1A Xo=1A xXo =0

X1=x0+1 xlsz_l X1=XO+1

Initial messages of all 5 workers

EC

PCPA:

xo # 0

Bl -

[# 1

r=x—1

B3

safe

B4

[z 7 0]

error

18

3 Distributed Verification

Type BPC
WorkerlD O
Node 2
B0
Payload @ x =0A —
x1 - xo + 1 L=
r=x+1
' B1 < B2
[z # 1] x = 1]
Worker 1 r=x—1 r=x-+1
T B3 | | B4
Type EC z =0 @ # 0]
safe error
WorkerlD 4
Node 5

Payload PCPA:
xXg # 0

19

3 Distributed Verification

Type BPC
proceed:
WorkerlD O Message targets initial location?
Node 2 B0
Payload X0=0A —
X1 =Xo+1 L= :
l B1 L Ipy
ForwardAnalysis: [z # 1] @ =1]
Worker 1 Xg=0AXx; =%+ 1A 7 =g = Il r=x+1
1Ax, =x1—1
T *1 *2 = X1 B3 | | B4
e | EC e=0 | [0
safe error
WorkerlD 4
Node S serialize:
Payload PCPA: {BPC, 1, 5, pCPA:

x0¢0 xOZOAX1=XO+1/\xl;tl/\XZZXl_l}

20

3 Distributed Verification

serialize:
(ECU, 1, 5, *}
B0
;‘C o
r=x+1
B1 < B2
A o #1 =1
Worker 1 ackwardAanalysis. r=x—1 r=x+1
skipped
T B3 | | B4
e =0 | [0
yp safe error
WorkeriD 4
Node S proceed:
Payload | pCPA: Message targets final location?
Xo # 0 Error condition is reachable?

21

3 Distributed Verification

Type BPC
WorkerlD O
Node 2
B0
Payload @ x =0A —
x1 - xo + 1 L=
r=x+1
' Bl - B2
[z # 1] x = 1]
Worker 2 r=x—1 r=x-+1
T B3 | | B4
s s [z =0 [# 0
safe error
WorkerlD 4
Node 5

Payload PCPA:
xXg # 0

22

3 Distributed Verification

Type BPC
WorkerlD O
Node 2
Payload Xo=0A
X1 =Xo+1
Worker 2
Type EC
WorkerlD 4
Node)
Payload PCPA:
xXg # 0

proceed:
Message targets initial location?

ForwardAnalysis:
Xo=0AXx;{ =x9+1A
X1=1/\x2=x1+1

serialize:
{BPC, 2, 5, pCPA:
Xo =0/\Xl =Xo+1/\ X1 = 1/\x2 =X1+1}

B0
€Tr =
=x+1
B1 L= Ipy
[z # 1] = 1]
55 =g — 1 r=ux+1
B3 | | B4
o= 0] o # 0]
safe error

23

3 Distributed Verification

serialize:
{EC, 2, 2, pCPA:
XoFO0Axg=x1+1AXx; =1}
B0
€Tr =
| Sl
BackwardAnalysis: v 7 1] v =1]
Worker 2 r=x—1 x=x+1
XoFO0AXxg=x1+1AXx; =1
T B3 | | B4
[z = 0] x #£ 0
Type EC safe EE?”;;” |
WorkerlD 4
Node 5 proceed:
Payload | pCPA: Message targets final location?
Xo # 0 Error condition is reachable?

24

3 Distributed Verification

Worker O

Type
WorkerlD
Node

Payload

EC

2

2
pCPA:

x0¢0/\
Xo=Xx1+1A
x1=1

SAT-check:
true
{FoundResult, O, O, result: False}

BackwardAnalysis:
X0 7‘—'0/\3(0 =x1+1/\x1 =1A
X1 =X, +1Ax, =0

proceed:
Message targets final location?
Error condition is reachable?

