
ADJUSTABLE BLOCK
ANALYSIS

ACTOR-BASED CREATION OF CODE BLOCK SUMMARIES

FOR SCALING FORMAL VERIFICATION

Matthias Kettl

24.02.2022

1

Outline

Motivation

Actor Model

Distributed Verification

Evaluation

2

1 Motivation

■ The primary goal is the reduction of the

needed wall time for verification.

■ The decomposition of the program in

code blocks allows the distribution of the

verification to many workers.

■ Implementation of an easily extensible

framework for distributed analyses.

3

Block Graph

2 Actor Model Overview

4

■ One actor broadcasts information to

all actors.

■ Communication over messages in

the JSON format.

■ Every worker processes every

message.

■ The actors react to every message

differently.

2 Actor Model Message

Type ID TargetNode Payload

Error,

ErrorCondition,

ErrorConditionUnreachable,

BlockPostCondition or

FoundResult

The ID of the

worker, where

the message

originated from.

The node number

of the CFANode,

where the

message

originated from.

A JSON string

containing arbitrary

key-value pairs.

■ Messages are four-tuples: (type, id, target node, payload).

■ Messages have one of five types.

■ A message contains information about the origin of the message and arbitrary

information in the payload:

5

2 Actor Model Worker

Routine

while (!finished) {

Message m = nextMessage(); //blocks

// may modify variable finished

Set<Message> responses =
processMessage(m);

broadcast(responses);

}

Purpose

■ Workers are the entities of our actor
model.

■ Messages are the unit for exchanging
data.

■ Workers process messages and
produce a possibly empty set of
messages as response.

6

3 Distributed Verification Code Blocks

1

4

3

5 6

7

9

8

CFA

2

7

3 Distributed Verification Code Blocks

1

4

3

5 6

7

9

8

CFA Code Blocks

2

1

2

8

3 Distributed Verification Code Blocks

1

4

3

5 6

7

9

8

CFA Code Blocks

2

1

2

1

3

9

8

9

3 Distributed Verification Code Blocks

CFA Code Blocks

10

1

3

9

8

1

4

3

5 6

7

9

8

2

9

2

1

2

3 Distributed Verification Code Blocks

CFA Code Blocks

11

1

3

9

8

1

4

3

5 6

7

9

8

2

9

2

4

2

1

2

3 Distributed Verification Code Blocks

CFA Code Blocks

12

1

3

9

8

1

4

3

5 6

7

9

8

2

9

2

4

2

4

5

1

2

3 Distributed Verification Code Blocks

CFA Code Blocks

13

1

3

9

8

1

4

3

5 6

7

9

8

2

9

2

4

2

4

5

4

6

7

2

1

2

3 Distributed Verification Code Blocks

CFA Code Blocks

14

1

3

9

8

1

4

3

5 6

7

9

8

2

9

2

4

2

4

5

4

6

7

2

1

2

R

1-2

2-4

1-9

Analysis Workers

4-5 4-2

2-9

3 Distributed Verification Distributed CPA

■ DCPAs extend known CPAs 𝐶 (abstract domain, transfer relation, merge, stop) with

four operators.

■ DCPAs run on code blocks.

■ The four operators are defined as follows:

– proceed: ℳ ↦ 𝐵 × 2ℳ

– combine: 𝒜 ×𝒜 ↦ 𝒜

– serialize: 𝒜 ↦ℳ

– deserialize: ℳ ↦ 𝒜

■ DCPAs support forward and backward analyses.

■ DCPAs stop whenever they reach the block end.

15

ℳ the set of all possible messages

𝒜 the set of abstract states

𝐵 Boolean values {true, false}

3 Distributed Verification Analysis Worker

Simplified scheme of an Analysis Worker.

16

3 Distributed Verification Example

17

int main() {
int x = 0;
x = x + 1;
if (x == 1) {

x = x + 1;
} else {

x = x - 1;
}
assert(x == 0);

}

Program CFA Block Graph

3 Distributed Verification Example

18

Message W0 W1 W2 W3 W4

Type BPC BPC BPC BPC EC

WorkerID 0 1 2 3 4

Node 2 5 5 7 5

Payload pCPA:
𝑥0 = 0 ∧
𝑥1 = 𝑥0 + 1

pCPA:
𝑥0 ≠ 1 ∧
𝑥1 = 𝑥0 − 1

pCPA:
𝑥0 = 1 ∧
𝑥1 = 𝑥0 + 1

pCPA:
𝑥0 = 0

pCPA:
𝑥0 ≠ 0

Initial messages of all 5 workers

W4

EC

4

5

pCPA:
𝑥0 ≠ 0

3 Distributed Verification Example

19

Worker 1

Type BPC

WorkerID 0

Node 2

Payload 𝑥0 = 0 ∧
𝑥1 = 𝑥0 + 1

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝑥0 ≠ 0

3 Distributed Verification Example

20

proceed:

Message targets initial location?

