
Domain-Independent Interprocedural Program Analysis
using Block-Abstraction Memoization

Dirk Beyer and Karlheinz Friedberger

LMU Munich, Germany

Proc. ESEC/FSE 2020
doi:10.1145/3368089.3409718
Presented at ESEC/FSE 2022

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 1 / 13

https://doi.org/10.1145/3368089.3409718


Software Verification
C Program

void main() {
uint a = nondet();
uint b = nondet(a);
uint s = sum(a, b);
if (s != a + b) {

error();
}}

Verification
Tool

TRUE
specification
is satisfied

FALSE
bug found

General method:
Create an overapproximation of the
program states /
compute program invariants

Overapproximation

Reachable
States Error

States

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 13



Software Verification
C Program

void main() {
uint a = nondet();
uint b = nondet(a);
uint s = sum(a, b);
if (s != a + b) {

error();
}}

Verification
Tool

TRUE
specification
is satisfied

FALSE
bug found

General method:
Create an overapproximation of the
program states /
compute program invariants

Overapproximation

Reachable
States Error

States

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 2 / 13



Example of an Analysis
1 void main(void) {
2 uint a = nondet();
3 uint b = nondet();
4 uint s = sum(a, b);
5 if (s != a + b) {
6 error ();
7 }
8 }
9

10 uint sum(uint n, uint m) {
11 if (n == 0) {
12 return m;
13 } else {
14 uint tmp = sum(n − 1, m + 1);
15 return tmp;
16 }
17 }

2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a, b)

[s ̸= a+b] [s = a+b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n−1, m+1)
return m

return tmp

Bsum

Bmain

call sum

return from sum

call sum

return from sum

control-flow automaton

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 13



Example of an Analysis
1 void main(void) {
2 uint a = nondet();
3 uint b = nondet();
4 uint s = sum(a, b);
5 if (s != a + b) {
6 error ();
7 }
8 }
9

10 uint sum(uint n, uint m) {
11 if (n == 0) {
12 return m;
13 } else {
14 uint tmp = sum(n − 1, m + 1);
15 return tmp;
16 }
17 }

2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a, b)

[s ̸= a+b] [s = a+b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n−1, m+1)
return m

return tmp

Bsum

Bmain

call sum

return from sum

call sum

return from sum

control-flow automaton

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 3 / 13



Configurable Program Analysis (CPA)
[1, Beyer/Henzinger/Théoduloz, 2007]

CPA algorithm explores the abstract state space
and defines operators for each specific domain
▶ transfer: successor computation
▶ merge: combination of two abstract states
▶ stop: coverage of abstract states

Independent of used domain: explicit values, intervals, or predicates

X Not using block summaries: one analysis for the whole program

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 13



Configurable Program Analysis (CPA)
[1, Beyer/Henzinger/Théoduloz, 2007]

CPA algorithm explores the abstract state space
and defines operators for each specific domain
▶ transfer: successor computation
▶ merge: combination of two abstract states
▶ stop: coverage of abstract states

Independent of used domain: explicit values, intervals, or predicates

X Not using block summaries: one analysis for the whole program

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 13



Configurable Program Analysis (CPA)
[1, Beyer/Henzinger/Théoduloz, 2007]

CPA algorithm explores the abstract state space
and defines operators for each specific domain
▶ transfer: successor computation
▶ merge: combination of two abstract states
▶ stop: coverage of abstract states

Independent of used domain: explicit values, intervals, or predicates

X Not using block summaries: one analysis for the whole program

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 4 / 13



Block-Abstraction Memoization (BAM)
[2, Wonisch/Wehrheim, 2012]

▶ split large verification task into smaller problems
and solve them separately

▶ use CPA algorithm for a domain-specific analysis
▶ cache intermediate analysis results

Independent of domain-specific analysis
Simple way of reusing intermediate results

x Not interprocedural:
▶ context relevant for block abstractions
▶ colliding variable names from different procedure scopes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 13



Block-Abstraction Memoization (BAM)
[2, Wonisch/Wehrheim, 2012]

▶ split large verification task into smaller problems
and solve them separately

▶ use CPA algorithm for a domain-specific analysis
▶ cache intermediate analysis results

Independent of domain-specific analysis
Simple way of reusing intermediate results

x Not interprocedural:
▶ context relevant for block abstractions
▶ colliding variable names from different procedure scopes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 13



Block-Abstraction Memoization (BAM)
[2, Wonisch/Wehrheim, 2012]

▶ split large verification task into smaller problems
and solve them separately

▶ use CPA algorithm for a domain-specific analysis
▶ cache intermediate analysis results

Independent of domain-specific analysis
Simple way of reusing intermediate results

x Not interprocedural:
▶ context relevant for block abstractions
▶ colliding variable names from different procedure scopes

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 5 / 13



Interprocedural Block-Abstraction Memoization
▶ based on BAM Intraprocedural

Operators defined for each specific domain
▶ reduce: abstraction at block entry
▶ expand: concretization at block exit
▶ rebuild: restore context information

Fixed-point algorithm:
▶ sound overapproximation of the recursive procedure

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 13



Interprocedural Block-Abstraction Memoization
▶ based on BAM Intraprocedural

Operators defined for each specific domain
▶ reduce: abstraction at block entry
▶ expand: concretization at block exit
▶ rebuild: restore context information

Fixed-point algorithm:
▶ sound overapproximation of the recursive procedure

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 13



Interprocedural Block-Abstraction Memoization
▶ based on BAM Intraprocedural

Operators defined for each specific domain
▶ reduce: abstraction at block entry
▶ expand: concretization at block exit
▶ rebuild: restore context information

