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Example of an Analysis
1 void main(void) {
2 uint a = nondet();
3 uint b = nondet();
4 uint s = sum(a, b);
5 if (s != a + b) {
6 error ();
7 }
8 }
9

10 uint sum(uint n, uint m) {
11 if (n == 0) {
12 return m;
13 } else {
14 uint tmp = sum(n − 1, m + 1);
15 return tmp;
16 }
17 }
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Configurable Program Analysis (CPA)
[1, Beyer/Henzinger/Théoduloz, 2007]

CPA algorithm explores the abstract state space
and defines operators for each specific domain
▶ transfer: successor computation
▶ merge: combination of two abstract states
▶ stop: coverage of abstract states

Independent of used domain: explicit values, intervals, or predicates

X Not using block summaries: one analysis for the whole program
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Block-Abstraction Memoization (BAM)
[2, Wonisch/Wehrheim, 2012]

▶ split large verification task into smaller problems
and solve them separately

▶ use CPA algorithm for a domain-specific analysis
▶ cache intermediate analysis results

Independent of domain-specific analysis
Simple way of reusing intermediate results

x Not interprocedural:
▶ context relevant for block abstractions
▶ colliding variable names from different procedure scopes
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Interprocedural Block-Abstraction Memoization
▶ based on BAM Intraprocedural

Operators defined for each specific domain
▶ reduce: abstraction at block entry
▶ expand: concretization at block exit
▶ rebuild: restore context information

Fixed-point algorithm:
▶ sound overapproximation of the recursive procedure
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Contribution
▶ formalization of BAM Interprocedural

▶ support for several abstract domains
▶ value, predicate, interval domain
▶ combination of domains

▶ combination with other approaches
▶ CEGAR
▶ witness validation

▶ implementation in the open-source framework CPAchecker
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Evaluation: CPAchecker vs. Tools of SV-COMP 2020

Verifier CPU time (s) Proofs Bugs
Cbmc 662 32 47
CPAchecker (Value+Predicate) 2 180 37 46
Divine 1 190 32 42
Esbmc 941 33 47
Map2Check 23 600 34 37
Pinaka 237 31 31
Symbiotic 138 33 45
UAutomizer 2 160 41 37
VeriAbs 7 630 41 46
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Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks
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