ForwardAnalysis:

𝑥0 = 0 ∧ 𝑥1 = 𝑥0 + 1 ∧
𝑥1 ≠ 1 ∧ 𝑥2 = 𝑥1 − 1

serialize:

{BPC, 1, 5, pCPA:

𝑥0 = 0 ∧ 𝑥1 = 𝑥0 + 1 ∧ 𝑥1 ≠ 1 ∧ 𝑥2 = 𝑥1 − 1}

Worker 1

Type BPC

WorkerID 0

Node 2

Payload 𝐱𝟎 = 𝟎 ∧
𝐱𝟏 = 𝐱𝟎 + 𝟏

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝑥0 ≠ 0

3 Distributed Verification Example

21

serialize:

{ECU, 1, 5, *}

BackwardAnalysis:

𝑠𝑘𝑖𝑝𝑝𝑒𝑑

proceed:

Message targets final location?

Error condition is reachable?

Worker 1

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝐱𝟎 ≠ 𝟎

3 Distributed Verification Example

22

Worker 2

Type BPC

WorkerID 0

Node 2

Payload 𝑥0 = 0 ∧
𝑥1 = 𝑥0 + 1

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝑥0 ≠ 0

3 Distributed Verification Example

23

proceed:

Message targets initial location?

ForwardAnalysis:

𝑥0 = 0 ∧ 𝑥1 = 𝑥0 + 1 ∧
𝑥1 = 1 ∧ 𝑥2 = 𝑥1 + 1

serialize:

{BPC, 2, 5, pCPA:

𝑥0 = 0 ∧ 𝑥1 = 𝑥0 + 1 ∧ 𝑥1 = 1 ∧ 𝑥2 = 𝑥1 + 1}

Worker 2

Type BPC

WorkerID 0

Node 2

Payload 𝐱𝟎 = 𝟎 ∧
𝐱𝟏 = 𝐱𝟎 + 𝟏

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝑥0 ≠ 0

3 Distributed Verification Example

24

serialize:

{EC, 2, 2, pCPA:

𝑥0 ≠ 0 ∧ 𝑥0 = 𝑥1 + 1 ∧ 𝑥1 = 1}

BackwardAnalysis:

𝑥0 ≠ 0 ∧ 𝑥0 = 𝑥1 + 1 ∧ 𝑥1 = 1

proceed:

Message targets final location?

Error condition is reachable?

Worker 2

Type EC

WorkerID 4

Node 5

Payload pCPA:
𝐱𝟎 ≠ 𝟎

3 Distributed Verification Example

25

SAT-check:

true

{FoundResult, 0, 0, result: False}

BackwardAnalysis:

𝑥0 ≠ 0 ∧ 𝑥0 = 𝑥1 + 1 ∧ 𝑥1 = 1 ∧
𝑥1 = 𝑥2 + 1 ∧ 𝑥2 = 0

proceed:

Message targets final location?

Error condition is reachable?

Worker 0

Type EC

WorkerID 2

Node 2

Payload pCPA:
𝒙𝟎 ≠ 𝟎 ∧
𝒙𝟎 = 𝒙𝟏 + 𝟏 ∧
𝒙𝟏 = 𝟏

4 Evaluation Setup

■ 6671 tasks from the SV-COMP ReachSafety benchmark set.

■ Benchmarks are run on two setups:

– Setup 1: Intel Core i7-6700 @ 3.40 GHz, 8 cores, 33 GB RAM

– Setup 2: Intel Core i7-10700 @ 2.90 GHz, 16 cores, 67 GB RAM

26

4 Evaluation Soundness

■ The distributed approach causes

more timeouts and out-of-memory

errors.

■ The backward analysis causes

“recursion” exceptions even if there

are none.

■ The verification results of the

predicate analysis (if present)

match the results of the distributed

approach.

■ Reduction of blocks/workers saves

resources but can also increase

the needed time for SAT-checks.

27

4 Evaluation Soundness

■ The distributed approach causes

more timeouts and out-of-memory

errors.

■ The backward analysis causes

“recursion” exceptions even if there

are none.

■ The verification results of the

predicate analysis (if present)

match the results of the distributed

approach.

■ Reduction of blocks/workers saves

resources but can also increase

the needed time for SAT-checks.

28

4 Evaluation Distributing the Analysis

29

• DCPA(SB) uses one worker containing the complete CFA as code block.

• Distributing the verification decreases the needed time.

• Distributing the work helps finding 430 more proofs and 130 more alarms.

4 Evaluation Increasing Resources

30

■ DCPA(S1) runs on setup 1 (8 cores, 33 GB), DCPA(S2) runs on setup 2 (16 cores, 67 GB).

■ Needed time and used memory are similar.

■ On average, DCPA(S2) processes 20% more messages than DCPA(S1).

■ Increasing number of messages causes time loss (nondeterministic).

4 Evaluation DCPA vs. Predicate Analysis

31

■ Predicate Analysis is faster and uses less memory

■ Message grow larger since abstraction is deactivated, thus the memory usage increases

■ The abstraction allows the predicate analysis to finish faster

QUESTIONS?
Thank you for your attention!

32

Appendix

Schema of an Analysis Worker

33

Appendix

34