B0
€Tr =
=x+1
B1 =gy

[z # 1] = 1]
55 =g — 1 r=ux+1
B3 | | B4
& = 0] [# 0]
safe error

25

4 Evaluation

m 06671 tasks from the SV-COMP ReachSafety benchmark set.

m Benchmarks are run on two setups:
- Setup 1:Intel Core i7-6700 @ 3.40 GHz, 8 cores, 33 GB RAM
- Setup 2: Intel Core i7-10700 @ 2.90 GHz, 16 cores, 67 GB RAM

26

4 Evaluation

m The distributed approach causes
more timeouts and out-of-memory
errors.

m The backward analysis causes
“recursion” exceptions even if there
are none.

m The verification results of the
predicate analysis (if present)
match the results of the distributed
approach.

m Reduction of blocks/workers saves
resources but can also increase
the needed time for SAT-checks.

status

predicate

DCPA, DCPA]

out of memory
timeout

error

TRUE

FALSE

2.

39
1920
1539
2086
1087
6671

1417
2907
1586
504
257
6671

2108
2001
1935
382
245
6671

27

4 Evaluation

m The distributed approach causes
more timeouts and out-of-memory
errors.

m The backward analysis causes

“recursion” exceptions even if there result predicate DCPAp DCPAJ
are none.

m The verification results of the corTect 2993 675 948
predicate analysis (if present) incorrect 180 86 79
match the results of the distributed
approach.

m Reduction of blocks/workers saves
resources but can also increase
the needed time for SAT-checks.

28

4 Evaluation

5000 A
Az

100

10—@

10 100 5000 10 100 600
DCPA: CPU time (S) DCPA: wall time (S)

600 A ;
100 | @

10

6

DCPA(SB): CPU time (s)
DCPA(SB): wall time (s)

 DCPA(SB) uses one worker containing the complete CFA as code block.
* Distributing the verification decreases the needed time.
e Distributing the work helps finding 430 more proofs and 130 more alarms.

29

4 Evaluation

= =)

= 10000 600 - =3 ~

= = 100 = 10000 -

O g A3

5 100- S 10- &

2 ; = = 1000 ~

= 1047 = e

55 ' % | | | % | \

= 10 100 10000 = 10 100 600 a 1000 10000
DCPA/ (S1): CPU time (s) DCPA/ (S1): wall time (s) DCPA/ (S1): RAM (MB)

DCPA(S1) runs on setup 1 (8 cores, 33 GB), DCPA(S2) runs on setup 2 (16 cores, 67 GB).

m Needed time and used memory are similar.
m On average, DCPA(S2) processes 20% more messages than DCPA(S1).

m Increasing number of messages causes time loss (nondeterministic).
30

4 Evaluation

~ ~ .
=

~ 600 = 5000 - & 10000

= e® = 6

= 100 ® > -

E 8 S =

~ =100 - =100 .

()) E ®

E 10 E =

~ S 104 o =

:‘E ' ! ' A r— T I ~ 10 T |

- 10 100 600 ~ 10 100 5000 10 100 10000
Wall time DCPA (s) CPU time DCPA (s) RAM DCPA (MB)

m Predicate Analysis is faster and uses less memory
m Message grow larger since abstraction is deactivated, thus the memory usage increases

m The abstraction allows the predicate analysis to finish faster

31

QU ESTIONS’?

Thank you for you

Appendix

Wy

Irrz—l

?r f‘#ﬁ{ J.z’p{- 1 /Z

/\

1gnore

W,

Schema of an Analysis Worker

Y

33

Appendix

BMC: CPU time (s)

10000
_ @
100 - .
LR
—
10

100

BMC: RAM (MB)

10000

1000

)
(@]
=
=

'_.

=

=
|

BMC: wall time (s
=
|

0.
@

“@-;“M

10000
DCPA: CPU time (s)

10 100 600

DCPA: wall time (s)

DCPA: RAM (MB)

——T —
1000 10000

34

