
Software Verification and
Verification Witnesses

Dirk Beyer
LMU Munich, Germany

October 11, 2022, at Huawei PhD Forum 2022

October 11, 2022, at Huawei PhD Forum 2022 1 / 30



Part 1: SV-COMP

11th Competition on Software Verification
Proc. TACAS 2022,

https://doi.org/10.1007/978-3-030-99527-0_20

October 11, 2022, at Huawei PhD Forum 2022 2 / 30

https://doi.org/10.1007/978-3-030-99527-0_20


Motivation - Goals

1. Community suffers from unreproducible results
→ Establish set of benchmarks

2. Publicity for tools that are available
→ Provide state-of-the-art overview

3. Support the development of verification tools
→ Give credits and visibility to developers

4. Establish standards
→ Specification language, Witnesses,
Benchmark definitions, Validators

5. Train PhD students on benchmarking and reproducibility
6. Provide computing resources to groups that do not have

large clusters

October 11, 2022, at Huawei PhD Forum 2022 3 / 30



Schedule of Sessions

Session 1:
▶ Competition Report, by organizer
▶ System Presentations, 7 min by each team
▶ Short discussion

Session 2:
▶ Open Jury Meeting, Community Discussion,

moderated by organizer

October 11, 2022, at Huawei PhD Forum 2022 4 / 30



Procedure – Time Line

Three Steps – Three Deadlines:
▶ Benchmark submission deadline
▶ System submission
▶ Notification of results (approved by teams)

October 11, 2022, at Huawei PhD Forum 2022 5 / 30



Verification Problem

Input:
▶ C program → GNU/ANSI C standard
▶ Property

→ Reachability of error label, of overflows
→ Memory safety (inv-deref, inv-free, memleak)
→ Termination

Output:
▶ TRUE + Witness (property holds)
▶ FALSE + Witness (property does not hold)
▶ UNKNOWN (failed to compute result)

October 11, 2022, at Huawei PhD Forum 2022 6 / 30



Environment

Machines (1000 $ consumer machines):
▶ CPU: 3.4 GHz 64-bit Quad-Core CPU
▶ RAM: 33 GB
▶ OS: GNU/Linux (Ubuntu 20.04)

Resource limits:
▶ 15 GB memory
▶ 15 min CPU time (consumed 470 days)

Volume: 309 081 verification runs, 1.43 million validation runs
Incl. preruns: 2.85 million verification runs using 19 years, and
16.3 million validation runs using 11 years

October 11, 2022, at Huawei PhD Forum 2022 7 / 30



Scoring Schema

Common principles: Ranking measure should be
▶ easy to understand
▶ reproducible
▶ computable in isolation for one tool

SV-COMP:
▶ Ranking measure is the quality of verification work
▶ Expressed by a community-agreed score
▶ Tie-breaker is CPU time

October 11, 2022, at Huawei PhD Forum 2022 8 / 30



Scoring Schema (2022, unchanged)

Reported result Points Description
UNKNOWN 0 Failure, out of ressources
FALSE correct +1 Error found and confirmed
FALSE incorrect −16 False alarm (imprecise analysis)
TRUE correct +2 Proof found and confirmed
TRUE incorrect −32 Missed bug (unsound analysis)

October 11, 2022, at Huawei PhD Forum 2022 9 / 30



Fair and Transparent

Jury:
▶ Team: one member of each participating candidate
▶ Term: one year (until next participants are determined)

Systems:
▶ All systems are available in open GitLab repo
▶ Configurations and Setup in GitLab repository

→ Integrity and reproducibility guaranteed

October 11, 2022, at Huawei PhD Forum 2022 10 / 30



47 Competition Candidates

Qualification:
▶ 33 qualified, additional 14 hors concours
▶ 10 result validators, 1 witness linter
▶ One person can participate with different tools
▶ One tool can participate with several configurations

(frameworks, no tool-name inflation)
Benchmark quality:
▶ Community effort, documented on GitLab

Role of organizer:
▶ Just service: Advice, Technical Help, Executing Runs

October 11, 2022, at Huawei PhD Forum 2022 11 / 30



Benchmark Sets

▶ Everybody can submit benchmarks (conditions apply)
▶ Eight categories when closed (scores normalized):

▶ Reachability: 5400 tasks
▶ Memory Safety: 3321 tasks
▶ Concurrency: 763 tasks
▶ NoOverflows: 454 tasks
▶ Termination: 2293 tasks
▶ Software Systems: 3417 tasks
▶ Overall: 15648 tasks
▶ Java: 586 tasks

October 11, 2022, at Huawei PhD Forum 2022 12 / 30



Replicability

▶ SV-Benchmarks:
https:
//gitlab.com/sosy-lab/benchmarking/sv-benchmarks

▶ SV-COMP Setup:
https://gitlab.com/sosy-lab/sv-comp/bench-defs

▶ Resource Measurement and Process Control:
https://github.com/sosy-lab/benchexec

▶ Archives:
https://gitlab.com/sosy-lab/sv-comp/archives-2022

▶ Witnesses:
https://doi.org/10.5281/zenodo.5838498

October 11, 2022, at Huawei PhD Forum 2022 13 / 30

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/sv-comp/bench-defs
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/sv-comp/archives-2022
https://doi.org/10.5281/zenodo.5838498


