“Late Merges” in CPACHECKER

Philipp Wendler
LMU Munich, Germany

2022-07-11

Philipp Wendler LMU Munich, Germany 1/13

Software Model Checking

Control-Flow Automaton (CFA) Abstract Reachability Graph (ARG)

1 (True)
2 (p1) 3 (=p1)
|
4 (pl A x=1) 4 (—pl)
/

xil(p/% ,?2) x=61(/glﬁ/,\;2) 5 6
| | [
7 7 7 7

Philipp Wendler LMU Munich, Germany 2 /13

Adjustable-Block Encoding [2]

Philipp Wendler LMU Munich, Germany

/13

Adjustable-Block Encoding [2]

Philipp Wendler

0 true
pl Q e -pl

Disjunction at

° ——% merge point:
(p1 A x=1) V (—pl)

LMU Munich, Germany 3/

13

Adjustable-Block Encoding [2]

Philipp Wendler

0 true
pl o e -pl

Disjunction at
o ——% merge point:
(P1 A x=1) V (=pl)

((pPL A x=1) V = pl) e ((pP1 A x=1) V = pl)

A p2 A —p2

((pl/\xl\/ﬂpl ((pl/\xl\/ﬂpl)
A p2 A y=2 A —p2

LMU Munich, Germany 3/

13

Adjustable-Block Encoding [2]

Disjunction at

——% merge point:
(P1 A x=1) V (=pl)

((pPL A x=1) V = pl)
A p2

((pP1 A x=1) V = pl)
A —p2

Disjunction at

merge point again
(((pP1 A x=1) V = pl) A p2 A y=2)
V (((pL A x=1) V = p1) A —p2)

Philipp Wendler LMU Munich, Germany 3/

Adjustable-Block Encoding [2]

» Configurable and flexible
» Used for unrolling (parts of) CFA and creating formulas [1]
» For BMC, k-induction, PDR, IMC, ISMC, ...

Philipp Wendler LMU Munich, Germany

Sensitivity to Traversal Order

0 true
p1 (2) -pl
x=1
% pl A x=1 o Suppose DFS

[—p2] Left path finished

Node 3 in -

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

Disjunction at
merge point

[-p2]

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

Disjunction at
merge point

—
[-p2]

pl A x=1 A p2 e E\(pplz/\ x=1) V = p1)

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

Disjunction at
merge point

E—
[-p2]
(P1 A x=1 A p2) VvV
(((pL A x=1) v =p1)
y=2 A p2)

Disjunction at
merge point

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

[-p2]
(PL A x=1 A p2) vV
(((p1 A x=1) v =pl1)
y=2 A p2)

((p1 A x=1) vV = pl)
A —p2

pl/\x:l/\p2/\y:2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

[-p1]

[-p2]
(PL A x=1 A p2) vV
(((p1 A x=1) v =pl1)
y=2 A p2)

((p1 A x=1) vV = pl)
A —p2

((p1 A x=1 A p2) V
(((p1 A x=1) V =p1) A p2))

pl/\x:l/\p2/\y:2
N y=2

Philipp Wendler LMU Munich, Germany

/13

Sensitivity to Traversal Order

(p1 A x=1 A p2) V
(((p1 A x=1) v —pl)
A p2)

((p1 A x=1) vV = pl)
A —p2

(P1 A x=1 A p2 Ay=2) V
(((pL Ax=1 A p2) V

(((P1 A x=1) V =p1) A p2))
A y=2)

(to be continued)

Philipp Wendler LMU Munich, Germany

/13

Consequences

» Large redundant formulas
» Blow-up of path exploration

» If a SAT check is performed at end of path:
many and redundant SAT checks
(first path is checked over and over again)

> If some state on path is non-mergeable, e.g., at node 7:

» ARG branching at node 5
(no branching in CFA here) e e

» unexpected ARG shape

> problems for counterexample a °
reconstruction (#883)

https://gitlab.com/sosy-lab/software/cpachecker/-/issues/883

Why not just fix traversal order?

Desired traversal order is reverse post order, but:

» Sometimes hard to implement
Example: unrolling with nested loops (#1002)
» Other traversal orders sometimes preferrable,
e.g. for validating violation witnesses:
Checking paths eagerly (DFS) more efficient
than checking all paths together (cf. #907)
» Incorrect traversal order hard to detect
(only if counterexample reconstruction happens to crash)

Philipp Wendler LMU Munich, Germany

https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1002
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/907

Definition (Late Merge)

merge of abstract states where one state already has children

Philipp Wendler LMU Munich, Germany

Solution

» In CPA framework, merging is handled by merge(e, €')
(merging e into existing abstract state ¢’)

» merge can decide whether to merge!
» E.g., merge(e,e’) = €' is valid and avoids all merges

Just make merge behavior
depend on late merge

Implementation

» Configuration option cpa.arg.lateMerge

» Possible values:
allow Perform merge as usual (default)
prevent Do not merge if ¢’ has children
crash Throw exception if late merge happens
(if configured like an assertion
that current analysis should not produce merges)

» Implemented in merge of ARGCPA, no algorithm change

Philipp Wendler LMU Munich, Germany

10

Note

» Does not solve all problems!
» Path exploration may still blow up.
» But better than nothing:

» Redundant SAT checks avoided if each path is checked
» No unexpected ARG shape

(no crash in counterexample creation)
» Helps debugging when solving the root cause

Current State

» prevent used in BMC as workaround
for edge cases like #1002

» prevent used for internal counterexample checks
performed with Predicate CPA

> prevent proposed for validating violation witnesses
(#907)

» crash evaluated for standard predicate analysis,
but found another case of suboptimal traversal order

(#1004)

Philipp Wendler LMU Munich, Germany

https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1002
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/907
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1004

Take-Home Messages

Term “late merge”
Best traversal order hard to ensure for all edge cases
... but lots of things depend on it!

Suboptimal traversal order hard to notice

Use cpa.arg.lateMerge = prevent as workaround.

Use cpa.arg.lateMerge = crash where possible!

vVvvyvVvyVvyyvyy

Flexible combination of independent components
does have problems.

v

Consider safeguards such as assertions.

Philipp Wendler LMU Munich, Germany

References

Beyer, D., Dangl, M., Wendler, P.: A unifying view on
SMT-based software verification. J. Autom. Reasoning
60(3), 299-335 (2018).
https://doi.org/10.1007/s10817-017-9432-6

Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate
abstraction with adjustable-block encoding. In: Proc.
FMCAD. pp. 189-197. FMCAD (2010)

Philipp Wendler LMU Munich, Germany 14 /13

https://doi.org/10.1007/s10817-017-9432-6

CPA Algorithm

Reached, Waitlist := {ep}
while Waitlist # () do
remove e from Waitlist
for all e’ € post(e) do
for all ¢” € Reached do
e” new := merge(e’, e”)
if "o # €” then
replace e” in Reached, Waitlist by e” e,
if —stop(e’, Reached) then
add e’ to Reached, Waitlist
return Reached

	Appendix

