Software Verification and Verification Witnesses

Dirk Beyer LMU Munich, Germany

October 11, 2022, at Huawei PhD Forum 2022

October 11, 2022, at Huawei PhD Forum 2022

11th Competition on Software Verification Proc. TACAS 2022, https://doi.org/10.1007/978-3-030-99527-0_20

Motivation - Goals

- 1. Community suffers from unreproducible results \rightarrow Establish set of benchmarks
- 2. Publicity for tools that are available
 - \rightarrow Provide state-of-the-art overview
- 3. Support the development of verification tools
 - \rightarrow Give credits and visibility to developers
- 4. Establish standards

 \rightarrow Specification language, Witnesses, Benchmark definitions, Validators

- 5. Train PhD students on benchmarking and reproducibility
- 6. Provide computing resources to groups that do not have large clusters

Schedule of Sessions

Session 1:

- Competition Report, by organizer
- System Presentations, 7 min by each team
- Short discussion

Session 2:

 Open Jury Meeting, Community Discussion, moderated by organizer

Procedure – Time Line

Three Steps – Three Deadlines:

- Benchmark submission deadline
- System submission
- Notification of results (approved by teams)

Verification Problem

Input:

- $\blacktriangleright \ \ \mathsf{C} \ \mathsf{program} \to \ \mathsf{GNU}/\mathsf{ANSI} \ \mathsf{C} \ \mathsf{standard}$
- Property
 - ightarrow Reachability of error label, of overflows
 - \rightarrow Memory safety (inv-deref, inv-free, memleak)
 - \rightarrow Termination

Output:

- TRUE + Witness
- FALSE + Witness
- UNKNOWN

(property holds)
(property does not hold)
(failed to compute result)

Environment

Machines (1000 \$ consumer machines):

- CPU: 3.4 GHz 64-bit Quad-Core CPU
- RAM: 33 GB
- OS: GNU/Linux (Ubuntu 20.04)

Resource limits:

- 15 GB memory
- 15 min CPU time (consumed 470 days)

Volume: 309 081 verification runs, 1.43 million validation runs Incl. preruns: 2.85 million verification runs using 19 years, and 16.3 million validation runs using 11 years

Scoring Schema

Common principles: Ranking measure should be

- easy to understand
- reproducible
- computable in isolation for one tool
- SV-COMP:
 - Ranking measure is the quality of verification work
 - Expressed by a community-agreed score
 - Tie-breaker is CPU time

Scoring Schema (2022, unchanged)

Reported result	Points	Description
UNKNOWN	0	Failure, out of ressources
FALSE correct	+1	Error found and confirmed
FALSE incorrect	-16	False alarm (imprecise analysis)
TRUE correct	+2	Proof found and confirmed
TRUE incorrect	-32	Missed bug (unsound analysis)

Fair and Transparent

Jury:

Team: one member of each participating candidate
 Term: one year (until next participants are determined)
 Systems:

- All systems are available in open GitLab repo
- ► Configurations and Setup in GitLab repository → Integrity and reproducibility guaranteed

47 Competition Candidates

Qualification:

- 33 qualified, additional 14 hors concours
- 10 result validators, 1 witness linter
- One person can participate with different tools
- One tool can participate with several configurations (frameworks, no tool-name inflation)

Benchmark quality:

Community effort, documented on GitLab

Role of organizer:

Just service: Advice, Technical Help, Executing Runs

Benchmark Sets

Everybody can submit benchmarks (conditions apply)

- Eight categories when closed (scores normalized):
 - Reachability: 5400 tasks
 - Memory Safety: 3321 tasks
 - Concurrency: 763 tasks
 - NoOverflows: 454 tasks
 - Termination: 2293 tasks
 - Software Systems: 3417 tasks
 - Overall: 15648 tasks
 - Java: 586 tasks

Replicability

SV-Benchmarks:

https:

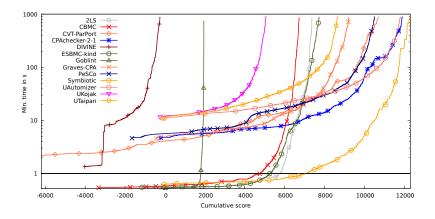
//gitlab.com/sosy-lab/benchmarking/sv-benchmarks

SV-COMP Setup:

https://gitlab.com/sosy-lab/sv-comp/bench-defs

Resource Measurement and Process Control:

https://github.com/sosy-lab/benchexec


Archives:

https://gitlab.com/sosy-lab/sv-comp/archives-2022

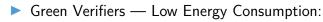
Witnesses:

https://doi.org/10.5281/zenodo.5838498

Results – Example: Overall

October 11, 2022, at Huawei PhD Forum 2022

Impact / Achievements

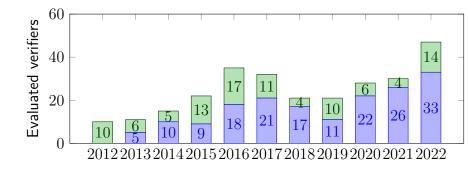

- ► Large benchmark set of verification tasks → established and used in many papers for experimental evaluation
- Good overview over state-of-the art \rightarrow covers model checking and program analysis
- Participants have an archived track record of their achievements
- Infrastructure and technology for controlling the benchmark runs (cf. StarExec)

[Competition Report and System Descriptions are archived in Proceedings TACAS 2022] https://doi.org/10.1007/978-3-030-99527-0_20 Alternative Rankings — Definitions

Correct Verifiers — Low Failure Rate:

number of incorrect results total score

with unit E/sp.



