A Hoare Logic with
Regular Behavioral Specifications

Gidon Ernst LMU Munich
Alexander Knapp University of Augsburg
Toby Murray University of Melbourne

ISoLA 2022, Rhodes

LubwiG- Universitat Q- ;) A
MAXIMILIANS-

LM u ERST Augsburg
MUNCHEN Ul’llVCl’Slty MELBOURNE

https://bitbucket.org/covern/secc

https://bitbucket.org/covern/secc

Motivation

System Code Interfaces

open close
read
Hoare-like ,abstraction gap behavioral
A 4
» contracts » events, traces
» data invariants » protocols

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications

Example

void even_odd() Behavioral Abstractions

{

}

» as a finite automaton
bool b = false;
even

while(x*) _@

odd
{
if(!'b) print("even"); » as a regular language
else print("odd"); (even-odd)*
b = !b;
}

» need to keep track of states
tr(while t do b) C tr(b)*

Annotated Example in SECC

void even_odd()
_(trace (even odd)x)
bool b = false;

while(x*)
_(trace (even
_(trace (even

odd) *
odd)* even if

if b)
'b)

if(!'b) print("even");
else print("odd");

https:

even_odd ... failed
event trace
(even odd)x* even

AAAA

unmatched

residual specification
odd (even odd)*

path condition
b == true

//bitbucket.org/covern/secc/src/master/examples/even_odd.c

G. Ernst, A. Knapp, T. Murray

A Hoare Logic with Regular Behavioral Specifications

https://bitbucket.org/covern/secc/src/master/examples/even_odd.c
https://bitbucket.org/covern/secc/src/master/examples/even_odd.c

Context and Motivation

Goal: verify low-level code + high-level behavior

Existing approaches
» history- vs. future-based [Blom+'15, Jacobs'20]
» separation logic + process algebras [Oortwijn—+'20]
> session types e.g. [Hiittel+'16]

complex or not fitting well with Hoare logic

Our Interests:

» confidence in the implementation in SECC
(spoiler: our first attempt was wrong)

» work out the principles of trace specifications

» understand design and trade-offs

Contribution

Approach: Hoare-logic with judgements { P:U } ¢ {Q:V }

» Trace specifications U and V' over regular expressions u;
UVi= wu if ¢ + -+ + wu, if ¢,

» Specification commands that model occurrence of events

cu=emit U | ---

Results
» Clean, simple extension of Hoare logic
v/ Sound (via Isabelle) and complete (sketch) proof rules
» Tool implementation in SECC
» Case studies: Casino, Regex matcher

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications

~

emit: History vs. Future

Implemented: U captures the history seen so far

EMiT™

{P:U}emit V{P:UV}

» adequate for forward symbolic execution

Alternative: U specifies what is expected

EMmiTS

{P:V-U}emit V{P:iU}

» backwards reasoning—no best forward transformer
{P:(a-a)+(b-b) } emit (a+b) {P:1?727}
» but can capture correctness for infinite runs

Sequential Composition

Program anntotations mention just the trace

void even_odd() _(trace (even odd)x)

Trace specifications are state-dependent

b = false;

_(emit even if b + odd if !b) Uy
b = true;

_(emit even if b + odd if !b) Ui

Result is not Uy-U; but (Up[b +— false]) - (Ui[b — true])

Proof rules are symmetric to achieve modularity

{P:U} e {Q:V} {QiV}Ye {RiW}
{PiU} ;00 {RW} SEQ

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications

9/18

A “temporal frame rule”

Program execution is independent of trace prefix W

PANQo =W =Wo {P:U}c{RV}

(PWU}c{Q WV} FRAME™

» condition: description W of prefix trace is preserved by c
where 0 = [Z — 2] renames ¥ = mod|(c)

» language equivalence W = Wo wrt. states P and Qo

Future-based: W is postfix
Analogy: spatial frame rule in separation logic

Consequence Rule

History-based:

{PiUs} c{Q2: Vo }
{PiU e {Q1:V1}
where
> P = P, A (U CUs)
> Q= Q1 N(VLC W)

CONSEQ ™

Future-based:
» swap C to J

While Loops

{tAN1:U} c{1:U}
{ItU}whiletdoc{-tAIT:U}

WHILE

» occurrences of U refer to different states

Side-conditions from the example

(even-odd)*-even

(even-odd)*

when b (even-odd)*-even

1 1M

when b (even-odd)*-even-odd

Contribution

Approach: Hoare-logic with judgements { P:U } ¢ {Q:V }

» Trace specifications U and V' over regular expressions u;
UVi= wu if ¢ + -+ + wu, if ¢,

» Specification commands that model occurrence of events

cu=emit U | ---

Results
» Clean, simple extension of Hoare logic
v/ Sound (via Isabelle) and complete (sketch) proof rules
» Tool implementation in SECC
» Case studies: Casino, Regex matcher

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications 13

SMT-decidable side-conditions

Query P=ULCVIiffUpCVp
————

plain regular

u, if A\ P sat

&, otherwise

where (u if ¢)p = {

Algorithmic check u C v via Brzozowski derivative

Note: only place where regularity of traces is relevant

Contribution

Approach: Hoare-logic with judgements { P:U } ¢ {Q:V }

» Trace specifications U and V' over regular expressions u;
UVi= wu if ¢ + -+ + wu, if ¢,

» Specification commands that model occurrence of events

cu=emit U | ---

Results
» Clean, simple extension of Hoare logic
v/ Sound (via Isabelle) and complete (sketch) proof rules
» Tool implementation in SECC
» Case studies: Casino, Regex matcher

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications

Casino

add to pot, add to pot,
remove from_pot remove_from_pot add _to pot
game I
create_game | @vailable place bet placed

decide bet

int decide_bet(struct address xself, struct address xsender,
struct casino *casino, int secret)
_(maintains game(...))
_(requires sender == _operator)
_(requires _hash == _cryptohash(secret))
_(ensures result ==> payment(self, _player; 2x_bet))
_(trace player_wins if result + casino_wins if !result)

https://bitbucket.org/covern/secc/src/master/examples/
case-studies/casino.c

G. Ernst, A. Knapp, T. Murray A Hoare Logic with Regular Behavioral Specifications 16

https://bitbucket.org/covern/secc/src/master/examples/case-studies/casino.c
https://bitbucket.org/covern/secc/src/master/examples/case-studies/casino.c

Conclusion

Thanks: everybody for participating in the discussions!

Results
» Clean, simple extension of Hoare logic
» Sound (via Isabelle) and complete (sketch) proof rules
» Tool implementation in SECC

» Case studies: Casino, Regex matcher

Outlook
» Events with data

» Concurrency and lock invariants
» Context free, LTL, CTL?

