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Part 1: SV-COMP

11th Competition on Software Verification
Proc. TACAS 2022,

https://doi.org/10.1007/978-3-030-99527-0_20
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Motivation - Goals

1. Community suffers from unreproducible results
→ Establish set of benchmarks

2. Publicity for tools that are available
→ Provide state-of-the-art overview

3. Support the development of verification tools
→ Give credits and visibility to developers

4. Establish standards
→ Specification language, Witnesses,
Benchmark definitions, Validators

5. Train PhD students on benchmarking and reproducibility
6. Provide computing resources to groups that do not have

large clusters
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Schedule of Sessions

Session 1:
▶ Competition Report, by organizer
▶ System Presentations, 7 min by each team
▶ Short discussion

Session 2:
▶ Open Jury Meeting, Community Discussion,

moderated by organizer
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Procedure – Time Line

Three Steps – Three Deadlines:
▶ Benchmark submission deadline
▶ System submission
▶ Notification of results (approved by teams)
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Verification Problem

Input:
▶ C program → GNU/ANSI C standard
▶ Property

→ Reachability of error label, of overflows
→ Memory safety (inv-deref, inv-free, memleak)
→ Termination

Output:
▶ TRUE + Witness (property holds)
▶ FALSE + Witness (property does not hold)
▶ UNKNOWN (failed to compute result)
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Environment

Machines (1000 $ consumer machines):
▶ CPU: 3.4 GHz 64-bit Quad-Core CPU
▶ RAM: 33 GB
▶ OS: GNU/Linux (Ubuntu 20.04)

Resource limits:
▶ 15 GB memory
▶ 15 min CPU time (consumed 470 days)

Volume: 309 081 verification runs, 1.43 million validation runs
Incl. preruns: 2.85 million verification runs using 19 years, and
16.3 million validation runs using 11 years
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Scoring Schema

Common principles: Ranking measure should be
▶ easy to understand
▶ reproducible
▶ computable in isolation for one tool

SV-COMP:
▶ Ranking measure is the quality of verification work
▶ Expressed by a community-agreed score
▶ Tie-breaker is CPU time
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Scoring Schema (2022, unchanged)

Reported result Points Description
UNKNOWN 0 Failure, out of ressources
FALSE correct +1 Error found and confirmed
FALSE incorrect −16 False alarm (imprecise analysis)
TRUE correct +2 Proof found and confirmed
TRUE incorrect −32 Missed bug (unsound analysis)
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Fair and Transparent

Jury:
▶ Team: one member of each participating candidate
▶ Term: one year (until next participants are determined)

Systems:
▶ All systems are available in open GitLab repo
▶ Configurations and Setup in GitLab repository

→ Integrity and reproducibility guaranteed

October 11, 2022, at Huawei PhD Forum 2022 10 / 30



47 Competition Candidates

Qualification:
▶ 33 qualified, additional 14 hors concours
▶ 10 result validators, 1 witness linter
▶ One person can participate with different tools
▶ One tool can participate with several configurations

(frameworks, no tool-name inflation)
Benchmark quality:
▶ Community effort, documented on GitLab

Role of organizer:
▶ Just service: Advice, Technical Help, Executing Runs
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Benchmark Sets

▶ Everybody can submit benchmarks (conditions apply)
▶ Eight categories when closed (scores normalized):

▶ Reachability: 5400 tasks
▶ Memory Safety: 3321 tasks
▶ Concurrency: 763 tasks
▶ NoOverflows: 454 tasks
▶ Termination: 2293 tasks
▶ Software Systems: 3417 tasks
▶ Overall: 15648 tasks
▶ Java: 586 tasks
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Replicability

▶ SV-Benchmarks:
https:
//gitlab.com/sosy-lab/benchmarking/sv-benchmarks

▶ SV-COMP Setup:
https://gitlab.com/sosy-lab/sv-comp/bench-defs

▶ Resource Measurement and Process Control:
https://github.com/sosy-lab/benchexec

▶ Archives:
https://gitlab.com/sosy-lab/sv-comp/archives-2022

▶ Witnesses:
https://doi.org/10.5281/zenodo.5838498
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Results – Example: Overall
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Impact / Achievements

▶ Large benchmark set of verification tasks
→ established and used in many papers
for experimental evaluation

▶ Good overview over state-of-the art
→ covers model checking and program analysis

▶ Participants have an archived track record
of their achievements

▶ Infrastructure and technology for
controlling the benchmark runs (cf. StarExec)

[Competition Report and System Descriptions
are archived in Proceedings TACAS 2022]
https://doi.org/10.1007/978-3-030-99527-0_20
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Alternative Rankings — Definitions

▶ Correct Verifiers — Low Failure Rate:

number of incorrect results
total score

with unit E/sp.