Results – Example: Overall

 1

 10

 100

 1000

M
in

. 
ti

m
e
 i
n
 s

2LS
CBMC

CVT-ParPort
CPAchecker-2-1

DIVINE
ESBMC-kind

Goblint
Graves-CPA

PeSCo
Symbiotic

UAutomizer
UKojak

UTaipan

-6000 -4000 -2000  0  2000  4000  6000  8000  10000  12000

Cumulative score

October 11, 2022, at Huawei PhD Forum 2022 14 / 30



Impact / Achievements

▶ Large benchmark set of verification tasks
→ established and used in many papers
for experimental evaluation

▶ Good overview over state-of-the art
→ covers model checking and program analysis

▶ Participants have an archived track record
of their achievements

▶ Infrastructure and technology for
controlling the benchmark runs (cf. StarExec)

[Competition Report and System Descriptions
are archived in Proceedings TACAS 2022]
https://doi.org/10.1007/978-3-030-99527-0_20

October 11, 2022, at Huawei PhD Forum 2022 15 / 30

https://doi.org/10.1007/978-3-030-99527-0_20


Alternative Rankings — Definitions

▶ Correct Verifiers — Low Failure Rate:

number of incorrect results
total score

with unit E/sp.

▶ Green Verifiers — Low Energy Consumption:

total CPU energy
total score

with the unit J/sp.

October 11, 2022, at Huawei PhD Forum 2022 16 / 30



Number of Participants

Number of evaluated verifiers for each year
(first-time participants on top)

201220132014201520162017201820192020202120220

20

40

60

10 6 5 13
17 11

4 10
6 4

14

5 10 9 18 21 17 11
22 26 33

Ev
al

ua
te

d
ve

rifi
er

s

October 11, 2022, at Huawei PhD Forum 2022 17 / 30



Different Techniques

Co
m

pe
tit

io
n

Re
po

rt
[1

]
ht

tp
s:/

/d
oi

.o
rg

/1
0.

10
07

/9
78

-3
-0

30
-1

75
02

-3
_9

October 11, 2022, at Huawei PhD Forum 2022 18 / 30

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9


Part 2: Software Verification with Witnesses

Witnesses are an important interface between tools.

[5, Proc. FSE 2015] [4, Proc. FSE 2016]

October 11, 2022, at Huawei PhD Forum 2022 19 / 30



Witness Validation

▶ Validate untrusted results
▶ Easier than full verification

October 11, 2022, at Huawei PhD Forum 2022 20 / 30



Example Combination (in DSL CoVeriTeam)

CoVeriTeam: Language and Tool [12, Proc. TACAS 2022]

Algorithm 1 Witness Validation [5, 4]
Input: Program p, Specification s
Output: Verdict

1: verifier := Verifier(“Ultimate Automizer”)
2: validator := Validator(“CPAchecker”)
3: result := verifier.verify(p, s)
4: if result.verdict ∈ {TRUE, FALSE} then
5: result = validator.validate (p, s, result.witness)
6: return (result.verdict, result.witness)

October 11, 2022, at Huawei PhD Forum 2022 21 / 30



CEGAR

potential
counterexample

infeasible
counterexample

precision
increment

Abstract
Model

Exploration
Feasibility

Check

Precision
Refinement

program
correct

program
incorrect

October 11, 2022, at Huawei PhD Forum 2022 22 / 30



Modularization of CEGAR

▶ CEGAR defines I/O interfaces
▶ But instances not exchangeable
▶ Aim: generalize CEGAR, allow exchange of components
⇒ Modular reformulation

October 11, 2022, at Huawei PhD Forum 2022 23 / 30



Workflow of modular CEGAR

Abstract
Model

Explorer
Feasibility
Checker

Precision
Refiner

program
correct

program
incorrect

Violation
Witness

Path
Witness

Invariant
Witness

Proc. ICSE 2022 [8]

October 11, 2022, at Huawei PhD Forum 2022 24 / 30



Interactive and Automatic Methods
▶ How to achieve cooperation between automatic and

interactive verifiers?
▶ Idea: Try to use existing interfaces for information

exchange
//@ensures \return==0;
int main () {

unsigned int x = 0;
unsigned int y = 0;
//@loop invariant x==y;
while ( nondet_int ()) {

x++;
//@assert x==y+1;
y++;

}
assert (x==y);
return 0;

}

ACSL-annotated program, as
used by Frama-C

. . .
<node i d=" q1 ">
<data key=" i n v a r i a n t ">( y == x )</data>
<data key=" i n v a r i a n t . scope ">main</data>
</node>
<edge s o u r c e=" q0 " t a r g e t=" q1 ">
<data key=" enterLoopHead ">true </data>
<data key=" s t a r t l i n e ">6</data>
<data key=" e n d l i n e ">6</data>
<data key=" s t a r t o f f s e t ">157</data>
<data key=" e n d o f f s e t ">165</data>
</edge>
. . .