Fixed-point algorithm:
▶ sound overapproximation of the recursive procedure

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 6 / 13



Example of an Analysis
2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a, b)

[s ̸= a+b] [s = a+b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n−1, m+1)
return m

return tmp

Bsum

Bmain

call sum

return from sum

call sum

return from sum

control-flow automaton

Fixed-point algorithm
(first iteration)

Bmain

Bsum

Bsum

2
[main]
true

3

4

11
[main, sum]

true

11
[sum]
true

12 14

11
[sum, sum]

true

11
[sum]
true

cache
m

iss

16
[sum]

ret = mp + np

16
[main, sum]
ret = a + b

5

7
[main]
true

red
uce

reduce

exp
an

d

reb
uil

d

apply
block

abstraction

e1

e2

e3

e4

e5

e6 e7

e8 e9 e10

e11

e12

e13

coverage (1)

abstract reachability graph

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 13



Example of an Analysis
2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a, b)

[s ̸= a+b] [s = a+b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n−1, m+1)
return m

return tmp

Bsum

Bmain

call sum

return from sum

call sum

return from sum

control-flow automaton

Fixed-point algorithm
(first iteration)

Bmain

Bsum

Bsum

2
[main]
true

3

4

11
[main, sum]

true

11
[sum]
true

12 14

11
[sum, sum]

true

11
[sum]
true

cache
m

iss

16
[sum]

ret = mp + np

16
[main, sum]
ret = a + b

5

7
[main]
true

red
uce

reduce

exp
an

d

reb
uil

d

apply
block

abstraction

e1

e2

e3

e4

e5

e6 e7

e8 e9 e10

e11

e12

e13

coverage (1)

abstract reachability graph

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 7 / 13



Example of an Analysis
2

3

4

5

6 error 7

a = nondet()

b = nondet()

s = sum(a, b)

[s ̸= a+b] [s = a+b]

11

12 14

15

16

[n = 0] ![n = 0]

tmp = sum(n−1, m+1)
return m

return tmp

Bsum

Bmain

call sum

return from sum

call sum

return from sum

control-flow automaton

Fixed-point algorithm
(second iteration)

Bmain

Bsum

Bsum

2
[main]
true

3

4

11
[main, sum]

true

11
[sum]
true

12 14

11
[sum, sum]

true

11
[sum]
true

16
[sum]

ret = mp + np

16
[sum, sum]
ret = m + n

cache
hit

for
state

e5

16
[sum]

ret = mp + np

16
[main, sum]
ret = a + b

15

16
[sum]

ret = mp + np

5

7
[main]
true

red
uce

reduce

expand

rebuild

exp
an

d

reb
uil

d

apply
block

abstraction

apply
block

abstraction

e21

e22

e23

e24

e25

e26 e27

e28 e29 e30

e8e32

e33

e34

e35

e36

e37

coverage (1)

coverage
(2)

abstract reachability graph

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 8 / 13



Contribution
▶ formalization of BAM Interprocedural

▶ support for several abstract domains
▶ value, predicate, interval domain
▶ combination of domains

▶ combination with other approaches
▶ CEGAR
▶ witness validation

▶ implementation in the open-source framework CPAchecker

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 13



Contribution
▶ formalization of BAM Interprocedural

▶ support for several abstract domains
▶ value, predicate, interval domain
▶ combination of domains

▶ combination with other approaches
▶ CEGAR
▶ witness validation

▶ implementation in the open-source framework CPAchecker

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 13



Contribution
▶ formalization of BAM Interprocedural

▶ support for several abstract domains
▶ value, predicate, interval domain
▶ combination of domains

▶ combination with other approaches
▶ CEGAR
▶ witness validation

▶ implementation in the open-source framework CPAchecker

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 13



Contribution
▶ formalization of BAM Interprocedural

▶ support for several abstract domains
▶ value, predicate, interval domain
▶ combination of domains

▶ combination with other approaches
▶ CEGAR
▶ witness validation

▶ implementation in the open-source framework CPAchecker

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 9 / 13



Evaluation: CPAchecker vs. Tools of SV-COMP 2020

Verifier CPU time (s) Proofs Bugs
Cbmc 662 32 47
CPAchecker (Value+Predicate) 2 180 37 46
Divine 1 190 32 42
Esbmc 941 33 47
Map2Check 23 600 34 37
Pinaka 237 31 31
Symbiotic 138 33 45
UAutomizer 2 160 41 37
VeriAbs 7 630 41 46

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 10 / 13



Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 13



Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 13



Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 13



Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 13



Conclusion
▶ modular domain-independent interprocedural analysis

▶ based on an intraprocedural analysis

▶ support for recursive tasks

▶ negligible overhead

▶ competitive performance on a large set of benchmarks

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 11 / 13



References
▶ Domain-Independent Interprocedural Program Analysis

using Block-Abstraction Memoization
Dirk Beyer and Karlheinz Friedberger, Proc. ESEC/FSE 2020
doi:10.1145/3368089.3409718

▶ Reproduction Package:
doi:10.5281/zenodo.4024268

▶ CPAchecker
https://cpachecker.sosy-lab.org/

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 12 / 13

https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.5281/zenodo.4024268
https://cpachecker.sosy-lab.org/


References I
[1] Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing

the convergence of model checking and program analysis. In: Proc. CAV. pp. 504–518.
LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_51

[2] Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization. In:
Proc. ICFEM. pp. 332–347. LNCS 7635, Springer (2012).
https://doi.org/10.1007/978-3-642-34281-3_24

Dirk Beyer and Karlheinz Friedberger LMU Munich, Germany 13 / 13

https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-34281-3_24