▶ Green Verifiers — Low Energy Consumption:

total CPU energy
total score

with the unit J/sp.
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Number of Participants

Number of evaluated verifiers for each year
(first-time participants on top)
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Different Techniques
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Part 2: Software Verification with Witnesses

Witnesses are an important interface between tools.

[5, Proc. FSE 2015] [4, Proc. FSE 2016]
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Witness Validation

▶ Validate untrusted results
▶ Easier than full verification
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Example Combination (in DSL CoVeriTeam)

CoVeriTeam: Language and Tool [12, Proc. TACAS 2022]

Algorithm 1 Witness Validation [5, 4]
Input: Program p, Specification s
Output: Verdict

1: verifier := Verifier(“Ultimate Automizer”)
2: validator := Validator(“CPAchecker”)
3: result := verifier.verify(p, s)
4: if result.verdict ∈ {TRUE, FALSE} then
5: result = validator.validate (p, s, result.witness)
6: return (result.verdict, result.witness)
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CEGAR
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Modularization of CEGAR

▶ CEGAR defines I/O interfaces
▶ But instances not exchangeable
▶ Aim: generalize CEGAR, allow exchange of components
⇒ Modular reformulation
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Workflow of modular CEGAR

Abstract
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Proc. ICSE 2022 [8]
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Interactive and Automatic Methods
▶ How to achieve cooperation between automatic and

interactive verifiers?
▶ Idea: Try to use existing interfaces for information

exchange
//@ensures \return==0;
int main () {

unsigned int x = 0;
unsigned int y = 0;
//@loop invariant x==y;
while ( nondet_int ()) {

x++;
//@assert x==y+1;
y++;

}
assert (x==y);
return 0;

}

ACSL-annotated program, as
used by Frama-C

. . .
<node i d=" q1 ">
<data key=" i n v a r i a n t ">( y == x )</data>
<data key=" i n v a r i a n t . scope ">main</data>
</node>
<edge s o u r c e=" q0 " t a r g e t=" q1 ">
<data key=" enterLoopHead ">true </data>
<data key=" s t a r t l i n e ">6</data>
<data key=" e n d l i n e ">6</data>
<data key=" s t a r t o f f s e t ">157</data>
<data key=" e n d o f f s e t ">165</data>
</edge>
. . .

GraphML-based witness
automaton generated by
automatic verifiers
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From Components: Construct Interactive Verifiers
▶ Turn a witness validator into an interactive verifier:

Transform
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▶ Turn an automatic verifier into an interactive verifier::

Transform
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▶ Annotating in ACSL is more human-readable than witness
automata

▶ Works for a wide range of automatic verifiers/validators
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Component Framework: Constructing Validators

▶ Turn an interactive verifier (Frama-C) into a validator:
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All Implemented in CPAchecker [14]
▶ Included Concepts:

▶ CEGAR [20] Interpolation [17, 7]
▶ Configurable Program Analysis [10, 11]
▶ Adjustable-block encoding [15]
▶ Conditional model checking [9]
▶ Verification witnesses [5, 4]
▶ Various abstract domains: predicates, intervals, BDDs,

octagons, explicit values
▶ Available analyses approaches:

▶ Predicate abstraction [2, 15, 11, 18]
▶ Impact algorithm [22, 19, 7]
▶ Bounded model checking [21, 7]
▶ k-Induction [6, 7]
▶ IC3/Property-directed reachability [3]
▶ Explicit-state model checking [17]
▶ Interpolation-based model checking [16]
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Simple Combination without Cooperation
Often, even simple combinations help!

Portfolio construction using off-the-shelf
verification tools [13, Proc. FASE 2022]

Consider AWS category (177 tasks) in SV-COMP 2022:
CBMC: 69 (8 wrong)
CoVeriTeam-Parallel-Portfolio: 147 (3 wrong)
(improvement did not require any change in a verification tool)

With Nian-Ze Lee and Po-Chun Chien:
▶ inject invariants (in k-induction, IMC, ISMC)
▶ parallel portfolio

A lot of improvements are (trivially) possible.
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Conclusion

▶ Mature research area with competition SV-COMP
▶ Verification Witnesses as Interfaces
▶ Combinations and Cooperation
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