GraphML-based witness
automaton generated by
automatic verifiers

October 11, 2022, at Huawei PhD Forum 2022 25 / 30



From Components: Construct Interactive Verifiers
▶ Turn a witness validator into an interactive verifier:

Transform

ACSL2Witness

Analyze

Validatorp

φb

p

φ′
b

ω

r

ω’

▶ Turn an automatic verifier into an interactive verifier::

Transform

ACSL2Witness

Transform

Witness2Assert

Analyze

Verifierp

φb

p

φ′
b

ω

p’

φ′′
b

r

ω’

▶ Annotating in ACSL is more human-readable than witness
automata

▶ Works for a wide range of automatic verifiers/validators
October 11, 2022, at Huawei PhD Forum 2022 26 / 30



Component Framework: Constructing Validators

▶ Turn an interactive verifier (Frama-C) into a validator:

Transform

Witness2ACSL

Analyze

Verifierp

φb

ω

p

φ′
b

r

▶ Turn an automatic verifier into a validator:

Transform

Witness2Assert

Analyze

Verifierp

φb

ω

p’

φ′
b

r

ω’

October 11, 2022, at Huawei PhD Forum 2022 27 / 30



All Implemented in CPAchecker [14]
▶ Included Concepts:

▶ CEGAR [20] Interpolation [17, 7]
▶ Configurable Program Analysis [10, 11]
▶ Adjustable-block encoding [15]
▶ Conditional model checking [9]
▶ Verification witnesses [5, 4]
▶ Various abstract domains: predicates, intervals, BDDs,

octagons, explicit values
▶ Available analyses approaches:

▶ Predicate abstraction [2, 15, 11, 18]
▶ Impact algorithm [22, 19, 7]
▶ Bounded model checking [21, 7]
▶ k-Induction [6, 7]
▶ IC3/Property-directed reachability [3]
▶ Explicit-state model checking [17]
▶ Interpolation-based model checking [16]

October 11, 2022, at Huawei PhD Forum 2022 28 / 30



Simple Combination without Cooperation
Often, even simple combinations help!

Portfolio construction using off-the-shelf
verification tools [13, Proc. FASE 2022]

Consider AWS category (177 tasks) in SV-COMP 2022:
CBMC: 69 (8 wrong)
CoVeriTeam-Parallel-Portfolio: 147 (3 wrong)
(improvement did not require any change in a verification tool)

With Nian-Ze Lee and Po-Chun Chien:
▶ inject invariants (in k-induction, IMC, ISMC)
▶ parallel portfolio

A lot of improvements are (trivially) possible.

October 11, 2022, at Huawei PhD Forum 2022 29 / 30



Conclusion

▶ Mature research area with competition SV-COMP
▶ Verification Witnesses as Interfaces
▶ Combinations and Cooperation

October 11, 2022, at Huawei PhD Forum 2022 30 / 30



References I
[1] Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:

Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

[2] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE
(2009). https://doi.org/10.1109/FMCAD.2009.5351147

[3] Beyer, D., Dangl, M.: Software verification with PDR: An implementation of the
state of the art. In: Proc. TACAS (1). pp. 3–21. LNCS 12078, Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_1

[4] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses:
Exchanging verification results between verifiers. In: Proc. FSE. pp. 326–337.
ACM (2016). https://doi.org/10.1145/2950290.2950351

[5] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness
validation and stepwise testification across software verifiers. In: Proc. FSE. pp.
721–733. ACM (2015). https://doi.org/10.1145/2786805.2786867

[6] Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

October 11, 2022, at Huawei PhD Forum 2022 31 / 30

https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42


References II
[7] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software

verification. J. Autom. Reasoning 60(3), 299–335 (2018).
https://doi.org/10.1007/s10817-017-9432-6

[8] Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing Software
Verification into Off-the-Shelf Components: An Application to CEGAR. In: Proc.
ICSE. pp. 536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064

[9] Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

[10] Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007).
https://doi.org/10.1007/978-3-540-73368-3_51

[11] Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic
precision adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008).
https://doi.org/10.1109/ASE.2008.13

[12] Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer
(2022). https://doi.org/10.1007/978-3-030-99524-9_31

October 11, 2022, at Huawei PhD Forum 2022 32 / 30

https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-030-99524-9_31


References III
[13] Beyer, D., Kanav, S., Richter, C.: Construction of Verifier Combinations Based on

Off-the-Shelf Verifiers. In: Proc. FASE. pp. 49–70. Springer (2022).
https://doi.org/10.1007/978-3-030-99429-7_3

[14] Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

[15] Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with
adjustable-block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

[16] Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

[17] Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

[18] Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE. pp. 389–399. ACM (2013).
https://doi.org/10.1145/2491411.2491429

[19] Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate
abstraction vs. Impact. In: Proc. FMCAD. pp. 106–113. FMCAD (2012)

October 11, 2022, at Huawei PhD Forum 2022 33 / 30

https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/2491411.2491429


References IV

[20] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

[21] Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004).
https://doi.org/10.1007/978-3-540-24730-2_15

[22] McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

October 11, 2022, at Huawei PhD Forum 2022 34 / 30

https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/11817963_14

	Appendix

