
PARALLEL PORTFOLIO VERIFIER

Tobias Kleinert
Developing a Verifier Based on Parallel Portfolio with CoVeriTeam

Mentor: Sudeep Kanav
Supervisor: Prof. Dr. Dirk Beyer

LMU Munich, Germany

Tobias Kleinert LMU Munich, Germany 1 / 26



Motivation
I Software Verification takes a lot of time
I Software Verification tools have different strengths
I Example from SV-COMP 22:

I loops/while_infinite_loop_3.c
CPAchecker: Solved in 5 s of CPU time
Esbmc: timeout

I array-examples/sanfoundry_10_ground.c
CPAchecker: timeout
Esbmc: Solved in less than 1 s of CPU time

Combine tools and use their strengths

Tobias Kleinert LMU Munich, Germany 2 / 26

 https://sv-comp.sosy-lab.org/2022/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(while_infinite_loop_3))&hidden=0,1,2,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20 
 https://sv-comp.sosy-lab.org/2022/results/results-verified/META_ReachSafety.table.html#/table?filter=id_any(value(sanfoundry_10_ground))&hidden=0,1,2,3,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20 


Portfolio Verifier - Idea

I Take an arbitrary number of verifiers
I Give them the same program and specification to verify
I Run them in parallel
I Take the first result which satisfies a given condition
I Terminate the still running verifiers

Tobias Kleinert LMU Munich, Germany 3 / 26



Portfolio Verifier - Idea

Parallel Portfolio

Input: Program p, Specification s
Output: Verdict

1: verifier_1 := Verifier("CPAchecker")
2: verifier_2 := Verifier("ESBMC")
3: success_condition := verdict ∈ {TRUE, FALSE}
4: parallel_portfolio := ParallelPortfolio(

verifier_1,
verifier_2,
success_condition

)
5: result := parallel_portfolio.verify(p,s)
6: return (result.verdict, result.witness)

Tobias Kleinert LMU Munich, Germany 4 / 26



CoVeriTeam

I Builds compositions of existing verification tools
I Main parts of CoVeriTeam

I Artifact: Files and results
I Actor: Uses artifacts as input and produces new ones

I Composition of multiple actors
I Atomic actor: External verification tools
I Utility actor: Manipulates artifacts

Tobias Kleinert LMU Munich, Germany 5 / 26



CoVeriTeam

CoVeriTeam

CoVeriTeam
program

and inputs

Code
Generator

Actor
Executor

Output
Artifacts

Execution in CoVeriTeam

I Uses own lightweight language to describe compositions (in text format)
I Converts these descriptions to Python code
I Downloads (if necessary) and executes actors
I Returns the produced artifacts

Tobias Kleinert LMU Munich, Germany 6 / 26



Parallel Portfolio implementation

CoVeriTeam

CoVeriTeam
program

and inputs

Code
Generator

Actor
Executor

Output
Artifacts

Execution in CoVeriTeam

I Extended the input language of CoVeriTeam
I Extended the code generation
I Implemented a new composition Parallel Portfolio in CoVeriTeam

I Type check
I Execution

Tobias Kleinert LMU Munich, Germany 7 / 26



Execution

I Parallel execution ⇒ multiple processes
I Each process executes one actor
I Sends result back to main process
I Main process evaluates success_condition with result
I If success condition is true stop the still running processes otherwise wait
I Spawning and communication of these processes with MPI

Tobias Kleinert LMU Munich, Germany 8 / 26



MPI

I Message-Passing-Interface (MPI)
I Used to exchange messages between processes
I Exchange of messages in groups of processes, so called communicators
I Different kinds of exchange of messages

I One-to-one messages (e.g. MPI_Send, MPI_Isend)
I Collective message operation (e.g. MPI_Broadcast)

I Available only in C/C++ and Fortran (we used mpi4py)

Tobias Kleinert LMU Munich, Germany 9 / 26



Use of MPI

I MPI Scheduler: Spawns worker
and receives their results

I QueueManager: Synchronize
CoVeriTeam process and MPI
Scheduler

I MPI Worker: Executes actors

Tobias Kleinert LMU Munich, Germany 10 / 26



Fallback execution

I MPI execution needs MPI
implementation and mpi4py installed
→ fallback execution, if one not
present