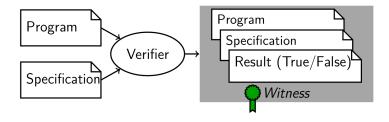
 $\frac{\text{total CPU energy}}{\text{total score}}$

with the unit J/sp.

Number of Participants

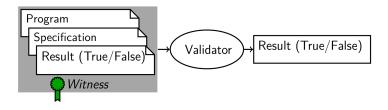
Number of evaluated verifiers for each year (first-time participants on top)

Different Techniques


Participant	CEGAR	Predicate Abstraction	Symbolic Execution	Bounded Model Checking	k-Induction	Property-Directed Reach.	Explicit-Value Analysis	Numeric. Interval Analysis	Shape Analysis	Separation Logic	Bit-Precise Analysis	ARG-Based Analysis	Lazy Abstraction	Interpolation	Automata-Based Analysis	Concurrency Support	Ranking Functions	Evolutionary Algorithms
2LS AProVE			1	1	1		1	1		1	1						1	
			~	1			~	•		-	1						~	
CBMC CBMC-Path				1							1					1		
CPA-BAM-BNB	1	1					1				1	1	1	1				
CPA-BAM-BNB CPA-LOCKATOR	1	1					1				1	1	٠,	1		1		
CPA-LOCKATOR CPA-SEQ	1	1		1	1		1	1	1		1	1	1	1		1	1	
DepthK	*	*		2	1		*	*	•		1	•	•	•		2	*	
DIVINE-EXPLICIT				•	•		1				1					1		
DIVINE-SMT							1				1					2		
ESBMC-KIND				1	1						1					1		
JAYHORN	1	1				1		1					1	1				
JBMC				1							1					1		
JPF				1			1	1			1					1		
LAZY-CSEQ				1							1					1		
Map2Check				1							1							
PeSCo	1	1		1	1		1	1	1		1	1	1	1		1	1	
Pinaka			1	1							1							
PREDATORHP									1									
Skink	1						1							1	1			
Smack	1			1		1					1		~			1		
SPF			1						1							1		
Symbiotic			1					1			1							
UAUTOMIZER	1	1											1	1	1		1	
UKojak	1	۷.									1		1	1				
UTAIPAN	1	1									1		1	1	1			
VERIABS	1			1	1		1	1										
VERIFUZZ				1				1										1
VIAP	1			,							,		1			,		
Yogar-CBMC				1							1					4		
YOGAR-CBMC-PAR.	1			1							1		1			1		

δ Competition Report [1] https://doi.org/10.1007/978-3-030-17502-3_

October 11, 2022, at Huawei PhD Forum 2022


Part 2: Software Verification with Witnesses

Witnesses are an important interface between tools.

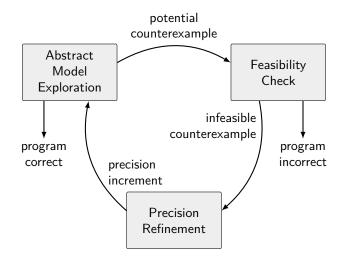
[5, Proc. FSE 2015] [4, Proc. FSE 2016]

Witness Validation

- Validate untrusted results
- Easier than full verification

Example Combination (in DSL CoVeriTeam)

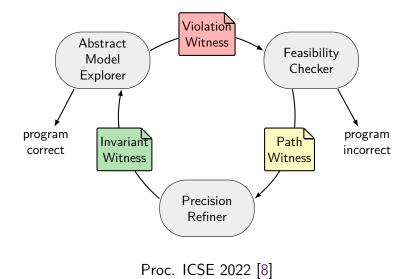
COVERITEAM: Language and Tool [12, Proc. TACAS 2022]


Algorithm 1 Witness Validation [5, 4]

Input: Program p, Specification s

Output: Verdict

- 1: verifier := Verifier("Ultimate Automizer")
- 2: validator := Validator("CPAchecker")
- 3: result := verifier.verify(p, s)
- 4: if result.verdict \in {TRUE, FALSE} then
- 5: result = validator.validate (p, s, result.witness)
- 6: return (result.verdict, result.witness)


CEGAR

Modularization of CEGAR

- CEGAR defines I/O interfaces
- But instances not exchangeable
- \blacktriangleright Aim: generalize $\rm CEGAR$, allow exchange of components
- \Rightarrow Modular reformulation