I Uses only Python
I Similar, but less complicated setup
I Sharing one Queue for result sending

Tobias Kleinert LMU Munich, Germany 11 / 26



Evaluation

Experiments:
I Fallback vs MPI Execution
I Parallel Portfolio with Verifier +

Validator combination
I Execution on a cluster

Tool selection:
1. CPAchecker

2. Esbmc

3. Symbiotic

Same selection as Beyer, Kanav, and Richter in
"Construction of Verifier Combinations Based on
Off-the-Shelf Verifiers"

Tobias Kleinert LMU Munich, Germany 12 / 26



Evaluation

I Evaluation with BenchExec
I Benchmark-set for the unreach

call specification
Contains 8883 tasks

I Comparison with CPAchecker
I Tools from SV-COMP 21

Resources:
I CPU: Intel Xeon E3-1230 v5 @ 3.40

GHz (apollon*) (except cluster)
I RAM: 15 GB (in most runs)
I CPU time: 15 min (in most runs)
I MPI Implementation: OpenMPI

v4.0.3 (except cluster)

Tobias Kleinert LMU Munich, Germany 13 / 26



Evaluation - MPI vs. Fallback
CPAchecker Parallel Portfolio Parallel Portfolio

MPI fallback
Score 9040 9057 9460
Correct 5652 6129 6364
True 3516 3824 3992
False 2136 2305 2372

Wrong 8 35 35
True 0 21 21
False 8 14 14

Resource Consumption
CPU time (h) 960 860 750
Wall-time (h) 670 250 330
Energy (KJ) 37 000 26 000 24 000

Results
I More solved tasks, but also more wrong results

→ Score of CPAchecker and Parallel Portfolio (MPI) about the same
I Fallback Parallel Portfolio performed better than MPI Parallel Portfolio

Tobias Kleinert LMU Munich, Germany 14 / 26



Evaluation - MPI vs. Fallback - CPU time

1 10 100 1 000
1

10

100

1 000

MPI (s)

F
al
lb
ac
k
(s
)

Log comparison

0 200 400 600 800 1 000
0

200

400

600

800

1 000

MPI (s)

F
al
lb
ac
k
(s
)

Linear comparison

Results
I Linear increase of CPU time difference due to busy waiting in MPI Scheduler

Tobias Kleinert LMU Munich, Germany 15 / 26



Evaluation - MPI vs. Fallback - Wall time

0 2 000 4 000 6 000 8 000 10 000
1

10

100

1 000

Score

W
al
lt
im

e
ti
m
e
(s
)

CPAchecker
MPI

Fallback

Results
I Lower walltime for fast tasks in Fallback

⇒ Setup for python processes needs less time

Tobias Kleinert LMU Munich, Germany 16 / 26



Evaluation - Validating portfolio

Validating Parallel Portfolio
Input: Program p, Specification s
Output: Verdict

1: verifier_1 := Verifier("CPAchecker")
. . .

2: validator := Validator("CPAchecker-Validator")
3: verifier_1 := SEQUENCE(verifier_1, validator)

. . .
4: success_condition := (verdict == verdict_validator) ∈ {TRUE}
5: parallel_portfolio := ParallelPortfolio(

verifier_1,
verifier_2,
verifier_3,
success_condition

)
6: result := parallel_portfolio.verify(p,s)
7: return (result.verdict, result.witness)

Tobias Kleinert LMU Munich, Germany 17 / 26



Evaluation - Validating portfolio

Parallel Portfolio Parallel Portfolio
MPI validating

Score 9057 5100
Correct 6129 3612
True 3824 1552
False 2305 2060

Wrong 35 4
True 21 0
False 14 4

Results
I Minimized the wrong results
I Total number of results reduced drastically

Tobias Kleinert LMU Munich, Germany 18 / 26



Evaluation - Validating portfolio - Tasks False

100 200 300 400 500 600 700 800 900 1 000

200

400

600

800

1 000

MPI (s)

va
li
d
at
in
g
(s
)

Tobias Kleinert LMU Munich, Germany 19 / 26



Evaluation - Validating portfolio - Tasks True

100 200 300 400 500 600 700 800 900 1 000

200

400

600

800

1 000

MPI (s)

va
li
d
at
in
g
(s
)

Tobias Kleinert LMU Munich, Germany 20 / 26



Evaluation - Cluster

Special Test Setup:
I Composition of 12 Verifiers (all from

SV-COMP 21 except VeriAbs)
I Executed on a cluster of 4 machines
I BenchExec as benchmark

framework (no CPU time and
energy measurement)

Resources:
I CPU: Intel Core i7-6700 @ 3.40 GHz

(ws*)
I RAM: 30 GB
I CPU time: 30 min
I MPI Implementation: MPICH

Tobias Kleinert LMU Munich, Germany 21 / 26



Evaluation - Cluster
Parallel Portfolio Parallel Portfolio

MPI cluster
Score 9057 9227
Correct 6129 6681
True 3824 4114
False 2305 2567

Wrong 35 66
True 21 32
False 14 34

Resource Consumption
Wall-time (h) 250 240

Results
I A lot of solved tasks
I Also a lot of incorrect results
I Only slight increase of the score for the available resources

(Used 4 machines instead of one)
Tobias Kleinert LMU Munich, Germany 22 / 26



Conclusion

I Implemented Parallel Portfolio composition in CoVeriTeam
I Fast (in terms of wall-time) and energy efficient execution
I Relatively high amount of wrong results (due to the nature of the Parallel

Portfolio)
I Fast fallback execution
I Cluster capability

Tobias Kleinert LMU Munich, Germany 23 / 26



Conclusion

Special achievements:
I The Parallel Portfolio participated in the SV-COMP 22 (not as

competitor)
I Second place in ReachSafety
I Even first place in NoOverflows

I The Parallel Portfolio was used in the paper "Construction of Verifier
Combinations Based on Off-the-Shelf Verifiers" from Beyer, Kanav, and
Richter.

Tobias Kleinert LMU Munich, Germany 24 / 26



Future work

I Investigate the validating Parallel Portfolio
I Run on a cluster
I Use of different validators

I Parallel Portfolio of testers

Tobias Kleinert LMU Munich, Germany 25 / 26



Thank you!

Tobias Kleinert LMU Munich, Germany 26 / 26



MPI Environment

I MPI programs need to be started with mpiexec
I Spawning new process with mpiexec
I Process executes Python interpreter

Command: "mpiexec -n 1 python mpi-scheduler.py"

Tobias Kleinert LMU Munich, Germany 27 / 26



Process spawning

Static

I Need to calculate the needed
processes

I Grouping processes difficult
I Easy to use with SLURM

Dynamic

I Processes are spawned when needed

I Processes are grouped by default
I MPI_Comm_Spawn not supported

with OpenMPI in combination with
SLURM

Tobias Kleinert LMU Munich, Germany 28 / 26



Busy waiting

I MPI uses busy waiting as waiting
strategy
⇒ A lot of CPU time is wasted

I Solution: Manual pause of the check
for new messages in MPI Worker

I MPI Scheduler still uses busy
waiting

Tobias Kleinert LMU Munich, Germany 29 / 26



Shutdown of actors

I New Feature in CoVeriTeam: Shutdown of actors
I Shutdown procedure for each composition

I Parallel → Stop both actors
I Sequence → Stop first, then second actor
I ITE → Invalidate condition, then stop first actor
I Repeat → Invalidate repeat condition, then stop actor

I Shutdown for external tools (atomic actors)

Tobias Kleinert LMU Munich, Germany 30 / 26



Stopping of atomic actors

I First, only boolean flag
I Bug occurred with some tools
I ⇒ more complex shutdown

procedure

Tobias Kleinert LMU Munich, Germany 31 / 26



Exiting the MPI environment

I Result are sent back with the QueueManager
I MPI Scheduler shuts down every MPI Worker
I MPI Scheduler catches signals to terminate the workers

Tobias Kleinert LMU Munich, Germany 32 / 26


	Motivation
	CoVeriTeam
	Implementation
	Evalutation
	Conclusion
	Appendix
	Appendix