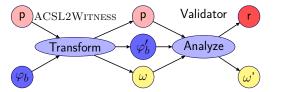
Workflow of modular CEGAR

October 11, 2022, at Huawei PhD Forum 2022

Interactive and Automatic Methods

- How to achieve cooperation between automatic and interactive verifiers?
- Idea: Try to use existing interfaces for information exchange

```
//@ensures \return==0;
int main() {
    unsigned int x = 0;
    unsigned int y = 0;
    //@loop invariant x==y;
    while (nondet_int()) {
        x++;
        //@assert x==y+1;
        y++;
    }
    assert(x==y);
    return 0;
}
```


ACSL-annotated program, as used by $\ensuremath{\operatorname{Frama-C}}$

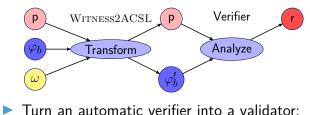
```
...
cnode id="q1">
</data key="invariant">( y == x )</data>
</data key="invariant.scope">main</data>
</data key="invariant.scope">main</data>
</data key="enterLoopHead">rue</data>
</data key="startoffset">15</data>
</data key="startoffset">157</data>
</data key="endline">6</data>
</data key="endline">157</data>
</data key="endoffset">165</data>
</data key="endoffset">165</data>
</data key="startoffset">165</data>
</data key="endoffset">165</data>
</data
```

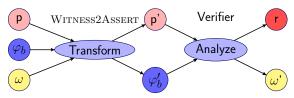
GraphML-based witness automaton generated by automatic verifiers

From Components: Construct Interactive Verifiers

> Turn a witness validator into an interactive verifier:

Turn an automatic verifier into an interactive verifier::




 Annotating in ACSL is more human-readable than witness automata

Works for a wide range of automatic verifiers/validators

Component Framework: Constructing Validators

▶ Turn an interactive verifier (FRAMA-C) into a validator:

October 11, 2022, at Huawei PhD Forum 2022

All Implemented in CPACHECKER [14]

Included Concepts:

- CEGAR [20] Interpolation [17, 7]
- Configurable Program Analysis [10, 11]
- Adjustable-block encoding [15]
- Conditional model checking [9]
- Verification witnesses [5, 4]
- Various abstract domains: predicates, intervals, BDDs, octagons, explicit values
- Available analyses approaches:
 - Predicate abstraction [2, 15, 11, 18]
 - ▶ IMPACT algorithm [22, 19, 7]
 - Bounded model checking [21, 7]
 - k-Induction [6, 7]
 - IC3/Property-directed reachability [3]
 - Explicit-state model checking [17]
 - Interpolation-based model checking [16]

Simple Combination without Cooperation

Often, even simple combinations help!

Portfolio construction using off-the-shelf verification tools [13, Proc. FASE 2022]

Consider AWS category (177 tasks) in SV-COMP 2022: CBMC: 69 (8 wrong) CoVeriTeam-Parallel-Portfolio: 147 (3 wrong) (improvement did not require any change in a verification tool)

With Nian-Ze Lee and Po-Chun Chien:

- inject invariants (in k-induction, IMC, ISMC)
- parallel portfolio

A lot of improvements are (trivially) possible.

Conclusion

- Mature research area with competition SV-COMP
- Verification Witnesses as Interfaces
- Combinations and Cooperation

References I

- Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_9
- [2] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351147
- [3] Beyer, D., Dangl, M.: Software verification with PDR: An implementation of the state of the art. In: Proc. TACAS (1). pp. 3–21. LNCS 12078, Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_1
- Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016). https://doi.org/10.1145/2950290.2950351
- [5] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM (2015). https://doi.org/10.1145/2786805.2786867
- Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_42

References II

- Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-017-9432-6
- [8] Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR. In: Proc. ICSE. pp. 536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064
- [9] Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model checking: A technique to pass information between verifiers. In: Proc. FSE. ACM (2012). https://doi.org/10.1145/2393596.2393664
- Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing the convergence of model checking and program analysis. In: Proc. CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_51
- [11] Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008). https://doi.org/10.1109/ASE.2008.13
- [12] Beyer, D., Kanav, S.: COVERITEAM: On-demand composition of cooperative verification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_31

References III

- [13] Beyer, D., Kanav, S., Richter, C.: Construction of Verifier Combinations Based on Off-the-Shelf Verifiers. In: Proc. FASE. pp. 49–70. Springer (2022). https://doi.org/10.1007/978-3-030-99429-7_3
- [14] Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_16
- [15] Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)
- [16] Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022). https://doi.org/10.48550/arXiv.2208.05046
- [17] Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013). https://doi.org/10.1007/978-3-642-37057-1_11
- [18] Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for efficient regression verification. In: Proc. FSE. pp. 389–399. ACM (2013). https://doi.org/10.1145/2491411.2491429
- [19] Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate abstraction vs. IMPACT. In: Proc. FMCAD. pp. 106–113. FMCAD (2012)

References IV

- [20] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643
- [21] Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS. pp. 168–176. LNCS 2988, Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_15
- [22] McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136. LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14